CFD Based Optimization of Oscillatory Wing Motion for Maximum Energy Harvesting from Wind

Mustafa Kaya, Munir Ali Elfarra

Abstract


Oscillating wing is an innovative approach for power extraction from wind. The parameters which define the oscillatory motion of an airfoil are optimized using the Response Surface Methodology (RSM). The objective of the optimization is to maximize the power extraction from wind.  The flows around the oscillating airfoil are computed unsteady and laminar using a Navier-Stokes solver. The computations are conducted parallel in a PC cluster. The oscillatory motion is defined as a combination of plunging and pitching. The optimization variables are the oscillation frequency, the plunge and pitch amplitudes and the phase shift between plunging and pitching. The calculated highest power coefficient is about 0.40, which is comparable to the power coefficient values of conventional rotating wind turbines. The optimum motion is obtained when the reduced frequency is almost unity. Moreover, the maximum power coefficient increases as the plunge amplitude increases. 

Keywords


Oscillating Wings; Wind Energy; Computational Fluid Dynamics; Optimization; Response Surface Methodology; Parallel Processing

Full Text:

PDF

References


McKinney, W.; DeLaurier, J. The Wingmill: An Oscillating-Wing Windmill. J. Energy 1981, 5, 109-115, doi:10.2514/3.62510.

Jones, K. D.; Davids, S.; Platzer, M. F. Oscillatory-Wing Power Generator. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, FEDM’99, San Francisco, California, USA 1999.

Jones, K.; Lindsey, K.; Platzer, M. An Investigation of the Fluid–Structure Interaction in an Oscillating-Wing Micro-Hydropower Generator. Fluid Structure Interaction 2, Southampton, England, U.K. 2003; pp. 73–82.

Kinsey, T.; Dumas, G. Parametric Study of an Oscillating Airfoil in a Power-Extraction Regime. AIAA J. 2008, 46, 1318–1330, doi: 10.2514/1.26253.

Liu, Z.; Lai, J. C. S.; Young, J.; Tian F. B. Discrete Vortex Method with Flow Separation Corrections for Flapping-Foil Power Generators. AIAA J. 2017, 55, 410-418, doi:. 10.2514/1.J055267.

Kinsey, T.; Dumas, G. Optimal Tandem Configuration for Oscillatory-foils Hydrokinetic Turbine. J FLUID ENG-T ASME 2012, 134, doi:10.1115/1.4005423.

Kinsey, T.; Dumas, G. Three-dimensional effects on an Oscillating-foils hydrokinetic turbine. J FLUID ENG-T ASME 2012, 134, doi:10.1115/1.4006914.

Kaya, M.; Tuncer, I. Nonsinusoidal Path Optimization of a Flapping Airfoil. AIAA J. 2007, 45, 2075–2082, doi: 10.2514/1.29478.

Platzer, M.; Ashraf, M.; Young, J.; Lai, J. Extracting Power in Jet Streams: Pushing the Performance of Flapping Wing Technology. 27th Congress of the International Council of the Aeronautical Sciences, International Council of the Aeronautical Sciences Paper 2010-2.9.1, Nice, France, 19–24 Sept. 2010.

M. A. Ashraf; J. Young; J. C. S. Lai; M. F. Platzer. Numerical Analysis of an Oscillating-Wing Wind and Hydropower Generator. AIAA J. 2011, 49, 1374-1386, doi: 10.2514/1.J050577.

Zhu, B.; Han, W.; Sun, X.; Wang, Y.; Cao, Y.; Wu, G.; Huang D.; Zheng, Z. C. Research on energy extraction characteristics of an adaptive deformation oscillating-wing. J RENEW SUSTAIN ENER 2015, 7, doi: 10.1063/1.4913957.

Young J.; Lai J. C.S.; Platzer M. F. A review of Progress and Challenges in Flapping Foil Power Generation. PROG AEROSP SCI 2014, 67, 2-28, doi: 10.1016/j.paerosci.2013.11.001.

Kaya, M.; Tuncer, I. H. Path Optimization of Thrust Producing Flapping Airfoils Using Response Surface Methodology, 5th European Congress on Computational Methods in Applied Sciences and Engineering. Venice, Italy, June 30 –July 5, 2008.

Kaya, M.; Tuncer, I.H.; Jones, K.D.; Platzer, M.F. Optimization of Flapping Motion Parameters for Two Airfoils in a Biplane Configuration. J AIRCRAFT 2009, 46, 583-592, doi: 10.2514/1.38796.

Osher, S.; Chakravarty, S.R. A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws. AIAA Paper 1985; No. 85-0363.

Chakravarty, S.R.; Osher, S. Numerical Experiments with the Osher Upwind Scheme For the Euler Equations. AIAA J 1983, 21, 1241-1248, doi: 10.2514/3.60143.

Giles, M.B. Nonreflecting Boundary Conditions for Euler Equation Calculations. AIAA J 1990, 28, 2050-2058, doi: 10.2514/3.10521.

Roux, W.J.; Stander, N.; Haftka, R.T. Response Surface Approximations for Structural Optimization. INT J NUMER METH ENG 1998, 42, 517-534.

Simpson B. J. Experimental Studies of Flapping Foils for Energy Extraction. MSc thesis, MIT, 2009.

Zhu, Q. Optimal frequency for flow energy harvesting of a flapping foil. J FLUID MECH 2011, 675, 495-517, doi: 10.1017/S0022112011000334.

Betz, A. Das Maximum der Theoretisch Möglichen Ausnützung des Windes Durch Windmotoren. Zeitschriftfür das Gesamte Turbinenwesen 1920; 26: 307-309.




DOI (PDF): https://doi.org/10.20508/ijrer.v8i1.7238.g7328

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4