Maximum Power Point Tracking of Photovoltaic Energy Systems Based on Multidirectional Search Optimization Algorithm

Ruben Zieba Falama, Sundet Gamzat, Hamadou Bakari, Abdouramani Dadjé, Virgil Dumbrava, Saida Makloufi, Fridolin Tchangnwa

Abstract


This paper presents a method to track the maximum power point (MPP) of photovoltaic systems. This method is based on the Multidirectional Search optimization algorithm (MDS). The method has been implemented by creating a code using MATLAB software. The command of the PV system is based on a voltage mode control using a PID controller, and the output optimized voltage of the PV generator by the MDS algorithm is used as reference voltage. The PV system has been modeled in MATLAB/Simulink to test the performance of the proposed method in tracking the maximum power point. A comparative study has been done in one side between the proposed MDS method and the Perturb and Observe method, and in another side between the MDS method and the Incremental Conductance method.  The obtained results prove that the MDS method is more rapid and stable than Perturb and Observe and Incremental Conductance techniques regarding the tracking of the maximum power point.

 

https://dorl.net/dor/20.1001.1.13090127.2021.11.2.5.4

 


Full Text:

PDF

References


J.J. Nedumgatt, K.B. Jayakrishnan, S. Umashankar, D. Vijayakumar, D.P. Kothari, “Perturb and observe MPPT algorithm for solar PV systems-modeling and simulation”, In 2011 Annual IEEE India Conference, pp. 1-6, December 2011.

J. Gosumbonggot, “Maximum power point tracking method using perturb and observe algorithm for small scale DC voltage converter”, Procedia Computer Science, vol. 86, pp. 421-424, 2016.

J. AHMED, Z. SALAM, “An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency”, Applied Energy Vol. 150, pp. 97-108, 2015.

ABDEL-SALAM M, MT. L-MOHANDES, M. GODA, “An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels”, Solar Energy vol. 171, pp. 547-561, 2018.

F. Li, M. Alshareef, Z. Lin, W. Jiang, "A modified MPPT algorithm with integrated active power control for PV-battery systems.", 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2016.

A. Belkaid, I. Colak, K. Kayisli, R. Bayindir, "Design and implementation of a cuk converter controlled by a direct duty cycle INC-MPPT in PV battery system.", International Journal of Smart Grid-ijSmartGrid, vol 3, pp. 19-25, 2019.

K.S. TEY, S. MEKHILEF, “Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level”, Solar Energy, vol. 101, pp. 333-342, 2014.

S. Gautam, D. B. Raut, P. Neupane, D. P. Ghale, R. Dhakal, "Maximum power point tracker with solar prioritizer in photovoltaic application.", 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2016.

C. H. Lin, C. H. Huang, Y. C. Du, J. L. Chen, “Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method”, Appl. Energy, vol. 88, pp. 4840–4847, 2011.

H. Malek, Y. Chen, “Fractional order extremum seeking control: performance and stability analysis”, IEEE/ASME Trans. Mechatron., vol. 21, pp. 1620–1628, 2016.

C. Yin, Y. Chen, B. Stark, S. Ming Zhong, “Extremum seeking control with fractional-order switching technique design for maximum power point tracking in photovoltaic systems. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 5629–5634, 2015.

B. S. Raju, K.V.S. Babu, S. G. Azam, “Fractional order PID control for solar PV and battery storage systems using three-level NPC inverter”, Int. J. Sci. Eng. Technol. Res., vol. 4, pp. 8672–8681, 2015.

H. Ramadan, “Optimal fractional order PI control applicability for enhanced dynamic behavior of on-grid solar PV systems”, Int. J. Hydrog. Energy, vol. 42, pp. 4017–4031, 2017.

E. Sahin, M. S. Ayas, I. H. Altas, “A PSO optimized fractional-order PID controller for a PV system with DC-DC boost converter”, In: 2014 16th International Power Electronics and Motion Control Conference and Exposition, pp. 477–481, 2014.

S. Tang, Y. Sun, Y. Chen, Y. Zhao, Y. Yang, W. Szeto, “An enhanced MPPT method combining fractional-order and fuzzy logic control. IEEE J. Photovoltaics, vol. 7, 640–650, 2017.

S. Hadji, J.P. Gaubert, F. Krim, “Real-time genetic algorithms-based mppt: Study and comparison (theoretical an experimental) with conventional methods, Energies, pp. 11:459, 2018.

B. Nagarani, N. M. Jothiswaroopan, “Performance enhancement of photovoltaic system using genetic algorithm- based maximum power point tracking” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 27, pp. 3015-3025, 2019.

Y. Shaiek , M. B. Smida, A. Sakly, M. F. Mimouni, “Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators”, Sol Energy, vol. 90, pp. 107–22, 2013.

N. A. Windarko, A. Tjahjono, D. O. Anggriawan, M. H. Purnomo, "Maximum power point tracking of photovoltaic system using adaptive modified firefly algorithm," 2015 International Electronics Symposium (IES), Surabaya, Indonesia, pp. 31-35, 2015.

A. Mellit, S. Salam, S. Kalogirou, “Artificial neural network-based model for estimating the produced power of a photovoltaic module”, Renew Energy, vol. 60, pp. 71–78, 2013.

S. Messalti, A. Harrag, A. Loukriz, “A new neural networks mppt controller for pv systems. In: Proceedings of the renewable energy congress (IREC), 6th international, pp. 1–6, 2015.

M. Miyatake, M. veerachary, F. Toriumi, N. Fujii, H. Ko, “Maximum power point tracking of multiple photovoltaic arrays: a pso approach”, IEEE Trans Aerosp Electron Syst, vol. 47, pp. 367–80, 2011.

K. Ishaque, Z. Salam, M. Amjad, S. Mekhilef, “An improved particle swarm optimization (pso) based mppt for pv with reduced steady-state oscillation”, IEEE Trans Power Electron, vol. 27, pp. 3627–38, 2012.

A.I. Nusaif, A.L. Mahmood. "MPPT Algorithms (PSO, FA, and MFA) for PV System Under Partial Shading Condition, Case Study: BTS in Algazalia, Baghdad." International Journal of Smart Grid-ijSmartGrid, vol. 4, pp. 100-110, 2020.

M. I. Mosaad, “Maximum Power Point Tracking of PV system Based Cuckoo Search Algorithm; review and comparison”, Energy Procedia, vol. 162, pp. 117–126, 2019.

A. Ndiaye, M. Faye. "Experimental Validation of PSO and Neuro-Fuzzy Soft-Computing Methods for Power Optimization of PV installations."2020 8th International Conference on Smart Grid (icSmartGrid). IEEE, 2020.

A. El Khateb, N. Abd Rahim, J. Selvaraj, M. Uddin, “Fuzzy-logic-controller-based sepic converter for maximum power point tracking”, IEEE Trans Ind Appl, vol. 50, 2349–58, 2014.

K. Y. Chou, S. T. Yang, Y. P. Chen, “Maximum Power Point Tracking of Photovoltaic System Based on Reinforcement Learning”, Sensors, vol. 19, pp. 5054, 2019.

J. C. Camilo, T. Guedes, D. A. Fernandes, J. D. Melo, F. F. Costa, A. J. Sguarezi Filho, “A maximum power point tracking for photovoltaic systems based on Monod equation”, Renewable Energy, vol. 130, pp. 428-438, 2019.

M. I. Mosaad, M. O. abed el-Raouf, M. A. Al-Ahmar, F. A. Banakher,

“Maximum Power Point Tracking of PV system Based Cuckoo Search Algorithm; review and comparison”, Energy Procedia, vol. 162, pp. 117–126, 2019.

R. B. A. Koad, A. F. Zobaa, A. El-Shahat, “A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems”, IEEE Transactions on Sustainable Energy, vol. 8, p. 468-476, 2016.

J. Ramos-Hernanz, I. Uriarte, J. M. Lopez-Guede, U. Fernandez-Gamiz, A. Mesanza, E. Zulueta, “Temperature based maximum power point tracking for photovoltaic modules”, Scientific Reports, vol. 10, pp. 12476, 2020.

R. M. Lewis, V. Torczon, M. W. Trosset, "Direct search methods: then and now", Journal of computational and Applied Mathematics, vol. 124, pp. 191-207, 2000.

V. Torczon, “Multidirectional Search: A direct search algorithm for parallel machines. Ph.D. thesis, Rice University, Houston, TX, 1989.

K.C. Kong, M.B. Mamat, M. Ibrahim, A. Muzathik, “New Approach on Mathematical Modeling of Photovoltaic Solar Panel, Applied Mathematical Sciences, vol. 6, pp. 381– 401, 2012.

F.R. Zieba, A. Dadjé, N. Djongyang, S.Y. Doka, “A new analytical modeling method for Photovoltaic solar cells based on derivative power function. J Fundam Appl Sci., vol. 8, pp. 426-437, 2016.

D. Bonkoungou, T. Guingane, E. Korsaga, S. Tassembedo, Z. Koalaga, F. Zougmore, A. Darga, "Measurements and analysis of the dark IVT characteristics of a photovoltaic cell: KX0B22-12X1F." 2020 8th International Conference on Smart Grid (icSmartGrid). IEEE, 2020.

D. Chan, J. Phang, “Analytical methods for the extraction of solar-cell single-and double-diode model parameters from I-V characteristics”, IEEE Transactions on Electron Devices vol. 34, pp. 286–293, 1987.

D.K. Schroder, Semiconductor Material and Device Characterization. John Willey & Sons, New York, NY, USA, 1998.

Q. Jia, W.A. Anderson, E. Liu, S. Zhang, “A novel approach for evaluating the series resistance of solar cells. Solar Cells vol. 25, pp. 311–318, 1988.

M. Bashahuand, A. Habyarimana, “Review and test of methods for determination of the solar cell series resistance, Renewable Energy, vol. 6, pp. 129–138, 1995.

A.M. Humada, M. Hojabri, S. Mekhilef, H.M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review”, Renewable and Sustainable Energy Reviews, vol. 56, pp. 494-509, 2016.

R. Chenni, M. Makhlouf, T. Kerbache, A. Bouzid, “A detailed modeling method for photovoltaic cells”, Energy, vol. 32, pp. 1724-1730, 2007.

D.M. Bortz, C.T. Kelley, “The simplex gradient and noisy optimization problems”, In Computational Methods for Optimal Design and Control, Birkhauser, Boston, pp. 77–90, 1998.

https://www.bluepacificsolar.com/picture_library/tech-specs/ET-M572185B.pdf (Last accessed on 03-05-2021)




DOI (PDF): https://doi.org/10.20508/ijrer.v11i2.11680.g8176

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4