Economic Analysis of Integrated Renewable Energy System for Electrification of Remote Rural Area Having Scattered Population
Abstract
The renewable energy sources (RES) are globally recognized as a suitable option for sustainable development in many off-grid applications. Recently, the integrated systems with two or more RES are being paid great attention for electrification of isolated areas and found to be an acceptable solution rather than uneconomical grid extension. In the present study, the integrated renewable energy system (IRES) model is developed using solar, wind, biomass and biogas energy sources to meet the electricity demand of the isolated rural community of Khatisitara village of Gujarat state in India. The operational strategy of IRES model is developed considering the distribution network losses as a system design parameter. The developed IRES model is optimized for minimum net present cost of the system using particle swarm optimization (PSO) algorithm in MATLAB environment. The well-established genetic algorithm (GA) was used to validate the optimization results obtained from PSO. Further, the effects of distribution losses (DL) on the system sizing, reliability and economy have been evaluated. The sensitivity analysis was performed to assess the effect of economically influencing parameters on the developed model. Finally, the break-even analysis was performed for the grid extension distance to examine the economic feasibility of IRES against grid extension. The simulation result shows that the impacts of DL on IRES reliability and economy are significant. Further analysis shows that the IRES using locally available renewable energy sources is a feasible option for rural electrification in considered study area rather than grid extension.
Keywords
Full Text:
PDFReferences
Teegala SK, Singal SK. Optimal costing of overhead power transmission lines using genetic algorithms. Int J Electr Power Energy Syst 2016;83:298–308. doi:10.1016/j.ijepes.2016.04.031.
Dekker J, Nthontho M, Chowdhury S, Chowdhury SP. Economic analysis of PV/diesel hybrid power systems in different climatic zones of South Africa. Int J Electr Power Energy Syst 2012;40:104–12. doi:10.1016/j.ijepes.2012.02.010.
Intergovernmental Panel for Climate Change [IPCC]. Climate Change 2014: Synthesis Report. Geneva, Switzerland: 2014.
Das HS, Dey A, Wei TC, Yatim AHM. Feasibility analysis of standalone PV/wind/battery hybrid energy system for rural Bangladesh. Int J Renew Energy Res 2016;6:402–12.
Rajbongshi R, Borgohain D, Mahapatra S. Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy 2017;126:461–74. doi:10.1016/j.energy.2017.03.056.
Patel AM, Singal SK. Off grid rural electrification using integrated renewable energy system. 2016 IEEE 7th Power India Int. Conf., Bikaner, Rajasthan, India: 2016, p. 1–5. doi:10.1109/POWERI.2016.8077272.
Chauhan A, Saini RP. Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations. Renew Sustain Energy Rev 2015;51:662–81. doi:10.1016/j.rser.2015.06.043.
Guler O, Akdag SA, Cakir YS. Effects of data resolution on stand-alone hybrid system sizing. 3rd Int. Conf. Renew. Energy Res. Appl., Madrid, Spain: 2013, p. 423–7. doi:10.1109/ICRERA.2013.6749792.
Cano A, Jurado F, Sánchez H, Fernández LM, Castañeda M. Optimal sizing of stand-alone hybrid systems based on PV/WT/FC by using several methodologies. J Energy Inst 2014;87:330–40. doi:10.1016/j.joei.2014.03.028.
Tummuru NR, Mishra MK, Srinivas S. Dynamic Energy Management of Renewable Grid Integrated Hybrid Energy Storage System. IEEE Trans Ind Electron 2015;62:7728–37. doi:10.1109/TIE.2015.2455063.
Rajini V, Amutha WM. Real time implementation of a single stage converter based Solar-Wind hybrid system. 6th Int. Conf. Renew. Energy Res. Appl., San Diego, USA: 2017, p. 1051–7. doi:10.1109/ICRERA.2017.8191218.
Paragond LS, Kurian CP, Singh BK. Design and simulation of solar and wind energy conversion system in isolated mode of operation. 4th Int. Conf. Renew. Energy Res. Appl., Palermo, Italy: 2015, p. 999–1004. doi:10.1109/ICRERA.2015.7418560.
Patel AM, Singal SK. Design approach of integrated renewable energy system for small autonomous power system. 2016 IEEE 7th Power India Int. Conf., Bikaner, Rajasthan, India: 2016, p. 1–5. doi:10.1109/POWERI.2016.8077266.
Iqbal M, Azam M, Naeem M, Khwaja AS, Anpalagan A. Optimization classification, algorithms and tools for renewable energy: A review. Renew Sustain Energy Rev 2014;39:640–54. doi:10.1016/j.rser.2014.07.120.
Mercado KD, Jiménez J, M CGQ. Hybrid renewable energy system based on intelligent optimization techniques. 5th Int. Conf. Renew. Energy Res. Appl., Birmingham, UK: 2016, p. 661–6. doi:10.1109/ICRERA.2016.7884417.
Kaabeche A, Belhamel M, Ibtiouen R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 2011;36:1214–22. doi:10.1016/j.energy.2010.11.024.
GURSOY G, BAYSAL M. Improved optimal sizing of hybrid PV/Wind/Battery energy systems. 3rd Int. Conf. Renew. Energy Res. Appl., Milwaukee, USA: 2014, p. 713–6. doi:10.1109/ICRERA.2014.7016478.
Mostofi F, Shayeghi H. Feasibility and optimal reliable design of renewable hybrid energy system for rural electrification in Iran. Int J Renew Energy Res 2012;2.
Dhass AD, Harikrishnan S. Cost effective hybrid energy system employing solar-wind-biomass resources for rural electrification. Int J Renew Energy Res 2013;3:222–9.
Hashim H, Ho WS, Lim JS, Macchietto S. Integrated biomass and solar town: Incorporation of load shifting and energy storage. Energy 2014;75:31–9. doi:10.1016/j.energy.2014.04.086.
Rahman M, Mahmodul M, Paatero J V. Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renew Energy 2014;68:35–45. doi:10.1016/j.renene.2014.01.030.
Sigarchian SG, Paleta R, Malmquist A, Pina A. Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system - Case study Kenya. Energy 2015;90:1830–41. doi:10.1016/j.energy.2015.07.008.
Barzola J, Espinoza M, Cabrera F. Analysis of hybrid solar/wind/diesel renewable energy system for off-grid rural electrification. Int J Renew Energy Res 2016;6:1146–52.
Girma Z. Technical and economic assessment of solar PV/diesel hybrid power system for rural school electrification in Ethiopia. Int J Renew Energy Res 2013;3. doi:10.1080/14786451.2015.1017498.
Kumar Nandi S, Ranjan Ghosh H. Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh. Energy Policy 2010;38:976–80. doi:10.1016/j.enpol.2009.10.049.
Rajanna S, Saini RP. Modeling of integrated renewable energy system for electrification of a remote area in India. Renew Energy 2016;90:175–87. doi:10.1016/j.renene.2015.12.067.
Xu Z, Nthontho M, Chowdhury S. Rural electrification implementation strategies through microgrid approach in South African context. Int J Electr Power Energy Syst 2016;82:452–65. doi:10.1016/j.ijepes.2016.03.037.
Upadhyay S, Sharma MP. Development of hybrid energy system with cycle charging strategy using particle swarm optimization for a remote area in India. Renew Energy 2015;77:586–98. doi:10.1016/j.renene.2014.12.051.
Ismail MS, Moghavvemi M, Mahlia TMI. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems. Energy Convers Manag 2014;85:120–30. doi:10.1016/j.enconman.2014.05.064.
Kanase-Patil AB, Saini RP, Sharma MP. Development of IREOM model based on seasonally varying load profile for hilly remote areas of Uttarakhand state in India. Energy 2011;36:5690–702. doi:10.1016/j.energy.2011.06.057.
Mandelli S, Barbieri J, Mereu R, Colombo E. Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renew Sustain Energy Rev 2016;58:1621–46. doi:10.1016/j.rser.2015.12.338.
Sultana B, Mustafa MW, Sultana U, Bhatti AR. Review on reliability improvement and power loss reduction in distribution system via network reconfiguration. Renew Sustain Energy Rev 2016;66:297–310. doi:10.1016/j.rser.2016.08.011.
Jordehi AR. Optimisation of electric distribution systems: A review. Renew Sustain Energy Rev 2015;51:1088–100. doi:10.1016/j.rser.2015.07.004.
Kalambe S, Agnihotri G. Loss minimization techniques used in distribution network: Bibliographical survey. Renew Sustain Energy Rev 2014;29:184–200. doi:10.1016/j.rser.2013.08.075.
Viegas JL, Vieira SM, Esteves PR, MelÃcio R, Mendes VMF. Solutions for detection of non-technical losses in the electricity grid: a review. Renew Sustain Energy Rev 2017;80:1256–68. doi:10.1016/j.rser.2017.05.193.
Sultana U, Khairuddin AB, Aman MM, Mokhtar AS, Zareen N. A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system. Renew Sustain Energy Rev 2016;63:363–78. doi:10.1016/j.rser.2016.05.056.
GoI. Maps of protected areas in India. ENVIS Cent Wildl Prot Area 2011. http://wiienvis.nic.in/Database/Maps_PAs_1267.aspx (accessed November 29, 2016).
WRISI. Map of Gujarat 2015. http://www.india-wris.nrsc.gov.in/wrpinfo/index.php?title=Gujarat (accessed November 29, 2016).
GoG. Forest GIS map 2016. https://forests.gujarat.gov.in/forest-gis-map.htm (accessed November 29, 2016).
Google. Google Earth 2016. https://www.google.com/earth/ (accessed November 29, 2016).
Diouf B, Pode R, Osei R. Initiative for 100% rural electrification in developing countries: Case study of Senegal. Energy Policy 2013;59:926–30. doi:10.1016/j.enpol.2013.04.012 Communication.
GEDA. Gujarat: The renewable energy potential. Gujarat Informatics Ltd 2017. https://geda.gujarat.gov.in/background.php (accessed March 28, 2017).
Murthy KSR, Rahi OP. Preliminary assessment of wind power potential over the coastal region of Bheemunipatnam in northern Andhra Pradesh, India. Renew Energy 2016;99:1137–45. doi:10.1016/j.renene.2016.08.017.
Patel MR. Wind and solar power systems: Design, Analysis, and Operation. 2nd ed. Boca Raton: CRC Press; 2006.
GoG. District statistics n.d. https://banaskanthadp.gujarat.gov.in/banaskantha/prkashano/prakasano.htm (accessed October 14, 2016).
GEDA. Manufacturer list. Gujarat Informatics Ltd 2017. https://geda.gujarat.gov.in/system_manufacturer_list.php (accessed March 28, 2017).
MNRE. List of manufacturer empanelled 2016. http://mnre.gov.in/information/manufacturesindustriesarchitectsconsulting-organisation/ (accessed December 18, 2016).
Chauhan A, Saini RP. Discrete harmony search based size optimization of integrated renewable energy system for remote rural areas of Uttarakhand state in India. Renew Energy 2016;94:587–604. doi:10.1016/j.renene.2016.03.079.
Chauhan A, Saini RP. Size optimization and demand response of a stand-alone integrated renewable energy system. Energy 2017;124:59–73. doi:10.1016/j.energy.2017.02.049.
Chauhan A. Evolving optimal integrated renewable energy system model for stand-alone applications. Indian Institute of Technology, Roorkee, 2015.
Mondal AH, Denich M. Hybrid systems for decentralized power generation in Bangladesh. Energy Sustain Dev 2010;14:48–55. doi:10.1016/j.esd.2010.01.001.
Gupta RA, Kumar R, Bansal AK. BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting. Renew Sustain Energy Rev 2015;41:1366–75. doi:10.1016/j.rser.2014.09.017.
Rajanna S, Saini RP. Development of optimal integrated renewable energy model with battery storage for a remote Indian area. Energy 2016;111:803–17. doi:10.1016/j.energy.2016.06.005.
McKendry P. Energy production from biomass (part 1): overview of biomass. Biosource Technol 2002;83:37–46. doi:10.1016/S0960-8524(01)00118-3.
Singh J, Panesar BS, Sharma SK. Energy potential through agricultural biomass using geographical information system-A case study of Punjab. Biomass and Bioenergy 2008;32:301–7. doi:10.1016/j.biombioe.2007.10.003.
Gupta A, Saini RP, Sharma MP. Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages. Renew Energy 2010;35:520–35. doi:10.1016/j.renene.2009.06.014.
Goodbody C, Walsh E, McDonnell KP, Owende P. Regional integration of renewable energy systems in Ireland – The role of hybrid energy systems for small communities. Int J Electr Power Energy Syst 2013;44:713–20. doi:10.1016/j.ijepes.2012.08.012.
Agarwal N, Kumar A, Varun. Optimization of grid independent hybrid PV-diesel-battery system for power generation in remote villages of Uttar Pradesh, India. Energy Sustain Dev 2013;17:210–9. doi:10.1016/j.esd.2013.02.002.
Askarzadeh A. Developing a discrete harmony search algorithm for size optimization of wind-photovoltaic hybrid energy system. Sol Energy 2013;98:190–5. doi:10.1016/j.solener.2013.10.008.
Mukhtaruddin RNSR, Rahman HA, Hassan MY, Jamian JJ. Optimal hybrid renewable energy design in autonomous system using Iterative-Pareto-Fuzzy technique. Int J Electr Power Energy Syst 2015;64:242–9. doi:10.1016/j.ijepes.2014.07.030.
Kanase-Patil AB, Saini RP, Sharma MP. Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India. Renew Energy 2011;36:2809–21. doi:10.1016/j.renene.2011.04.022.
GERC. Tariff order for UGVCL. Tarif Orders n.d. http://www.gercin.org/orders.aspx?o_cat=1 (accessed April 2, 2017).
Tina G, Gagliano S, Raiti S. Hybrid solar/wind power system probabilistic modelling for long-term performance assessment. Sol Energy 2006;80:578–88. doi:10.1016/j.solener.2005.03.013.
Askarzadeh A, dos Santos Coelho L. A novel framework for optimization of a grid independent hybrid renewable energy system: A case study of Iran. Sol Energy 2015;112:383–96. doi:10.1016/j.solener.2014.12.013.
Kennedy J, Eberhart R. Particle Swarm Optimization. IEEE Int. Conf. neural networks, Perth, WA, Australia: 1995, p. 1942–8. doi:10.1109/ICNN.1995.488968.
Moradi MH, Eskandari M, Showkati H. A hybrid method for simultaneous optimization of DG capacity and operational strategy in microgrids utilizing renewable energy resources. Int J Electr Power Energy Syst 2014;56:241–58. doi:10.1016/j.ijepes.2013.11.012.
Arabali A, Ghofrani M, Etezadi-Amoli M, Fadali MS, Baghzouz Y. Genetic-algorithm-based optimization approach for energy management. IEEE Trans Power Deliv 2013;28:162–70. doi:10.1109/TPWRD.2012.2219598.
Katsigiannis YA, Georgilakis PS, Karapidakis ES. Genetic Algorithm Solution to Optimal Sizing Problem of Small Autonomous Hybrid Power Systems. Artificaial Intell. Theor. Model. Appl., 2010, p. 327–32. doi:10.1007/978-3-642-12842-4_38.
Koutroulis E, Kolokotsa D, Potirakis A, Kalaitzakis K. Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol Energy 2006;80:1072–88. doi:10.1016/j.solener.2005.11.002.
Katsigiannis YA, Georgilakis PS, Karapidakis ES. Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables. IET Renew Power Gener 2010;4:404–19. doi:10.1049/iet-rpg.2009.0076.
RBI. RBI Bulletin: September 2016. vol. 30. 2016.
Mahapatra S, Dasappa S. Rural electrification: Optimising the choice between decentralised renewable energy sources and grid extension. Energy Sustain Dev 2012;16:146–54. doi:10.1016/j.esd.2012.01.006.
DOI (PDF): https://doi.org/10.20508/ijrer.v8i1.6820.g7354
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4