Investigation of Structural and Modal Analysis of a Wind Turbine Planetary Gear using Finite Element Method
Abstract
Damages in gears may result from excessive operating load (overload), inadequate operating conditions, operation near the resonant frequency of a gear structure, or simple fatigue during power transmission. In mechanical design, the engineers must always ensure that the mechanical resonance frequencies of the components are not allowed to match the drive oscillation frequencies of oscillating parts. Various experimental and theoretical techniques have been developed to analyze such vibrational problems. In this paper, the planetary gear was modeled in Pro/ENGINEER Wildfire 4.0 while the Mesh and the structural, modal and response harmonic analysis for different boundary conditions were performed in ANSYS Workbench 15.0. A modal analysis was then performed for these different cases to calculate a few initial natural frequencies and to analyze its movements using the harmonic response. Furthermore, it is observed that the value of the maximum occurred stress obtained by the harmonic response analysis for the three different cases is less than the maximum materials stress.
Keywords
Full Text:
PDFReferences
S. R. S et V. Ramesh, « A Novel Integrated Approach of Energy Consumption Scheduling in Smart Grid Environment With The Penetration of Renewable Energy », Int. J. Renew. ENERGY Res., vol. 5, no 4, 2015.
S. Kahla, Y. Soufi, M. Sedraoui, et M. Bechouat, « Maximum Power Point Tracking of Wind Energy Conversion System Using Multi-objective Grey Wolf Optimization of Fuzzy-Sliding Mode Controller », Int. J. Renew. ENERGY Res., vol. 7, no 2, 2017.
D. Fendri et M. Chaabene, « Renewable energy management based on timed hybrid petri net approach for an isolated chalet application », Int. J. Renew. Energy Res., vol. 6, no 2, 2016.
M. N. Hassanzadeh et A. Safdarian, « Wind Energy Penetration with Load Shifting from the System Well - being Viewpoint », Int. J. Renew. ENERGY Res., vol. 7, no 2, 2017.
D. Astolfi, L. Scappaticci, et L. Terzi, « Fault diagnosis of wind turbine gearboxes through temperature and vibration data », Int. J. Renew. Energy Res., vol. 7, no 2, 2017.
C. G. Cooley et R. G. Parker, « The geometry and frequency content of planetary gear single-mode vibration », Mech. Syst. Signal Process., vol. 40, no 1, p. 91‑104, 2013.
M. Zhao et J. Ji, « Dynamic analysis of wind turbine gearbox components », Energies, vol. 9, no 2, p. 1‑18, 2016.
J. Ooi, X. Wang, C. Tan, J. H. Ho, et Y. P. Lim, « Modal and stress analysis of gear train design in portal axle using finite element modeling and simulation », J. Mech. Sci. Technol., vol. 26, no 2, p. 575‑589, 2012.
S. Draca, « Finite Element Model of a Double-Stage Helical Gear Reduction », Windsor, 2006.
W. Musial, S. Butterfield, et B. McNiff, « Improving Wind Turbine Gearbox Reliability », dans European Wind Energy Conference, 2007, p. 1‑13.
F. Rasmussen, K. Thomsen, et T. Larsen, « The gearbox problem revisited », Roskilde, Denmark, 2004.
J. Lin et R. G. Parker, « Analytical characterization of the unique properties of planetary gear free vibration », Vib. Acoust., vol. 121, no 3, p. 316‑321, 1999.
S. H. Gawande et S. N. Shaikh, « Experimental Investigations of Noise Control in Planetary Gear Set by Phasing », J. Eng., vol. 2014, 2014.
T. M. Ericson et R. G. Parker, « Natural Frequency Clusters in Planetary Gear Vibration », J. Vib. Acoust., vol. 135, no 6, p. 061002‑061002, 2013.
R. G. Parker, « Dynamic Response of a Planetary Gear System using a Finite Element / Contact Mechanics », J. Mech. Des., vol. 122, p. 304‑310.
S. S. Ghorpade, A. B. Kadam, D. A. Mane, S. H. Gawande, et S. N. Shaikh, « Dynamic Modeling of PGT using Analytical & Numerical Approach », Mech. Des. Vib., vol. 3, no 1, p. 24‑30, 2015.
C. G. Cooley et R. G. Parker, « A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research », Appl. Mech. Rev., vol. 66, no 4, p. 40804, 2014.
A. Kahraman, « Natural modes of planetary gear trains », Journal of Sound Vibration, vol. 173. p. 125‑130, 1994.
A. Kahraman, « Planetary Gear Train Dynamics », J. Mech. Des., vol. 116, no 3, p. 713, 1994.
J. Lin et R. G. Parker, « Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes To Model », J. Sound Vib., vol. 228, no 1, p. 109‑128, 1999.
A. Mohsine, E. M. Boudi, et A. El Marjani, « Modeling and Structural Analysis of Planetary Gear of a Wind Turbine », dans 3rd International Renewable And Sustainable Energy Conference (IRSEC), 2016, p. 1‑5.
Errichello, R., 1979, “State-of-art review: gear dynamicsâ€, Trans. ASME, J. Mech. Des., 101(3), 368- 372.
H. Nevzat Özgüven et D. R. Houser, « Mathematical models used in gear dynamics—A review », Top. Catal., vol. 121, no 3, p. 383‑411, 1988.
P. K. Jena, « Static and Dynamic Analysis of Hcr Spur Gear Drive Using Finite Element Analysis », National Institute of Technology, 2009.
Z. Wei, « Stresses and Deformations in Involute Spur Gears By Finite Element Method », University of Saskatchewan Saskatoon, Saskatchewan, 2004.
G. hua Huang, S. si Xu, W. hua Zhang, et C. jin Yang, « Super-harmonic resonance of gear transmission system under stick-slip vibration in high-speed train », J. Cent. South Univ., vol. 24, no 3, p. 726‑735, 2017.
Z. Zeng, J. Li, S. Zhang, Y. Hong, et Y. Wang, « Analysis of the Harmonic Response of a Modulation Permanent Magnetic Transmission Equipment Based on ANSYS », Energy Power Eng., no March, p. 63‑70, 2015.
DOI (PDF): https://doi.org/10.20508/ijrer.v8i2.7247.g7364
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4