Suitability and evaluating wind speed probability distribution models in a hot climate: Djibouti case study
Abstract
Keywords
Full Text:
PDFReferences
Annuaire Statistique EDAM-IS. Direction de la Statistique et des Etudes démographiques. Djibouti, 2017.
H. D. Daha, G. Léon, A. A. Mohamed, M. Christophe, “Impact of tropical desert maritime climate on the performance of a PV grid-connected power plantâ€, Renew. Energy, vol. 125, pp. 729-737, 2018.
H. D. Elmi, G. Axelsson, “Geothermal resources in the Asal region, republic of Djibouti: an update with emphasis on reservoir engineering studiesâ€, Geothermics, vol. 39, pp. 220-227, 2010.
M. R. Islam, M. R. Saidur, N. A. Rahim, “Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution functionâ€, Energy, vol. 36, pp.985-92, 2011.
P. A. Costa Rocha, R. C.de Sousa, C. F. de Andrade, M. E. V. da Silva, “Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazilâ€, Appl. Energy, vol. 89, pp. 385-400, 2012.
S. A. Akdag, A. A. Dinler, “New method to estimate Weibull parameters for wind energy applicationsâ€, Energy Convers. Manag., vol. 50, pp. 1761-6, 2009.
K. Mohammadi, O. Alavi, A. N. Goudarzi, M. Jalilvand, “Assessing different parameters estimation methods of Weibull distribution to compute wind power densityâ€, Energy Convers. Manag., vol.108, pp. 322–335, 2016.
H. Saleh, E. A. Aly, S. Abdel-Hady, “Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egyptâ€, Energy, vol. 44, pp. 710–9, 2012.
H. Jiang, J. Wang, J. Wu, W. Geng, “Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regionsâ€, Renew. Sustain. Energy Rev., vol. 69, pp. 1199–217, 2017.
D. Kang, K. Ko, J. Huh, “Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Koreaâ€, Energies, vol. 11, pp. 356-375, 2018.
M. C. Peel, B. L. Finlayson, T. A. Mcmahon, “Updated world map of the Köppen-Geiger climate classificationâ€, Hydrol. Earth Syst. Sci., vol. 11, pp.1633-1644, 2007.
D. Dunham,“Building for the maritime desert: climate, construction, and energy in Djiboutiâ€, Arlington, Va. 1815 N. Lynn St., Suite 200, Arlington 22209, Volunteers in Technical Assistance, 1983.
B. Safari, J. Gasore, “A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwandaâ€, Renew. Energy, vol. 35, pp. 2874-2880, 2010.
M. Li, X. Li, “MEP-type distribution function: a better alternative to Weibull function for wind speed distributionsâ€, Renew. Energy, vol. 30, pp. 1221–40, 2005.
A. N. Celik, “A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkeyâ€, Renew. Energy, vol. 29, pp. 593-604, 2003.
A. Celik, A. Makkawi, T. Muneer, “Critical evaluation of wind speed frequency distribution functionsâ€, J. Renew. Sustain. Energy, vol. 2, pp. 013102, 2010.
T. P. Chang, “Performance comparison of six numerical methods in estimating Weibull parameters for wind energy applicationâ€, Appl. Energy, vol. 88, pp. 272–82, 2011.
G. Florence, “A Comparison of Shape and Scale Estimators of the Two-Parameter Weibull Distributionâ€, J. of Modern Appl. Statist. Methods, vol. 13, pp. 23-35, 2014.
W. Weibull, “A Statistical Distribution Function of Wide Applicabilityâ€, J. appl. Mech., vol. 18, pp. 293-7, 1951.
P. K. Kumar, G. Satyanarayana, “Statistical scrutiny of Weibull parameters for wind energy potential appraisal in the area of northern Ethiopiaâ€, Renewables: Wind, Water, and Solar, pp. 2-14, 2015.
A. K. Azad, M. G. Rasul, T. Yusaf, “Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applicationâ€, Energies, vol. 7, pp. 3056–85, 2014.
P. K. Chaurasiya, S. Ahmed, V. Warudkar, “Study of different estimation methods of Weibull distribution to determine wind power density using ground based Doppler SODAR instrumentâ€, Alexandria Eng. Journal, vol. 57, pp. 2299-2311, 2018.
S. Mathew, “Wind energy, fundamentals, resource analysis and economicsâ€, Netherlands: Springer-Verlag, Berlin, Heidelberg, 2016.
D. Kang, K. Ko, J. Huh, “Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Koreaâ€, Energies, vol. 11, pp. 356-375, 2018.
C. G. Justus, W. R. Hargraves, A. Mikhail, D. Graber, “Methods for estimating wind speed frequency distributionsâ€, J. Appl. Meteorol., vol. 17, pp. 350–3, 1978.
D. Rousu, “Weibull skewness and kurtosis as a function of the shape parameterâ€, Technometrics, vol. 15, pp. 927-930, 1973.
DOI (PDF): https://doi.org/10.20508/ijrer.v9i3.9749.g7749
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4