Extremely short time modeling of wind power variations
Abstract
Keywords
Full Text:
PDFReferences
X. Li, D. Du, J. Pei, M. Menhas, Probabilistic load flow calculation with Latin hypercube sampling applied to grid-connected induction wind power system, Transactions of the Institute of Measurement and Control, 35, (2013), pp.56-65.
M. Islam, H.A. Mohammadpour, P. Stone, Y.-J. Shin, Time-frequency based power quality analysis of variable speed wind turbine generators, Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, IEEE, 2013, pp. 6426-6431.
P. Sørensen, N.A. Cutululis, A. Viguerasâ€RodrÃguez, H. Madsen, P. Pinson, L.E. Jensen, J. Hjerrild, M. Donovan, Modelling of power fluctuations from large offshore wind farms, Wind Energy, 11 (2008) 29-43.
T. Ackermann, Wind power in power systems, John Wiley & Sons, 2005.
H. Ye, B. Yue, X. Li, K. Strunz, Modeling and simulation of multiâ€scale transients for PMSGâ€based wind power systems, Wind Energy, 20, (2017), pp.1349–1364.
P. Xiong, L. Zhuo, L. Wenxia, L. Yanqing, Wind farm polymerization influences on security and economic operation in power system based on Copula function, Journal of Modern Power Systems and Clean Energy, 3 (2015), pp. 381-392.
H. Liu, X. Xie, Y. Li, H. Liu, Y. Hu, A small-signal impedance method for analyzing the SSR of series-compensated DFIG-based wind farms, Power & Energy Society General Meeting, 2015 IEEE, IEEE, 2015, pp. 1-5.
L. Cheng, M. Liu, Y. Sun, Y. Ding, A multi-state model for wind farms considering operational outage probability, Journal of Modern Power Systems and Clean Energy, 1 (2013), pp.177-185.
A. Shamshad, M. Bawadi, W.W. Hussin, T. Majid, S. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy, 30 (2005), pp. 693-708.
F.C. Sayas, R. Allan, Generation availability assessment of wind farms, IEE Proceedings-Generation, Transmission and Distribution, 143, (1996), pp. 507-518.
N.B. Negra, O. Holmstrøm, B. Bakâ€Jensen, P. Sørensen, Model of a synthetic wind speed time series generator, Wind Energy, 11, (2008), pp. 193-209.
T. Kitagawa, T. Nomura, A wavelet-based method to generate artificial wind fluctuation data, Journal of wind engineering and industrial aerodynamics, 91 (2003), pp. 943-964.
R. Billinton, H. Chen, R. Ghajar, Time-series models for reliability evaluation of power systems including wind energy, Microelectronics Reliability, 36 (1996), pp. 1253-1261.
B.G. Brown, R.W. Katz, A.H. Murphy, Time series models to simulate and forecast wind speed and wind power, Journal of climate and applied meteorology, 23 (1984), pp. 1184-1195.
G. Papaefthymiou, B. Klockl, MCMC for wind power simulation, IEEE transactions on energy conversion, 23 (2008), pp. 234-240.
P. Chen, T. Pedersen, B. Bak-Jensen, Z. Chen, ARIMA-based time series model of stochastic wind power generation, IEEE Transactions on Power Systems, 25 (2010), pp. 667-676.
S.S. Soman, H. Zareipour, O. Malik, P. Mandal, A review of wind power and wind speed forecasting methods with different time horizons, North American Power Symposium (NAPS), 2010, IEEE, 2010, pp. 1-8.
M. Negnevitsky, P. Johnson, S. Santoso, Short term wind power forecasting using hybrid intelligent systems, Power Engineering Society General Meeting, Tampa, USA, (2007).
C.W. Potter, M. Negnevitsky, Very short-term wind forecasting for Tasmanian power generation, IEEE Transactions on Power Systems, 21 (2006), pp. 965-972.
G. Riahy, M. Abedi, Short term wind speed forecasting for wind turbine applications using linear prediction method, Renewable energy, 33 (2008), pp. 35-41.
A. Garcia, E. De-La-Torre-Vega, A Statistical wind power forecasting system–A Mexican wind-farm case study, European Wind Energy Conference & Exhibition–EWEC Parc Chanot, 2009.
G.W. Chang, H.J. Lu, P.K. Wang, Y.R. Chang, Y.D. Lee, Gaussian mixture modelâ€based neural network for shortâ€term wind power forecast, International Transactions on Electrical Energy Systems, 27 (2017).
S.K. Paramasivan, D. Lopez, Forecasting of wind speed using feature selection and neural networks, International Journal of Renewable Energy Research (IJRER), 6 (2016), pp. 833-837.
M.S. Miranda, R.W. Dunn, One-hour-ahead wind speed prediction using a Bayesian methodology, Power Engineering Society General Meeting, IEEE, Montreal, Canada, 2006.
E. Panteri, S. Papathanassiou, Evaluation of two simple wind power forecasting models, Proc. of the European Wind Energy Conf, 2008.
G. Kariniotakis, G. Stavrakakis, E. Nogaret, Wind power forecasting using advanced neural networks models, IEEE transactions on Energy conversion, 11 (1996), pp. 762-767.
H. Mori, E. Kurata, Application of gaussian process to wind speed forecasting for wind power generation, Sustainable Energy Technologies, ICSET 2008. IEEE International Conference on, 2008, pp. 956-959.
I.G. Damousis, M.C. Alexiadis, J.B. Theocharis, P.S. Dokopoulos, A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation, IEEE Transactions on Energy Conversion, 19 (2004), pp. 352-361.
G. Sideratos, N.D. Hatziargyriou, An advanced statistical method for wind power forecasting, IEEE Transactions on power systems, 22 (2007), pp. 258-265.
A. Khan, M. Shahidehpour, One day ahead wind speed forecasting using wavelets, Power Systems Conference and Exposition. PSCE'09. IEEE/PES, IEEE, 2009, pp. 1-5.
J.P.d.S. Catalão, H.M.I. Pousinho, V.M.F. Mendes, An artificial neural network approach for short-term wind power forecasting in Portugal, Intelligent System Applications to Power Systems, 2009. ISAP'09. 15th International Conference on, IEEE, 2009, pp. 1-5.
H. Madsen, G. Kariniotakis, H.A. Nielsen, T.S. Nielsen, P. Pinson, A protocol for standardizing the performance evaluation of short-term wind power prediction models, Technical University of Denmark, IMM, Lyngby, Denmark, Deliverable ENK5-CT-2002-00665, (2004).
R.G. Kavasseri, K. Seetharaman, Day-ahead wind speed forecasting using f-ARIMA models, Renewable Energy, 34 (2009), pp. 1388-1393.
T. Ishikawa, T. Kojima, T. Namerikawa, Shortâ€Term Wind Power Prediction for Wind Turbine via Kalman Filter Based on JIT Modeling, Electrical Engineering in Japan, 198 (2017), pp. 86-96.
D. Ambach, W. Schmid, A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting, Energy, 135, (2017), pp. 833-850.
J.W. Taylor, P.E. McSharry, R. Buizza, Wind power density forecasting using ensemble predictions and time series models, IEEE Transactions on Energy Conversion, 24 (2009), pp. 775-782.
T.G. Barbounis, J.B. Theocharis, M.C. Alexiadis, P.S. Dokopoulos, Long-term wind speed and power forecasting using local recurrent neural network models, IEEE Transactions on Energy Conversion, 21 (2006), pp. 273-284.
S. Salcedo-Sanz, A.M. Pérez-Bellido, E.G. Ortiz-GarcÃa, A. Portilla-Figueras, L. Prieto, D. Paredes, Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction, Renewable Energy, 34 (2009), pp. 1451-1457.
R.J. Bessa, V. Miranda, J. Gama, Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting, IEEE Transactions on Power Systems, 24 (2009), pp.1657-1666.
H. Samet, M.H. Golshan, Employing stochastic models for prediction of arc furnace reactive power to improve compensator performance, IET generation, transmission & distribution, 2 (2008), pp. 505-515.
H. Samet, M.R. Farhadi, M.R.B. Mofrad, Employing artificial neural networks for prediction of electrical arc furnace reactive power to improve compensator performance, Energy Conference and Exhibition (ENERGYCON), 2012 IEEE International, IEEE, 2012, pp. 249-253.
H. Samet, A. Mojallal, T. Ghanbari, Employing grey system model for prediction of electric arc furnace reactive power to improve compensator performance, PrzeglÄ…d Elektrotechniczny, 89 (2013), pp. 110-115.
M.H. Golshan, H. Samet, Updating stochastic model coefficients for prediction of arc furnace reactive power, Electric Power Systems Research, 79 (2009), pp. 1114-1120.
M.H. Golshan, H. Samet, Updating stochastic models of arc furnace reactive power by genetic algorithm, Harmonics and Quality of Power (ICHQP), 2010 14th International Conference on, IEEE, 2010, pp. 1-9.
H. Samet, F. Marzbani, Quantizing the deterministic nonlinearity in wind speed time series, Renewable and Sustainable Energy Reviews, 39 (2014), pp. 1143-1154.
E. Erdem, J. Shi, ARMA based approaches for forecasting the tuple of wind speed and direction, Applied Energy, 88 (2011), pp. 1405-1414.
S. Rajagopalan, S. Santoso, Wind power forecasting and error analysis using the autoregressive moving average modeling, Power & Energy Society General Meeting, 2009. PES'09. IEEE, 2009, pp. 1-6.
H. Lütkepohl, New introduction to multiple time series analysis, Springer Science & Business Media, 2005.
J.D. Cryer, N. Kellet, Time series analysis, Springer, 1986.
A. Larsson, Flicker emission of wind turbines during continuous operation, IEEE transactions on Energy Conversion, 17 (2002), pp. 114-118.
A. GarcÃa-Cerrada, P. Garcia-Gonzalez, R. Collantes, T. Gómez, J. Anzola, Comparison of thyristor-controlled reactors and voltage-source inverters for compensation of flicker caused by arc furnaces, IEEE Transactions on Power Delivery, 15 (2000), pp. 1225-1231.
H. Samet, M. Parniani, Predictive method for improving SVC speed in electric arc furnace compensation, IEEE transactions on power delivery, 22 (2007), pp. 732-734.
P. Stoica, R.L. Moses, Introduction to spectral analysis, Prentice hall Upper Saddle River, 1997.
E.C.E. IEC61000-4-15, Flickermeter, functional and design specifications, International Electrotechnical Commission, 1997.
DOI (PDF): https://doi.org/10.20508/ijrer.v8i2.6924.g7391
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4