Design and Optimization of Copper Antimony Sulfide Thin Film Solar Cell

Sujoy Bhattacharjee, Mehedi Hassan, Nipu Kumar Das, Mrinmoy Dey

Abstract


In this research study, we report the design of a CuSbS2 thin film solar cell. CuSbS2 is a chalcostibite-based semiconductor absorber that can be used in place of CIGS/CdTe thin film solar cells. The abundantly available chalcostibite CuSbS2 has a bandgap of 1.52 eV and an optical absorption coefficient of 105 cm-1 , making it a perfect candidate for a thin film absorber layer. A numerical analysis has been carried out using the wx-AMPS software to evaluate the efficiency and other performance parameter of the proposed CuSbS2 cell. The optimized cell has a structure of FTO/ZnO/CuSbS2/Back contact. A conversion efficiency of 27.29% (FF=86.97%, Voc=1.15V and Jsc=27.31 mA/cm2 ) and temperature coefficient of -0.0319 %/°C have been found for 2 ?m CuSbS2 absorber layer. Then the effect of BSF on cells stability and performance was analyzed by inserting a SnSe BSF layer in the structure. The designed cell, which has a 100 nm SnSe layer as the BSF and a 2 ?m CuSbS2 absorber, has a higher conversion efficiency of 28.13% (FF=87.18%, Voc=1.17V and Jsc=27.59 mA/cm2 ) and a better temperature coefficient of -0.0242 %/°C.

Keywords


CuSbS2; Thin film; absorber; BSF; efficiency; wxAMPS.

Full Text:

PDF

References


J. Zhou, G. Q. Bian, Q. Y. Zhu, Y. Zhang, C. Y. Li, and J. Dai, “Solvothermal crystal growth of CuSbQ2 (Q=S, Se) and the correlation between macroscopic morphology and microscopic structure,” J. Solid State Chem., vol. 182, no. 2, pp. 259–264, 2009, doi: 10.1016/j.jssc.2008.10.025.

Y. Rodríguez-Lazcano, M. T. S. Nair, and P. K. Nair, “CuxSbySz thin films produced by annealing chemically deposited Sb2S3-CuS thin films,” Mod. Phys. Lett. B, vol. 15, no. 17–19, pp. 667–670, Aug. 2001, doi: 10.1142/S0217984901002257.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, 1961, doi: 10.1063/1.1736034.

D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson, and D. O. Scanlon, “Geometry, electronic structure, and bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): Alternative solar cell absorber materials?,” J. Phys. Chem. C, vol. 116, no. 13, pp. 7334–7340, 2012, doi: 10.1021/jp300862v.

B. Yang et al., “CuSbS2 as a Promising Earth-Abundant Photovoltaic Absorber Material: A Combined Theoretical and Experimental Study,” no. iii, 2014.

A. W. Welch, P. P. Zawadzki, S. Lany, C. A. Wolden, and A. Zakutayev, “Self-regulated growth and tunable properties of CuSbS2 solar absorbers,” Sol. Energy Mater. Sol. Cells, vol. 132, pp. 499–506, 2015, doi: 10.1016/J.SOLMAT.2014.09.041.

W. Septina, S. Ikeda, Y. Iga, T. Harada, and M. Matsumura, “Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack,” Thin Solid Films, vol. 550, pp. 700–704, 2014, doi: 10.1016/j.tsf.2013.11.046.

E. Puente-López and M. Pal, “Numerical simulation and optimization of physical properties for high efficiency CuSbS2 thin film solar cells,” Optik (Stuttg)., vol. 272, p. 170233, Feb. 2023, doi: 10.1016/J.IJLEO.2022.170233.

S. Das and A. Beltran, “High Efficiency non-toxic CuSbS2-based Heterojunction Solar Cell with TiO2 Electron Transport Layer,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 1876–1879, 2019, doi: 10.1109/PVSC40753.2019.8981380.

K. J. Singh and S. K. Sarkar, “Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers,” Opt. Quantum Electron., vol. 43, no. 1–5, pp. 1–21, 2012, doi: 10.1007/s11082-011-9499-y.

M. A. Islam, Y. Sulaiman, and N. Amin, “A Comparative study of BSF layers for ultra-thin CdS:O/CdTe solar cells,” Chalcogenide Lett., vol. 8, no. 2, pp. 65–75, 2011.

Y. H. Khattak et al., “Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell,” Curr. Appl. Phys., vol. 18, no. 6, pp. 633–641, 2018, doi: 10.1016/j.cap.2018.03.013.

S. Benabbas, H. Heriche, Z. Rouabah, and N. Chelali, “Enhancing the efficiency of CIGS thin film solar cells by inserting novel back surface field (SnS) layer,” 2014 North African Work. Dielectr. Mater. Photovolt. Syst. NAWDMPV 2014, no. August, 2014, doi: 10.1109/NAWDMPV.2014.6997611.

Y. Liu, Y. Sun, and A. Rockett, “A new simulation software of solar cells - WxAMPS,” Sol. Energy Mater. Sol. Cells, vol. 98, pp. 124–128, 2012, doi: 10.1016/j.solmat.2011.10.010.

Y. Liu, D. Heinzel, and A. Rockett, “A new solar cell simulator: WxAMPS,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 002753–002756, 2011, doi: 10.1109/PVSC.2011.6186517.

Y. Liu, Y. Sun, and A. Rockett, “Batch simulation of solar cells by using Matlab and wxAMPS,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 902–905, 2012, doi: 10.1109/PVSC.2012.6317748.

K. Subba Ramaiah and V. Sundara Raja, “Structural and electrical properties of fluorine doped tin oxide films prepared by spray-pyrolysis technique,” Appl. Surf. Sci., vol. 253, no. 3, pp. 1451–1458, 2006, doi: 10.1016/j.apsusc.2006.02.019.

Y. W. Heo et al., “ZnO nanowire growth and devices,” Mater. Sci. Eng. R Reports, vol. 47, no. 1–2, pp. 1–47, 2004, doi: 10.1016/j.mser.2004.09.001.

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett., vol. 89, no. 14, pp. 87–90, 2006, doi: 10.1063/1.2359579.

Z. Liang et al., “Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells,” Adv. Funct. Mater., vol. 22, no. 10, pp. 2194–2201, 2012, doi: 10.1002/adfm.201101915.

A. D. Adewoyin, M. A. Olopade, and M. A. C. Chendo, “A comparative study of the effect of transparent conducting oxides on the performance of Cu2ZnSnS4 thin film solar cell,” J. Comput. Electron., vol. 17, no. 1, pp. 361–372, 2018, doi: 10.1007/s10825-017-1106-4.

E. M. K. Ikball Ahamed, S. Bhowmik, M. A. Matin, and N. Amin, “Highly efficient ultra thin Cu(In,Ga)Se2 solar cell with Tin Selenide BSF,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 428–432, 2017, doi: 10.1109/ECACE.2017.7912942.

W. Mahmood and N. A. Shah, “CdZnS thin films sublimated by closed space using mechanical mixing: A new approach,” Opt. Mater. (Amst)., vol. 36, no. 8, pp. 1449–1453, 2014, doi: 10.1016/j.optmat.2013.09.003.

W. Mahmood and N. A. Shah, “Study of cadmium sulfide thin films as a window layers,” AIP Conf. Proc., vol. 1476, pp. 178–182, 2012, doi: 10.1063/1.4751590.

Z. Remes, M. Vanecek, H. M. Yates, P. Evans, and D. W. Sheel, “Optical properties of SnO2:F films deposited by atmospheric pressure CVD,” Thin Solid Films, vol. 517, no. 23, pp. 6287–6289, 2009, doi: 10.1016/j.tsf.2009.02.109.

O. Von Roos and O. Von Roos, “A simple theory of back surface field ( BSF ) solar cells,” vol. 3503, no. 1978, 2012, doi: 10.1063/1.325262.

F. Javed, “Impact of Temperature & Illumination for Improvement in Photovoltaic System Efficiency,” Int. J. Smart grid, vol. 6, no. v6i1, 2022, doi: 10.20508/ijsmartgrid.v6i1.222.g185.

S. A. Lamia, E. M. K. I. Ahamed, P. Chowdhury, and A. Habib, “A Comparative Performance Evaluation of Ternary ZnxCd1-xS and Binary CdS Window Layer in CIGS Solar Cell,” Int. J. Renew. Energy Res., vol. 12, no. 2, pp. 712–720, 2022, doi: 10.20508/ijrer.v12i2.12663.g8459.




DOI (PDF): https://doi.org/10.20508/ijrer.v13i3.14107.g8812

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4