Ultracapacitors and Batteries integration for Power Fluctuations mitigation in Wind-PV-Diesel Hybrid System

Abdou Tankari Mahamadou, Bailo Camara Mamadou, Dakyo Brayima, Nichita Cristian

Abstract


Fluctuations are induced by the wind power variations at the common coupling point of the hybrid system. The intensity of the resulting perturbations is related to the penetration ratio of the renewable energy. In this paper, wind generator and photovoltaic are combined with the diesel generator to supply energy to the DC-bus. Interactions between these sources are studied before the inserting of the ultracapacitors and lead acid batteries, for power fluctuations mitigation.   To ensure a good life cost and good performance of the system, a method of storage sizing, integrating the devices lifetimes estimation is proposed. This method takes into account the system applications conditions. The experimental test bench is designed in a reduced scale, and some simulations and experimental results are presented and analyzed.

Keywords


Battery, Diesel generator, Photovoltaic power, renewable energy, Storage device, Ultracapacitors, Wind energy

Full Text:

PDF

References


C. Nichita, D. Luca, B. Dakyo, and E. Ceanga, “Large band simulation of the wind speed for real time wind turbine simulatorsâ€, IEEE Trans. Energy conversion, vol. 17, n. 4, pp. 523- 529, Dec 2002.

T. Burton, D. Sharpe, and E. Bossanyi, Wind Energy Handbook, London: Wiley, 2001.

T. Tanabe, et al. “Generation Scheduling for wind power generation by storage battery system and meteorological forecastâ€, the 21st Century IEEE Power and Energy Society (PES 2008) General Meeting - Conversion and Delivery of Electrical Energy, pp. 1-7, Jul. 2008.

J. Apt, “The spectrum of power from wind turbinesâ€, Power Sources Journal, vol. 169, pp. 369-374, 2007.

B. G. Rawn, P. W. Lehn, and M. Maggiore, “Control methodology to mitigate the grid impact of wind turbinesâ€, IEEE Trans. Energy Conversion, vol 22, n. 2, Jun. 2007.

C. Luo, H. G. Far, H. Banakar, P. Keung, and B. Ooi, “Estimation of wind penetration as limited by frequency deviationâ€, IEEE Trans. Energy Conversion, vol. 22, n. 3, pp. 783-791, Sept. 2007.

Z. Chlodnicki, W. Koczara, and N. Al-Khayat, “Hybrid UPS Based on Supercapacitor Energy Storage and Adjustable Speed Generatorâ€, Electrical Power Quality and Utilization Journal, Vol. XIV, n. 1, 2008

Y. Cheng, J. Van Mierlo, P. Lataire, “Test Platform for Hybrid Electric Vehicle with the Super Capacitor based Energy Storage, International Review of Electrical Engineering IREE, vol. 3. n. 3, pp. 466-478, Juin 2008.

J. H. Lee, S. H. Lee, and S. K. Sul, “Variable-speed engine generator with supercapacitor: Isolated power generation system and fuel efficiencyâ€, IEEE Trans. Ind. applications, vol. 45, n. 6, pp. 2130-2135, Dec. 2009.

A.M. Tankari, M.B. Camara, B. Dakyo, and C. Nichita, “Ultracapacitors and Batteries Integration in Wind Energy Hybrid System - Using the Frequencies distribution Methodâ€, International Review of Electrical Engineering IREE vol.5, no. 2, pp. 521-529, March-April 2010.

M. A. Tankari, M.B. Camara, B. Dakyo, and C. Nichita, “Power Fluctuations Attenuation in Wind-PV-Diesel Hybrid System – Ultracapacitors and Batteriesâ€, International Review of Electrical Engineering IREE, Vol.5, No. 5, ISSN 1827 - 6679, October 2010.

M. El Mokadem, “Modélisation et simulation d’un système hybride pour un site isolé. Problématique liée aux fluctuations et variations d’énergie au point de couplage,†PhD dissertation, GREAH laboratory, Université du Havre, France, 2006.

M. A. Tankari, “Système Multi-sources de Production d'Énergie Électrique Méthode de Dimensionnement d'un Système Hybride et Mise en œuvre Expérimentale de l'Optimisation de la Gestion d'Énergie,†Ph.D. dissertation, GREAH laboratory, University of Lehavre, 2010.

C. R. Akli, “Conception systémique d'une locomotive hybride autonome. Application à la locomotive hybride de démonstration et d'investigations en énergétique LHyDIE développée par la SNCF,†PhD thesis, INPT, University of Toulouse, 2008.

MAXWELL Technologies, “Product guide-maxwell technologies boostcap ultracapacitors,†available : http://www.maxwell.com/pdf/1014627BOOSTCAPProductGuide.pdf, Doc. No. 1014627.1, 2009.

Hammar, A. Venet, P. Lallemand, R. Coquery, G. and Rojat, G., “Study of Accelerated Aging of Supercapacitors for Transport Applications,†IEEE Trans. Ind. Electronics, vol. 57, no.12, pp. 3972 – 3979, Dec. 2010.

A. Jossen, “Fundamentals of battery dynamicsâ€, Power Sources J., vol. 154, pp. 530–538, 2006.

H. Wenzl, et al., “Life prediction of batteries for selecting the technically most suitable and cost effective batteryâ€, Power Sources J., vol. 144, pp.373–384, 2005.

Bindner H., T. Cronin, P. Lundsager, J. F. Manwell, U. Abdulwahid, and I. Baring-Gould, “Benchmarking - lifetime modelling,†enk6-ct-2001-80576. Riso National Laboratory, Denmark, 2005.

M. A. Tankari, M.B.Camara, B. Dakyo, C. Nichita, “Wind Power Integration in Hybrid Power System with Active Energy Management,†Int. Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 30, No. 1, pp. 245-263, 2011.

T. Christen and Martin W. Carlen, “Theory of ragone plots,†Int. Journal on Power Sources , vol. 91, no. 2, pages 210_216, Dec. 2000.




DOI (PDF): https://doi.org/10.20508/ijrer.v1i2.37.g39

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4