Design, Development and Experimental Investigation of H-rotor Vertical Axis Wind Turbine under Low Wind Speeds
Abstract
H-rotor vertical axis wind turbines (VAWT) are prominent wind energy converters for low wind speed applications due to their simple blade profile and efficient operation under turbulent wind conditions. This paper focuses on the design and development of H-rotor VAWT and its performance evaluation under low wind speeds. H-rotor VAWT is modelled in CATIA-v5 software with predetermined parameters such as blade profile, blade span, blade chord and turbine diameter for 25 W output power. Turbine blades are fabricated using low-cost and light-weight aluminium sheets and the H-rotor VAWT is developed using simple in-house fabrication techniques. A controlled wind environment with a wind speed range of 2.5 to 6.5 m/s is created using industrial fan blowers regulated by autotransformer. The performance of the prototype is evaluated in terms of tip speed ratio (?), output power (P), output torque (T) and Cp by varying the number of blades from two to five. The effect of solidity (quantified by variation in the number of blades) on the performance of the H-rotor VAWT is evaluated using different turbine characteristics. Reduced cut-in speed, high starting torque, increase in optimum ? and Cp are recorded for higher turbine solidity and an increase in the number of blades. However, this is attained at the expense of reduced peak power output for H-rotor models with the number of blades greater than three. The work presented in this paper would help researchers to design, develop, and perform experimental investigation and standardization of H-rotor VAWT for low wind speed operations.
Keywords
Full Text:
PDFReferences
World energy outlook 2018, Available at: https://iea.blob.core.windows.net/assets/77ecf96c-5f4b-4d0d-9d93 d81b938217cb/World_Energy_Outlook_2018.pdf, accessed February 2022.
Global wind statics 2015, Available at: https://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf, accessed February 2022.
Wang, Chien, and Ronald G. Prinn, "Potential climatic impacts and reliability of very large-scale wind farms", Atmos. Chem. Phys., vol. 10, no. 4, pp. 2053-2061, February 2010. doi:10.5194/acp.2010.10.2053.
Dai, Kaoshan, Anthony Bergot, Chao Liang, Wei-Ning Xiang, and Zhenhua Huang, "Environmental issues associated with wind energy–A review", Renewable Energy, vol. 75, pp. 911-921, March 2015. doi:10.1016/j.renene.2014.10.074
Premalatha, M., Tasneem Abbasi, and Shahid A. Abbasi, "Wind energy: Increasing deployment, rising environmental concerns", Renewable and Sustainable Energy Rev., vol. 31, pp. 270-288, March 2014. doi:10.1016/j.rser.2013.11.019.
Anup, K. C., Jonathan Whale, and Tania Urmee, "Urban wind conditions and small wind turbines in the built environment: A review", Renewable energy, vol. 131, pp. 268-283, February 2019. doi:10.1016/j.renene.2018.07.050.
Chong, W. T., A. Fazlizan, S. C. Poh, K. C. Pan, and H. W. Ping, "Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application", Energy Build.,vol. 47, pp. 201-207, April 2012. doi:10.1016/j.enbuild.2011.11.041.
Li D, Wang S and Yuan P, “A review of micro wind turbines in the built environment”, Asia-Pacific Conference on Power and Energy Engineering, China, pp. 1-4, 28-31 March 2010. doi: 10.1109/APPEEC.2010.5448223
Ahmed, Noor A., and Michael Cameron, "The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future", Renewable and Sustainable Energy Rev., vol. 38, pp. 439-460, October 2014. doi:10.1016/j.rser.2014.06.004.
Bhutta et al., "Vertical axis wind turbine–A review of various configurations and design techniques", Renewable and Sustainable Energy Rev., vol. 4, no. 16, pp. 1926-1939, May 2012. doi:10.1016/j.rser.2011.12.004.
Kumar, Rakesh, Kaamran Raahemifar, and Alan S. Fung, "A critical review of vertical axis wind turbines for urban applications", Renewable and Sustainable Energy Rev., vol. 89, pp. 281-291, June 2018. doi:10.1016/j.rser.2018.03.033.
Tjiu, Willy, Tjukup Marnoto, Sohif Mat, Mohd Hafidz Ruslan, and Kamaruzzaman Sopian, "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations", Renewable Energy, vol. 75, pp. 50-67, March 2015. doi:10.1016/j.renene.2014.09.038.
Peng, Y. X., Xu, Y. L., Zhan, S. and Shum, K. M., “High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements”, J. Wind Eng. Ind. Aerodyn., vol. 184, pp. 34-48, January 2019. doi:10.1016/j.jweia.2018.11.005
Du, L., Ingram, G., and Dominy, R. G., “Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H?Darrieus wind turbine self?starting and overall performance”, Energy Sci. Eng. , vol. 7, no. 6, pp. 2421-2436, August 2019. doi:10.1002/ese3.430
Ramlee, M. F., Fazlizan, A. and Mat, S., “Performance Evaluation of H-Type Darrieus Vertical Axis Wind Turbine with Different Turbine Solidity”, J. Comput. Theor. Nanosci., Vol. 17, Vol. 2-3, pp. 833-839, February 2020. doi:10.1166/jctn.2020.8726
Sagharichi, A., M. Zamani and Am Ghasemi, "Effect of solidity on the performance of variable-pitch vertical axis wind turbine", Energy, vol.161, pp.753-775, October 2018. doi:10.1016/j.energy.2018.07.160
Rezaeiha, Abdolrahim, Hamid Montazeri and Bert Blocken, "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades", Energy, vol. 165, pp. 1129-1148, December 2018. doi:10.1016/j.energy.2018.09.192
Maeda, T., Kamada, Y., Murata, J., Shimizu, K., Ogasawara, T., Nakai, A. and Kasuya, T., "Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)", Renewable Energy, vol. 96, pp. 928-939, October 2016. doi:10.1016/j.energy.2018.09.192
El-Samanoudy, M., A. A. E. Ghorab, and Sh. Z. Youssef, "Effect of some design parameters on the performance of a Giromill vertical axis wind turbine", Ain Shams Eng. J., vol. 1, no. 1, pp. 85-95. doi:10.1016/j.asej.2010.09.012.
Castelli, M. Raciti, Stefano De Betta, and Ernesto Benini, "Effect of blade number on a straight-bladed vertical-axis Darreius wind turbine", World Academy Sci., Eng. Technol., vol. 61, pp. 305-3011, January 2012. doi:10.5281/zenodo.1079974.
Maeda, Takao, Yasunari Kamada, Junsuke Murata, Kazuma Furukawa, and Masayuki Yamamoto, "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine", Energy, vol. 90, pp.784-795, October 2015. doi:10.1016/j.energy.2015.07.115.
Abu-El-Yazied, Taher G., Ahmad M. Ali, Mahdi S. Al-Ajmi, and Islam M. Hassan, "Effect of number of blades and blade chord length on the performance of Darrieus wind turbine", Am. J. Mech. Eng. Autom., vol. 2, No. 1, pp. 16-25, January 2015.
Kavade, Ramesh K., and Pravin M. Ghanegaonkar. "Design and analysis of vertical axis wind turbine for household application", J. of Clean Energy Technol., vol. 5, no. 5, pp. 353-358. September 2017. doi: 10.18178/jocet.2017.5.5.397.
Abid, M., K. S. Karimov, H. A. Wajid, F. Farooq, H. Ahmed, and O. H. Khan, "Design, development and testing of a combined Savonius and Darrieus vertical axis wind turbine", Iran. J. Energy Environ., vol. 6, no. 1, pp. 1-4. December 2014. doi:10.5829/idosi.ijee.2015.06.01.02.
Lee, Kung-Yen, Shao-Hua Tsao, Chieh-Wen Tzeng, and Huei-Jeng Lin, "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building", Appl. Energy, vol. 209, pp. 383-391, January 2018. doi:10.1016/j.apenergy.2017.08.185.
Hameed, M. Saqib, and S. Kamran Afaq., "Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques," Ocean Eng., vol.57, pp.248-255, January 2013. doi:10.1016/j.oceaneng.2012.09.007.
Abdalrahman, G., Melek, W., and Lien, F. S., "Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)", Renewable Energy, vol. 114, pp. 1353-1362, December 2017. doi:10.1016/j.renene.2017.07.068.
Ahmadi-Baloutaki, M., Carriveau, R., and Ting, D. S., “Straight-bladed vertical axis wind turbine rotor design guide based on aerodynamic performance and loading analysis”, Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 228, no.7, pp. 742-759, June 9, 2014. doi:10.1177/0957650914538631.
Howell, Robert, Ning Qin, Jonathan Edwards, and Naveed Durrani, "Wind tunnel and numerical study of a small vertical axis wind turbine", Renewable energy, vol. 35, no. 2, pp. 412-422, February 2010. doi:10.1016/j.renene.2009.07.025.
Sandia National Laboratory Energy Report, Available at: https://www.osti.gov/servlets/purl/6548367/, accessed February 2022.
Claessens MC, “The design and testing of airfoils for application in small vertical axis wind turbines,” Master Thesis, Delft University of Technology, Delft, Netherlands, 2006.
Mohamed, M. H, "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes", Energy, vol.47, no.1, pp.522-530, November 2012. doi:10.1016/j.energy.2012.08.044.
Alnasir Z and Kazerani M, “Performance comparison of standalone SCIG and PMSG-based wind energy conversion systems” , 27th Canadian Conference on Electrical and Computer Engineering, Toronto, Canada, pp. 1-8. 4-7 May 2014. doi: 10.1109/CCECE.2014.6900923.
Orlando, Natalia Angela, Marco Liserre, Rosa Anna Mastromauro, and Antonio Dell'Aquila. "A survey of control issues in PMSG-based small wind-turbine systems." IEEE Trans. Ind. Inf., vol.9, no.3, pp.1211-1221, July 2013. doi: 10.1109/TII.2013.2272888.
Harrouz A, Colak I and Kayisli K, “Control of a small wind turbine system application”, International Conference on Renewable Energy Research and Applications, Birmingham, United Kingdom, pp. 1128-1133. 4-7 May 2014. doi:10.1109/CCECE.2014.6900923.
DOI (PDF): https://doi.org/10.20508/ijrer.v13i1.12839.g8712
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4