Parametric Study on the Thermal Performance of a Trapezoidal Cavity Absorber for a Linear Fresnel Solar Collector

Louiza RABHI, Ahmed KHMOU, Noureddine BOUTAMMACHTE, Abdelaali AIT M BAREK

Abstract


A trapezoidal cavity receiver for a Linear Fresnel Solar Collector was investigated in this paper. Seven parameters are analyzed to visualize the effect of each one on the Output Thermal Power (OTP) in order to optimize it by finding the optimum dimensions. A Monte Carlo ray tracing method was used to predict the optics and energy behavior of the studied plant, then a mathematical program was developed to obtain the heat flux density distribution in absorber tubes. CFD simulation was carried out to determine temperature distribution on the absorber tubes. The effect of distance between Fresnel mirrors, absorber tubes diameter, distance between absorber tubes, their position according to cavity depth and HTF velocity are evaluated. The cavity is considered to be under vaccum and Air/ Haynes 6B are the chosen couple HTF/Material tubes.

Keywords


Trapezoidal cavity receiver; Linear Fresnel reflector; Ray tracing model; CFD simulation.

Full Text:

PDF

References


S. Mohan, A. Saxena, et S. Singh, « Heat loss analysis from a trapezoidal cavity receiver in LFR system using conduction-radiation model », Solar Energy, vol. 159, p. 37-43, January 2018.

E. M. Toygar et al., « Design and development of solar flat mirror and heat storage system », in 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 2014, p. 821‑827.

G. Zhu, T. Wendelin, M. J. Wagner, et C. Kutscher, « History, current state, and future of linear Fresnel concentrating solar collectors », Solar Energy, vol. 103, p. 639-652, May 2014.

M. A. Moghimi, K. J. Craig, et J. P. Meyer, « Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector », Solar Energy, vol. 119, p. 343-361, September 2015.

Y. Elmaanaoui and D. Saifaoui « Preliminary Assessment of an Organic Rankine Cycle Power Plant Derived by Linear Fresnel Reflector», Int. J. Renew. Energy Res. IJRER, vol. 8, no. 4, pp. 2014–2024, December 2018.

M. H. Ahmed, M. Rady, A. M. A. Amin, F. M. Montagnino, et F. Paredes, « Comparison of thermal and optical performance of Linear Fresnel and Parabolic Trough Concentrator », in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 2015, p. 626‑629.

M. E. Toygar, O. Incesu, Z. Cetin, T. Bayram, et A. Toygar, « SOLARUX CSP greenhouse, cultivates agricultural products, generates electrical energy, industrial fruit and vegetables drying with wasted heat energy », in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 2017, p. 189‑194.

J. Bendfeld, S. Balluff, et S. Krauter, « Green Energy from the Ocean An overview on costeffectiv and reliable measuring systems », in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, 2015, p. 375‑378.

S. Mohanty, P. K. Patra, et S. S. Sahoo, « Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review », Renewable and Sustainable Energy Reviews, vol. 56, p. 778-796, April 2016.

Y. Yoshida et Y. Ueda, « Verification of consumer’s benefits for different area ratio of PV array and solar thermal water heater considering regional characteristics », in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 2015, p. 472‑477.

F. Veynandt, J. DE LA TORRE, J.-J. BEZIAN, et A. GHATUARY, « Optimisation de la conception d’un concentrateur solaire linéique à miroirs de Fresnel », présenté à SFT 2010 -Congrès français de thermique, Le Touquet - France, 2010, vol. 1, p. 319-324.

R. Abbas et J. M. Martínez-Val, « Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors », Renewable Energy, vol. 75, p. 81-92, March 2015.

E. Bellos, E. Mathioulakis, E. Papanicolaou, et V. Belessiotis, « Experimental investigation of the daily performance of an integrated linear Fresnel reflector system », Solar Energy, vol. 167, p. 220-230, June 2018.

M. Lin, K. Sumathy, Y. J. Dai, R. Z. Wang, et Y. Chen, « Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver », Applied Thermal Engineering, vol. 51, no 1-2, p. 963-972, March 2013.

J. Facão et A. C. Oliveira, « Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator », Renewable Energy, vol. 36, no 1, p. 90-96, January 2011.

Y. Lai, T. Wu, S. Che, Z. Dong, et M. Lyu, « Thermal Performance Prediction of a Trapezoidal Cavity Absorber for a Linear Fresnel Reflector », Advances in Mechanical Engineering, vol. 5, p. 615742, January 2013.

R. Manikumar, A. Valan Arasu, et S. Jayaraj, « Computational fluid dynamics analysis of a trapezoidal cavity absorber used for the linear Fresnel reflector solar concentrator system », Journal of Renewable and Sustainable Energy, vol. 4, no 6, p. 063145, November 2012.

A. Saxena, N. Jhamaria, S. Singh, et S. S. Sahoo, « Numerical analysis of convective and radiative heat losses from trapezoidal cavity receiver in LFR systems », Solar Energy, vol. 137, p. 308-316, November 2016.

P. L. Singh, R. M. Sarviya, et J. L. Bhagoria, « Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers », Applied Energy, vol. 87, no 2, p. 541-550, February 2010.

S. Dabiri, E. Khodabandeh, A. K. Poorfar, R. Mashayekhi, D. Toghraie, et S. A. Abadian Zade, « Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator », Energy, vol. 153, p. 17-26, June 2018.

L. Rabhi, A. Khmou, et N. Boutammachte, « Temperature Distribution on a Plant Receiver Adapted from a Commercial Solar Plant in Ait Baha-Morocco », Asian Journal of Scientific Research, vol. 11, no 1, p. 96-104, December 2017.

P. Tsekouras, C. Tzivanidis, et K. Antonopoulos, « Optical and thermal investigation of a linear Fresnel collector with trapezoidal cavity receiver », Applied Thermal Engineering, vol. 135, p. 379-388, May 2018.

M. J. Blanco, J. M. Amieva, et A. Mancillas, « The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems », 2005, vol. 2005, p. 157-164.

Soda service, 2014. Solar Radiation Data. Available from: http://www.soda-pro.com/ [Accessed 20 June 2016]

A. Delgado, R. Ron, E. Blesa, C. Hidalgo, et C. Gertig, « Impact of the Sunshape Variability on the Performance of a Central Receiver System », Energy Procedia, vol. 69, p. 70-76, May 2015.

G. Espinosa-Rueda, J. L. Navarro Hermoso, N. Martínez-Sanz, et M. Gallas-Torreira, « Vacuum evaluation of parabolic trough receiver tubes in a 50 MW concentrated solar power plant », Solar Energy, vol. 139, p. 36-46, December 2016.

E. Bellos, C. Tzivanidis, et D. Tsimpoukis, « Multi-criteria evaluation of parabolic trough collector with internally finned absorbers », Applied Energy, vol. 205, p. 540-561, November 2017.

J. Li, Z. Wang, J. Li, et D. Lei, « Vacuum reliability analysis of parabolic trough receiver », Solar Energy Materials and Solar Cells, vol. 105, p. 302-308, October 2012.

F. Chen et al., « Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator », International Journal of Photoenergy, vol. 2015, p. 1-9, 2015.

M. A. Moghimi, K. J. Craig, et J. P. Meyer, « Simulation-based optimisation of a linear Fresnel collector mirror field and receiver for optical, thermal and economic performance », Solar Energy, vol. 153, p. 655-678, September 2017.

K. Vignarooban, X. Xu, A. Arvay, K. Hsu, et A. M. Kannan, « Heat transfer fluids for concentrating solar power systems – A review », Applied Energy, vol. 146, p. 383-396, May 2015.

J. Pacio et T. Wetzel, « Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems », Solar Energy, vol. 93, p. 11-22, July 2013.

N. Boerema, G. Morrison, R. Taylor, et G. Rosengarten, « Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems », Solar Energy, vol. 86, no 9, p. 2293-2305, September 2012.

J. Pacio, C. Singer, T. Wetzel, et R. Uhlig, « Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants », Applied Thermal Engineering, vol. 60, no 1-2, p. 295-302, October 2013.

J.-F. Hoffmann et al., « Temperature dependence of thermophysical and rheological properties of seven vegetable oils in view of their use as heat transfer fluids in concentrated solar plants », Solar Energy Materials and Solar Cells, vol. 178, p. 129-138, May 2018.

X. Py, Y. Azoumah, et R. Olives, « Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries », Renewable and Sustainable Energy Reviews, vol. 18, p. 306-315, February 2013.

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, et E. Wahl, « Jülich Solar Power Tower—Experimental Evaluation of the Storage Subsystem and Performance Calculation », Journal of Solar Energy Engineering, vol. 133, no 3, p. 031019, 2011.

M. Liu, M. Belusko, N. H. Steven Tay, et F. Bruno, « Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants », Solar Energy, vol. 101, p. 220-231, March 2014.

J. Klöwer, « High temperature Corrosion behaviour of iron aluminides and iron-aluminium-chromium alloys », Materials and Corrosion/Werkstoffe und Korrosion, vol. 47, no 12, p. 685-694, December 1996.

Chen, R. et Yeun, W, « Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen », Oxidation of Metals, vol. 59, no 5-6, p. 433–468, June 2003.

K. C. Antony, « Wear-Resistant Cobalt-Base Alloys », JOM, vol. 35, no 2, p. 52-60, February 1983.

HaynesStellite® Alloy No. 6B; Haynes Stellite® Alloy No. 6K Data Sheet, Cabot Corporation, 1974

F. VEYNANDT, « Cogénération héliothermodynamique avec concentrateur linéaire de Fresnel : modélisation de l’ensemble du procédé », Doctoral thesis, Institut National Polytechnique de Toulouse, Toulouse, 2011.

P. Boito et R. Grena, « Optimization of the geometry of Fresnel linear collectors », Solar Energy, vol. 135, p. 479-486, October 2016.

Y. Wang, Q. Liu, J. Lei, et H. Jin, « A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid », Applied Thermal Engineering, vol. 70, no 1, p. 462-476, September 2014.




DOI (PDF): https://doi.org/10.20508/ijrer.v9i2.9056.g7650

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4