The Effect of Surface Area and Dopant Percentage on Hydrogen Storage of Pt@AC loaded Activated Carbon and Cu-BTC Composites

zeynel ozturk

Abstract


Hydrogen storage as a part of hydrogen energy system is needed to be investigated deeply for common usage of the system. Many alternative hydrogen storage media have been investigated in last decade to solve efficient hydrogen storage problem. Storing hydrogen in adsorbents physically is a significant solution. Carbon based materials and framework structured metal-organic compounds also have intense attention for hydrogen storage by physical adsorption. In this work, the effect of surface area and dopant percentage on the hydrogen storage have been emphasized. Different amount of platinum loaded activated carbon as dopant milled with the activated carbon and Cu-BTC as matrix materials. It is found that the increased amount of dopant cause more adsorption on the adsorbent surfaces. Thus, the hydrogen storage properties increases. But, the excess amount of additive decreases the micro-porosity by the way hydrogen storage.  4 wt. % of additive, platinum loaded activated carbon, increases the hydrogen uptake approx. 10 and 15 % in activated carbon and Cu-BTC respectively. In the contrary, 10 wt. % additive decreases hydrogen uptake approx. 2 and 25 % of adsorbents in the same order.

Keywords


Hydrogen storage, Pore size distribution, Composites, MOF

Full Text:

PDF

References


Bareto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario. Int. J. Hydrogen Energy 2003;28(3):267–284.

Goltsov V. A step on the road to Hydrogen Civilization. Int. J. Hydrogen Energy 2002;27(7–8):719–723.

Cole RB, McAlevy IRF, Bentele M. Hydrogen Energy Conversion. Jul. 1976.

Veziroglu TN Sahin N. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag 2008;49(7):1820–1831.

Züttel A. Materials for hydrogen storage. Mater. Today 2003;6(9):24–33.

Eberle U, Felderhoff M, Schüth F. Chemical and Physical Solutions for Hydrogen Storage. Angew. Chemie Int. Ed. 2009;48(36):6608–6630.

Nijkamp MG, Raaymakers JEMJ, van Dillen AJ, de Jong KP. Hydrogen storage using physisorption – materials demands. Appl. Phys. A Mater. Sci. Process 2001;72(5):619–623.

Dillon AC, Heben MJ. Hydrogen storage using carbon adsorbents: past, present and future. Appl. Phys. A Mater. Sci. Process 2001;72(2):133–142.

Pan L, Sander MB, Huang X, Li J, Smith M, Bittner E, Bockrath B, Johnson JK. Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J. Am. Chem. Soc 2004;126(5):1308–1309.

Ozturk Z, Kose DA, Asan A, Ozturk B. A kind of energy storage technology:Metal-organic frameworks. Int. J Renewable Energy Res. 2012;2(1):44-46.

Yang Z, Xia Y, Mokaya R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 2007;129(6):1673–1679.

Cai J, Li L, Lv X, Yang C, Zhao X. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application. ACS Appl. Mater. Interfaces 2014;6(1):167–75.

Zhang H, Luo X, Lin X, Lu X, Leng Y. Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets. Int. J. Hydrogen Energy 2013;38(33):14269–14275.

Sethia G, Sayari A. Activated carbon with optimum pore size distribution for hydrogen storage. Carbon N. Y. 2016;99:289–294.

Kaye SS, Dailly A, Yaghi OM, Long JR. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 2007;129(46):14176–14177.

Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ. Sci. 2008;1(2):268-277.

Wang L, Yang RT. Hydrogen Storage on Carbon-Based Adsorbents and Storage at Ambient Temperature by Hydrogen Spillover. Catal. Rev. 2010;52(4):411–461.

Liu Y, Zeng J, Zhang J, Xu F, Sun L. Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect. Int. J. Hydrogen Energy 2007;32(16):4005–4010.

Ardelean O, Blanita G, Borodi G, Mihet M, Coros M, Lupu D. On the enhancement of hydrogen uptake by IRMOF-8 composites with Pt/carbon catalyst. Int. J. Hydrogen Energy 2012;37(9):7378–7384.

Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016;307:237–254.

Wang L, Yang RT. Hydrogen Storage Properties of Carbons Doped with Ruthenium, Platinum, and Nickel Nanoparticles. J. Phys. Chem. C 2008;112(32):12486–12494.

Ozturk Z, Ozkan G, Asan A, Kose DA. Combined experimental and theoretical investigation of characterization and hydrogen storage properties of Zn(II) based complex and composites. Int. J. Hydrogen Energy 2015;40(17):5907–5915.

Zhou H, Liu X, Zhang J, Yan X, Liu Y, Yuan A. Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites. Int. J. Hydrogen Energy 2014;39(5):2160–2167.

Yang SJ, Cho JH, Nahm KS, Park CR. Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. Int. J. Hydrogen Energy 2010;35(23):13062–13067.

Barrett EP, Joyner LG, Halenda PP. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951;73(1):373–380.

Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938;60(2):309–319.

Dubinin MM, Radushkevich LV. Evaluation of Microporous Materials with a new isotherm. Dokl. Akad. Nauk. SSSR. 1947;55:331-334.

Webpage, Thermophysical Properties of Fluid Systems, Last visited: 23.3.2016

url: http://webbook.nist.gov/chemistry/fluid/.

Liu XM, Rather S, Li Q, Lueking A, Zhao Y, Li J. Hydrogenation of CuBTC Framework with the Introduction of a PtC Hydrogen Spillover Catalyst. J. Phys. Chem. C 2012;116(5):3477–3485.

Chen H, Wang L, Yang J, Yang RT. Investigation on Hydrogenation of Metal–Organic Frameworks HKUST-1, MIL-53, and ZIF-8 by Hydrogen Spillover. J. Phys. Chem. C 2013;117(15):7565–7576.

García Blanco AA, Vallone AF, Korili SA, Gil A, Sapag K. A comparative study of several microporous materials to store methane by adsorption. Microporous Mesoporous Mater. 2016;224:323–331.

Ozturk Z, Ozkan G, Kose DA, Asan A. Experimental and simulation study on structural characterization and hydrogen storage of metal organic structured compounds. Int. J. Hydrogen Energy 2015 10.1016/j.ijhydene.2015.11.073.




DOI (PDF): https://doi.org/10.20508/ijrer.v6i3.4054.g6883

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4