Optimal scheduling of hydrothermal system considering different Environmental Emissions using NSTLBO approach
Abstract
Keywords
Full Text:
PDFReferences
Zahavi, J., & Eisenberg, L. (1975). Economic-enviromental power dispatch. IEEE Transactions on Systems, Man, and Cybernetics, (5), 485-489.
Nanda, J., Kothari, D. P., & Lingamurthy, K. S. (1988). Economic-emission load dispatch through goal programming techniques. IEEE Transactions on Energy Conversion, 3(1), 26-32.
Dhillon, J. S., & Kothari, D. P. (2000). The surrogate worth trade-off approach for multiobjective thermal power dispatch problem. Electric Power Systems Research, 56(2), 103-110.
Sasikala, J., & Ramaswamy, M. (2012). PSO based economic emission dispatch for fixed head hydrothermal systems. Electrical Engineering, 94(4), 233-239.
Talaq, J. H., El-Hawary, F., & El-Hawary, M. E. (1994). A summary of environmental/economic dispatch algorithms. IEEE Transactions on Power Systems, 9(3), 1508-1516.
Wood, A. J., & Wollenberg, B. F. (2012). Power generation, operation, and control. John Wiley & Sons.
Rashid, A. H. A., & Nor, K. M. (1991). An efficient method for optimal scheduling of fixed head hydro and thermal plants. IEEE Transactions on Power Systems, 6(2), 632-636.
Jin-Shyr, Y., & Nanming, C. (1989). Short term hydrothermal coordination using multi-pass dynamic programming. IEEE Transactions on Power Systems, 4(3), 1050-1056.
Salam, M. S., Nor, K. M., & Hamdam, A. R. (1998). Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Transactions on Power Systems, 13(1), 226-235.
Li, C. A., Svoboda, A. J., Tseng, C. L., Johnson, R. B., & Hsu, E. (1997). Hydro unit commitment in hydro-thermal optimization. IEEE Transactions on Power Systems, 12(2), 764-769.
Agarwal, S. K. (1973, June). Optimal stochastic scheduling of hydrothermal systems. In Proceedings of the Institution of Electrical Engineers (Vol. 120, No. 6, pp. 674-678). IET Digital Library.
Nanda, J., Bijwe, P. R., & Kothari, D. P. (1986). Application of progressive optimality algorithm to optimal hydrothermal scheduling considering deterministic and stochastic data. International Journal of Electrical Power & Energy Systems, 8(1), 61-64.
Dhillon, J. S., Parti, S. C., & Kothari, D. P. (2002). Fuzzy decision-making in stochastic multiobjective short-term hydrothermal scheduling. IEE Proceedings-Generation, Transmission and Distribution, 149(2), 191-200.
Dhillon, J. S., Parti, S. C., & Kothari, D. P. (2001). Fuzzy decision making in multiobjective long-term scheduling of hydrothermal system. International Journal of Electrical Power & Energy Systems, 23(1), 19-29.
Benhamida, F., & Belhachem, R. (2013). Dynamic constrained economic/emission dispatch scheduling using neural network. Advances in Electrical and Electronic Engineering, 11(1), 1-9.
Dieu, V. N., & Ongsakul, W. (2005, June). Hopfield Lagrange for short-term hydrothermal scheduling. In Power Tech, 2005 IEEE Russia (pp. 1-7). IEEE.
Dhillon, J. S., Dhillon, J. S., & Kothari, D. P. (2011). Real coded genetic algorithm for stochastic hydrothermal generation scheduling. Journal of Systems Science and Systems Engineering, 20(1), 87-109.
Narang, N., Dhillon, J. S., & Kothari, D. P. (2012). Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method. Energy, 47(1), 237-252.
Umayal, S. P., & Kamaraj, N. (2005, December). Stochastic multi objective short term hydrothermal scheduling using particle swarm optimization. In INDICON, 2005 Annual IEEE(pp. 497-501). IEEE.
Zhou, J., Liao, X., Ouyang, S., Zhang, R., & Zhang, Y. (2014). Multi-objective artificial bee colony algorithm for short-term scheduling of hydrothermal system. International Journal of Electrical Power & Energy Systems, 55, 542-553.
Zhang, H., Zhou, J., Zhang, Y., Fang, N., & Zhang, R. (2013). Short term hydrothermal scheduling using multi-objective differential evolution with three chaotic sequences. International Journal of Electrical Power & Energy Systems, 47, 85-99.
Basu, M. (2011). Economic environmental dispatch of fixed head hydrothermal power systems using nondominated sorting genetic algorithm-II. Applied Soft Computing, 11(3), 3046-3055.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103.
Cagnina, L., Esquivel, S. C., & Coello Coello, C. (2005). A particle swarm optimizer for multi-objective optimization. Journal of Computer Science & Technology, 5.
Xue, F., Sanderson, A. C., & Graves, R. J. (2003, December). Pareto-based multi-objective differential evolution. In Evolutionary Computation, 2003. CEC'03. The 2003 Congress on (Vol. 2, pp. 862-869). IEEE.
Nadakuditi, G., Sharma, V., & Naresh, R. (2016). Non-dominated sorting disruption-based gravitational search algorithm with mutation scheme for multi-objective short-term hydrothermal scheduling. Electric Power Components and Systems, 44(9), 990-1004.
Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2016). Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index. Renewable Energy, 99, 18-34.
Wu, X. Y., Cheng, C. T., Shen, J. J., Luo, B., Liao, S. L., & Li, G. (2015). A multi-objective short term hydropower scheduling model for peak shaving. International Journal of Electrical Power & Energy Systems, 68, 278-293.
Norouzi, M. R., Ahmadi, A., Sharaf, A. M., & Nezhad, A. E. (2014). Short-term environmental/economic hydrothermal scheduling. Electric Power Systems Research, 116, 117-127.
DOI (PDF): https://doi.org/10.20508/ijrer.v8i4.8283.g7500
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4