Recent Trends in Lithium-Ion Battery – A Critical Review

Kapilan Natesan, Sadashiva Prabhu S

Abstract


The usage of conventional energy sources leads to global warming and environmental degradation. Hence, there is a great demand for renewable energy sources. Further, there is a severe threat to non-renewable energy sources and their supply. Nowadays, electric vehicles and hybrid electric vehicles are used to replace conventional vehicles to avoid these problems. Batteries are used to store energy, and the stored energy is supplied. Lithium-ion batteries (LIB) are used for many applications as they have increased specific energy, longer life cycle and lower auto discharge. The performance of the batteries is improved by introducing novel materials for the electrodes and electrolytes. The working principle of this type of battery is based on an electrochemical reaction that releases heat during charging and discharging. However, this type of battery is susceptible to high temperatures and hence new technologies are developed for effective cooling and better performance of the batteries. This paper critically reviews various types of batteries, usage, novel materials for electrodes, battery cooling technologies, recent trends, future research and recommendations.

Keywords


Renewable energy, energy storage, battery, lithium-ion battery, materials,cooling

Full Text:

PDF

References


P. Cambeiro F, J. Armesto, G. Bastos, J.I. Prieto-López, F. Patiño-Barbeito, “Economic appraisal of energy efficiency renovations in tertiary buildings”, Sustainable Cities and Society, DOI:10.1016/j.scs.2019.101503, Vol.47, Article No.101503.

M.V. Diamanti, M. Ormellese, M.P. Pedeferri, “Characterization of photocatalytic and super hydrophilic properties of mortars containing titanium dioxide”, Cement and Concrete Research, DOI:10.1016/j.cemconres.2008.07.003, Vol.38, No.11, pp. 1349-1353.

Y.E. Milián, A. Gutiérrez, M. Grágeda, S. Ushak, “A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties”, Renewable and Sustainable Energy Reviews, DOI:10.1016/j.rser.2017.01.159, Vol.73, pp. 983-999.

V.V. Tyagi, A.K. Pandey, D. Buddhi, R. Kothari, “Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings”, Energy and Buildings, DOI:10.1016/j.enbuild.2016.01.042, Vol.117, pp.44–52.

T. Ahmad, D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far”, Energy Reports, DOI:10.1016/j.egyr.2020.07.020, Vol.6, pp.1973–1991.

US Department of Energy, Technical Report (NREL/TP-5400-78461 DOE/GO-102020-5497), accessed on 10th Jan 2022.

G.E. Blomgren, “The Development and Future of Lithium Ion Batteries”, Journal of The Electrochemical Society, DOI:10.1149/2.0251701jes,Vol.164, Article No.A5019.

N. Nitta, F. Wu, J.T. Lee, G. Yushin, “Li-ion battery materials: Present and future”, Materials Today, DOI:10.1016/j.mattod.2014.10.040, Vol.18, pp. 252–264.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, “Challenges in the development of advanced Li-ion batteries: A review”. Energy and Environmental Science, DOI:10.1039/c1ee01598b,Vol.4, pp.3243–3262.

L. Lu, X. Han, J. Li , J. Hua, M.Ouyang,“A review on the key issues for lithium-ion battery management in electric vehicles”, Journal of Power Sources, DOI:10.1016/j.jpowsour.2012.10.060, Vol.226, pp.272–288.

R.Zhu, D.Kondor, C.Cheng, X.Zhang, P.Santi, M. S.Wong, C.Ratti,“Solar photovoltaic generation for charging shared electric scooters”, Applied Energy, DOI:10.1016/j.apenergy.2022.118728, Vol. 313, Article No.118728.

G. Xia, L. Cao, G. Bi, “A review on battery thermal management in electric vehicle application”, Journal of Power Sources, DOI:10.1016/j.jpowsour.2017.09.046, Vol.367, pp.90–105.

T. Wang , K.J. Tseng, J. Zhao, Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies”, Applied Energy, DOI:10.1016/j.apenergy.2014.08.013, Vol.134, pp.229–238.

R. Liu, J. Chen, J. Xun, K. Jiao, Q. Du. “Numerical investigation of thermal behaviors in lithium-ion battery stack discharge”, Applied Energy, DOI:10.1016/j.apenergy.2014.07.024, Vol.132, pp.288–297.

S. Al-Hallaj, J.R. Selman, “Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications”, Journal of Power Sources, DOI:10.1016/S0378-7753(02)00196-9, Vol.110, No.2, pp.341-348.

S. Shaikh, K. Lafdi, “Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage”, Energy Conversion and Management, DOI:10.1016/j.enconman.2005.12.012, Vol.47, pp.2103–2117.

A. Castell, I. Martorell, M. Medrano, G. Pérez, L.F. Cabeza, “Experimental study of using PCM in brick constructive solutions for passive cooling”, Energy and Buildings, DOI:10.1016/j.enbuild.2009.10.022, Vol.42, pp. 534–540.

Lithium-ion Battery Overview. Technical Notes, Issue #30, June 2019.

T. Kim, W. Song, D.Y. Son, L.K. Ono, Y. Qi, “Lithium-ion batteries: outlook on present, future, and hybridized technologies”, Journal of Materials Chemistry A, DOI:10.1039/C8TA10513H2019, Vol.7, pp.2942–2964.

https://batteryuniversity.com/learn/article/types_of_lithium_ion, accessed on 10th Jan 2022.

A. Mishra, A. Mehta, S. Basu, S.J. Malode, N.P. Shetti, S.S. Shukla, “Electrode materials for lithium-ion batteries”, Materials Science for Energy Technologies, DOI:10.1016/j.mset.2018.08.001, Vol.1, pp.182–187.

A.O.Soge, “Anode Materials for Lithium-based Batteries: A Review”, Journal of Materials Science Research and Reviews, Vol.5, No.3, pp.21-39, Article No.JMSRR.56496.

H. Löbberding, S. Wessel, C. Offermanns, M. Kehrer, J. Rother, H. Heimes, “From cell to battery system in BEVs: Analysis of system packing efficiency and cell types”, World Electric Vehicle Journal, DOI:10.3390/wevj11040077, Vol.11. pp.1–15.

R.E. Ciez, J. Whitacre, “Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model”, 2016. Journal of Power Sources, DOI:10.1016/j.jpowsour.2016.11.054, Vol.340 pp.273-281.

E. Quartarone, P. Mustarelli, “Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries”, Journal of The Electrochemical Society, DOI:10.1149/1945-7111/ab63c4, Vol.167, Article No.050508.

I. Mudawar, “Assessment of High-Heat-Flux Thermal Management Schemes”, IEEE transactions on components and packaging technologies, DOI: 10.1109/6144.926375, Vol. 24, No.2, pp.122-141.

G.E. Blomgren, “The Development and Future of Lithium Ion Batteries”, Journal of The Electrochemical Society, DOI:10.1149/2.0251701jes, Vol.164, No.1, pp.A5019–5025.

M. Lu, X. Zhang, J. Ji, X. Xu, Y. Zhang Y. “Research progress on power battery cooling technology for electric vehicles”, Journal of Energy Storage, DOI:10.1016/j.est.2019.101155 ,Vol.27, Article No.101155.

M. Li, J. Wang, Q. Guo, Y. Li, Q. Xue, G. Qin, “Numerical Analysis of Cooling Plates with Different Structures for Electric Vehicle Battery Thermal Management Systems”, Journal of Energy Engineering, DOI:10.1061/(asce)ey.1943-7897.0000648, Vol.146 Article No.04020037.

R.A. Wirtz, K. Swanson, M. Yaquinto, “Thermal energy storage thermal response model with application to thermal management of high power-density hand-held electronics”, Journal of Electronic Packaging, Transactions of the ASME, DOI:10.1115/1.4005915, Vol.134, No.1. Article No.011002.

C. Zhao, B. Zhang, ,Y. Zheng, S. Huang, T. Yan, X. Liu “Hybrid battery thermal management system in electrical vehicles: A review”, Energies (Basl), DOI:10.3390/en13236257, Vol.13, No.23, Article No.6257.

P.S. Lee, S.V. Garimella, D. Liu “Investigation of heat transfer in rectangular microchannels”, International Journal of Heat and Mass Transfer, DOI:10.1016/j.ijheatmasstransfer.2004.11.019, Vol.48, pp.1688–1704.

R. Chein, G. Huang,“Analysis of microchannel heat sink performance using nanofluids”, Applied Thermal Engineering, DOI:10.1016/j.applthermaleng.2005.03.008, Vol. 25, No.17–18, pp.3104-3114.

K. Iqbal, A. Khan, D.Sun, M. Ashraf, A. Rehman, F. Safdar, “Phase change materials, their synthesis and application in textiles—a review”, Journal of the Textile Institute. DOI:10.1080/00405000.2018.1548088, Vol.110, pp.625–638.

Y.Shin, D.Yoo-Il, K. Son, “Development of thermoregulating textile materials with microencapsulated Phase Change Materials (PGM). IV. Performance properties and hand of fabrics treated with PCM microcapsules”, Journal of Applied Polymer Science, DOI:10.1002/app.21846, Vol.97, pp.910–915.

A. Khoddami A, O. Avinc, F. Ghahremanzadeh, “Improvement in poly(lactic acid) fabric performance via hydrophilic coating”, Progress in Organic Coatings, DOI:10.1016/j.porgcoat.2011.04.020, Vol.72, pp.299–304.

G. Zhang, S. Xu, M. Du, G. Liu, L. Zhou, “Temperature regulating fibers of high latent heat and strength: Mass production, characterization and applications”, Journal of Energy Storage, DOI:10.1016/j.est.2021.103030, Vol.42, Article No.103030.

Nguyen X, T.Tran, “Experimental Study on Phase Change Materials for Cold Energy Storage System”, Journal of Energy and Natural Resources, DOI:10.11648/j.jenr.20200902.11, Vol.9, No.2, pp.51-55.

A. Al-Abidi, S. Bin Mat, K. Sopian, M. Sulaiman, C.Lim, A.Th, “Review of thermal energy storage for air conditioning systems”, Renewable and Sustainable Energy Reviews, DOI:10.1016/j.rser.2012.05.030, Vol.16, pp.5802-5819.

F. Agyenim, P. Eames, M. Smyth, “Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system”, Renewable Energy. DOI:10.1016/j.renene.2010.06.005, Vol.36. pp.108–117.

M. Helm, C. Keil, S. Hiebler, H. Mehling, C. Schweigler, “Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience”, International Journal of Refrigeration, DOI:10.1016/j.ijrefrig.2009.02.010,Vol.32, pp.596–606.

O. Kalaf, D. Solyali, M. Asmael, Q. Zeeshan, B. Safaei, A. Askir, “Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles: A review”, International Journal of Energy Research, DOI:10.1002/er.6268, Vol.45, pp.6495–6517.

S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, “Temperature effect and thermal impact in lithium-ion batteries: A review”, Progress in Natural Science: Materials International , DOI:10.1016/j.pnsc.2018.11.002, Vol.28, pp.653–666.

R.D. Jilte, R. Kumar, “Numerical investigation on cooling performance of Li-ion battery thermal management system at high galvanostatic discharge” Engineering Science and Technology, an International Journal,957–969, DOI:10.1016/j.jestch.2018.07.015, Vol.21, No.5,pp. 957-969.

T. Deng, G. Zhang, Y. Ran, “Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate”, International Journal of Heat and Mass Transfer, DOI:10.1016/j.ijheatmasstransfer.2018.04.065, Vol.125, pp.143-152.

K. Benabdelaziz, B. Lebrouhi, A. Maftah, M. Maaroufi, “Novel external cooling solution for electric vehicle battery pack”, Energy Reports, DOI:10.1016/j.egyr.2019.10.043, Vol.6, pp. 262–272.

N. Om, R. Zulkifli, P. Gunnasegaran, “Influence of the oblique fin arrangement on the fluid flow and thermal performance of liquid cold plate”, Case Studies in Thermal Engineering, DOI:10.1016/j.csite.2018.09.008, Vol.12, pp.717-727.

Z.Lua,X.Z.Meng,L.C.Wei,W.Y.Hu,L.Y.Zhang, L.W.Jin “Thermal management of densely-packed EV battery with forced air cooling strategies”, Energy Procedia, DOI:10.1016/j.egypro.2016.06.098, Vol.88, pp.682-688.

M.S.Patil, J.H.Seo, S.Panchal, S.W.Jee, Lee MY. “Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate”, International Journal of Heat and Mass Transfer, DOI:10.1016/j.ijheatmasstransfer.2020.119728,Vol.155 Article No.119728.

T.Kumirai, J.Dirker, J.Meyer, “Experimental analysis for thermal storage performance of three types of plate encapsulated phase change materials in air heat exchangers for ventilation applications”, Journal of Building Engineering, DOI:10.1016/j.jobe.2018.11.016, Vol.22, pp.75-89.

F.Bai, M.Chen, W.Song, Z.Feng, Y.Li, Y.Ding, “Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source”, Applied Thermal Engineering,DOI:10.1016/j.applthermaleng.2017.07.141,Vol.126, pp.17-27.

Z.Sun, R.Fan, F.Yan, T.Zhou, N.Zheng, “Thermal management of the lithium-ion battery by the composite PCM-Fin structures”, International Journal of Heat and Mass Transfer, DOI:10.1016/j.ijheatmasstransfer.2019.118739, Vol.145, Article No.118739.

P.Ping, R.Peng, D.Kong, G.Chen, J.Wen, “Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment”,Energy Conversion and Management, DOI:10.1016/j.enconman.2018.09.025,Vol.176, pp.131-146.

D.Zou, X.Liu, R.He, S.X.Zhu, J.Bao, J.Guo, “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module”, Energy Conversion and Management, DOI:10.1016/j.enconman.2018.11.064,Vol.180, pp.1196-1202.

J.Weng, X.Yang, G.Zhang, D.Ouyang, M.Chen, J.Wang “Optimization of the detailed factors in a phase-change-material module for battery thermal management”, International Journal of Heat and Mass Transfer DOI:10.1016/j.ijheatmasstransfer.2019.04.050, Vol.138, pp.126-134.

H.Choi, N.Lim, S.J.Lee, J.Park. “Numerical approach for lithium-ion battery performance considering various cathode active material composition for electric vehicles using 1D simulation”, Journal of Mechanical Science and Technology, DOI:10.1007/s12206-021-0540-1, Vol.35, pp.2697-2705.

D.Grazioli, M.Magri, A.Salvadori, “Computational modeling of Li-ion batteries”, Computational Mechanics, DOI:10.1007/s00466-016-1325-8, Vol.58, pp.889-909.

P.R.Tete, M.M.Gupta, S.S.Joshi, “Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct”, Journal of Energy Storage, DOI:10.1016/j.est.2022.104041, Vol.48, Article No.104041.

Kausthubharam, P.K.Koorata, N.Chandrasekaran, “Numerical investigation of cooling performance of a novel air-cooled thermal management system for cylindrical Li-ion battery module”, Applied Thermal Engineering,DOI:10.1016/j.applthermaleng.2021.116961, Vol.193. Article No.116961

A.Verma, P. Saikia, D.Rakshit, “Unification of intensive and extensive properties of the passive cooling system under a single envelope for the thermal management of Li-ion batteries”, Journal of Energy Storage, DOI:10.1016/j.est.2022.104184. Vol.50, Article No.104184.

Z.Tang, X.Min, A.Song, J.Cheng, “Thermal Management of a Cylindrical Lithium-Ion Battery Module Using a Multichannel Wavy Tube”, Journal of Energy Engineering, DOI:10.1061/(asce)ey.1943-7897.0000592, Vol.145, Article No. 04018072.

Z.Z.Li, T.H.Cheng, D.J.Xuan, M.Ren, G.Y.Shen, Y.D.Shen Y. “Optimal design for cooling system of batteries using DOE and RSM”, International Journal of Precision Engineering and Manufacturing, DOI:10.1007/s12541-012-0215-z, Vol.13, pp.1641-1645.

V.Etacheri, R.Marom, R.Elazari, G.Salitra, D.Aurbach, “Challenges in the development of advanced Li-ion batteries: A review”, Energy and Environmental Science, DOI:10.1039/c1ee01598b, Vol.4, pp.3243–3262.

Y.Wang, J.Tian, Z.Sun, L.Wang, R.Xu, M.Li, “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems”, Renewable and Sustainable Energy Reviews, DOI:10.1016/j.rser.2020.110015, Vol.131, Article No.110015.

S.K.Kauwe, T.D.Rhone, T.D.Sparks, “Data-driven studies of li-ion-battery materials”, Crystals (Basel) 2019, DOI:10.3390/cryst9010054, Vol.9, No.1 pp.1-9.

A.Hodges, “The essential turing: the ideas that gave birth to the computer age”, The British Journal for the History of Science, DOI:10.1017/s0007087406448688, Vol.39, No.3, pp.470–471.

Z.Luo, X.Yang, Y.Wang, W.Liu, S.Liu, Y.Zhu, “A Survey of Artificial Intelligence Techniques Applied in Energy Storage Materials R&D”, Frontiers in Energy Research, DOI:10.3389/fenrg.2020.00116, Vol.8, Article No. 116.

M.Attarian Shandiz, R.Gauvin. “Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion batteries”, Computational Materials Science, DOI:10.1016/j.commatsci.2016.02.021,Vol.117, pp.270-278.

J.Li , W.Ziehm, J.Kimball, R.Landers , J.Park , “Physical-based training data collection approach for data-driven lithium-ion battery state-of-charge prediction”, Energy and AI, DOI:10.1016/j.egyai.2021.100094, Vol.5, Article No.100094.

K.Liu, Z.Wei, Z.Yang, Li K, “Mass load prediction for lithium-ion battery electrode clean 1 production? a machine learning approach”, Journal of Cleaner Production, DOI:10.1016/j.jclepro.2020.125159, Vol. 289, Article No.125159.

G.Houchins, V.Viswanathan, “An accurate machine-learning calculator for optimization of Li-ion battery cathodes”, Journal of Chemical Physics, DOI:10.1063/5.0015872, Vol.153, Article No. 054124.

Y.Okamoto, Y.Kubo, “Ab Initio Calculations of the Redox Potentials of Additives for Lithium-Ion Batteries and Their Prediction through Machine Learning”, ACS Omega, DOI:10.1021/acsomega.8b00576, Vol.3, No.7, pp.7868–7874.

Y.Liu O.C.Esan, Z.Pan, L.An, “Machine learning for advanced energy materials”, Energy and AI, DOI:10.1016/j.egyai.2021.100049, Vol.3, Article No.100049.

S.Arora, A.Kapoor, W.Shen, “Application of robust design methodology to battery packs for electric vehicles: Identification of critical technical requirements for modular architecture”, Batteries, DOI:10.3390/batteries4030030,Vol.4, No.30.

F.Gu, J.Guo, X.Yao, P.A.Summers, S.D.Widijatmoko, P.Hall, “An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China”, Journal of Cleaner Production, DOI:10.1016/j.jclepro.2017.05.181, Vol.161, pp.765-780.

O.E.Bankole, C.Gong, L.Lei, “Battery Recycling Technologies: Recycling Waste Lithium Ion Batteries with the Impact on the Environment In-View”, Journal of Environment and Ecology, DOI:10.5296/jee.v4i1.3257, Vol.4, No.1, pp. 14-28.

E.Fan, L.Li, Z.Wang, J.Lin, Y.Huang, Y.Yao, “Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects”, Chemical Reviews, DOI:10.1021/acs.chemrev.9b00535,Vol.120, pp.7020-7063.

A.Sonoc, J.Jeswiet, V.K.Soo, “Opportunities to improve recycling of automotive lithium ion batteries”, Procedia CIRP,DOI:10.1016/j.procir.2015.02.039, Vol.29, pp.752-757.

N.Natkunarajah, M.Scharf, P.Scharf, “Scenarios for the return of lithium-ion batteries out of electric cars for recycling”, Procedia CIRP, DOI:10.1016/j.procir.2015.02.170, Vol.29, pp.740-745.

E.Mossali, N.Picone, L.Gentilini, O.Rodrìguez, J.M.Pérez, M.Colledani, “Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments”, Journal of Environmental Management, DOI:10.1016/j.jenvman.2020.110500, Vol. 264, Article No.110500.

H.J.Kim, T.N.V.Krishna, K.Zeb, V.Rajangam, C.V.V.Muralee Gopi, S.Sambasivam, “A comprehensive review of Li-ion battery materials and their recycling techniques”, Electronics (Switzerland), DOI:10.3390/electronics9071161, Vol.9, pp.1-44.

T.Kim, W.Song, D.Y.Son, L.K.Ono, Y.Qi, “Lithium-ion batteries: outlook on present, future, and hybridized technologies”, Journal of Materials Chemistry A, DOI:10.1039/C8TA10513H, Vol.7, pp.2942-2964.

J.Ma, Y.Li, N.S.Grundish, J.B.Goodenough, Y.Chen, L.Guo, “The 2021 battery technology roadmap”, Journal of Physics D: Applied Physics, DOI:10.1088/1361-6463/abd353, Vol.54, No.18, Article No.183001.

A.Masias, J.Marcicki, W.A.Paxton, “Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications”, ACS Energy Letters, DOI:10.1021/acsenergylett.0c02584, Vol.6, pp.621-630.

J. Wold, J. Marcicki, A. Masias “Derived Quantities Uncertainty Propagation in High Precision Battery Testing”, DOI:10.1149/2.1461709jes, J Electrochem Soc Vol.164, No.9, A2131.

Y.Zhanga, Y.Jiaoa,M.Liao, B.Wang, H.Penga, “Carbon nanomaterials for flexible lithium ion batteries” DOI:10.1016/j.carbon.2017.07.065, Carbon, Vol.124, pp. 79-88.

S.Zhang, P.Gao, Y.Wang,J.Li, Y.Zhu, Cobalt-free concentration-gradient Li[Ni0.9Mn0.1]O2 cathode material for lithium-ion batteries, Journal of Alloys and Compounds,Vol. 885, Article No. 161005

N.Muralidharan, R.Essehli, R.P.Hermann, A.Parejiya, R.Amin, Y.Bai, “LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries”, Journal of Power Sources, DOI:10.1016/j.jpowsour.2020.228389, Vol.471. Article No. 228389.

Z.Fang, J.Wang, H.Wu ,Q.Li, S.Fan, J.Wang, “ Progress and challenges of flexible lithium-ion batteries”, Journal of Power Sources, DOI:10.1016/j.jpowsour.2020.227932, Vol.454, Artcle No.227932.

S.Kanazawaa,T.Baba,K.Yoneda,M.Mizuhata, I.Kannoa, “Deposition and performance of all solid-state thin-film lithium-ion batteries composed of amorphous Si/LiPON/VO-LiPO multilayers”, Thin Solid Films, DOI:10.1016/j.tsf.2020.137840, Vol.697, Article No.137840

Z.J.Baum, R.E.Bird , X.Yu, J.Ma “Lithium-Ion Battery Recycling?Overview of Techniques and Trends”, ACS Energy Letters, DOI:10.1021/acsenergylett.1c02602, Vol.7, pp.712-719.

C.P.Makwarimba, M.Tang, Y.Peng, S.Lu, L.Zheng, Z.Zhao, A.G.Zhen, “Assessment of recycling methods and processes for lithium-ion batteries” iScience, DOI:10.1016/j.isci.2022.104321 Vol. 25, No. 5, Article No.104321.

B. Elibol et al., "Battery Integrated Off-grid DC Fast Charging: Optimised System Design Case for California," 2021 10th International Conference on Renewable Energy Research and Application (ICRERA), pp. 327-332, DOI: 10.1109/ICRERA52334.2021.9598644.

U. Cetinkaya, R. Bayindir and S. Ayik, "Ancillary Services Using Battery Energy Systems and Demand Response", 2021 9th International Conference on Smart Grid (icSmartGrid), pp. 212-215, DOI: 10.1109/icSmart Grid52357.2021.9551253.

S. Gherairi, “Zero-Emission Hybrid Electric System: Estimated Speed to Prioritize Energy Demand for Transport Applications”, Vol.3, No.4, December, DOI:10.20508/ijsmartgrid.v3i4.76.g65.

Murat Akil, Emrah Dokur, Ramazan Bayindir, “Impact of Electric Vehicle Charging Profiles in Data-Driven Framework on Distribution Network” 2021 9th International Conference on Smart Grid (icSmartGrid), DOI:10.1109/icSmartGrid52357.2021.9551247

J. Ma and X. Ma, "Distributed Control of Battery Energy Storage System in a Microgrid," 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), 2019, pp. 320-325, DOI: 10.1109/ICRERA47325.2019.8996504.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i3.13015.g8536

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4