Progress in Major Thin-film Solar Cells: Growth Technologies, Layer Materials and Efficiencies
Abstract
Keywords
Full Text:
PDFReferences
A. Kowsar and S. F. U. Farhad, "High Efficiency Four Junction III-V Bismide Concentrator Solar Cell: Design, Theory, and Simulation," International Journal of Renewable Energy Research (IJRER), vol. 8, pp. 1762-1769, 2018.
(2018, Sept 22, 2018). Fraunhofer ISE: Photovoltaics Report Available: https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html
Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, "Synthesis and photovoltaic application of copper (I) sulfide nanocrystals," Nano letters, vol. 8, pp. 2551-2555, 2008.
L. Partain, C. Dean, J. Duisman, P. McLeod, T. Peterson, and R. Weiss, "Degradation of Cu/SUB x/S/CdS in hot, moist air: experiment and theory," in Conf. Rec. IEEE Photovoltaic Spec. Conf.;(United States), 1982.
P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buechelers, et al., "Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules," in Photovoltaic Specialists Conference (PVSC), Volume 2, 2012 IEEE 38th, 2012, pp. 1-9.
G. M. A., H. Yoshihiro, D. E. D., L. D. H., H.-E. Jochen, and H.-B. A. W.Y., "Solar cell efficiency tables (version 52)," Progress in Photovoltaics: Research and Applications, vol. 26, pp. 427-436, 2018.
O. Schultz, S. Glunz, and G. Willeke, "ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency," Progress in Photovoltaics: Research and Applications, vol. 12, pp. 553-558, 2004.
M. Grätzel, "Photoelectrochemical cells," nature, vol. 414, p. 338, 2001.
A. Hagfeldt and M. Grätzel, "Molecular photovoltaics," Accounts of Chemical Research, vol. 33, pp. 269-277, 2000.
M. Stuckelberger, R. Biron, N. Wyrsch, F.-J. Haug, and C. Ballif, "Review: Progress in solar cells from hydrogenated amorphous silicon," Renewable and Sustainable Energy Reviews, vol. 76, pp. 1497-1523, 2017.
J. Ramanujam and U. P. Singh, "Copper indium gallium selenide based solar cells–a review," Energy & Environmental Science, vol. 10, pp. 1306-1319, 2017.
X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, et al., "The current status and future prospects of kesterite solar cells: a brief review," Progress in Photovoltaics: Research and Applications, vol. 24, pp. 879-898, 2016.
S. Zhuk, A. Kushwaha, T. K. S. Wong, S. Masudy-Panah, A. Smirnov, and G. K. Dalapati, "Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance," Solar Energy Materials and Solar Cells, vol. 171, pp. 239-252, 2017/11/01/ 2017.
J.-H. Yang, W.-J. Yin, J.-S. Park, J. Ma, and S.-H. Wei, "Review on first-principles study of defect properties of CdTe as a solar cell absorber," Semiconductor Science and Technology, vol. 31, p. 083002, 2016.
J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, vol. 68, pp. 234-246, 2017/02/01/ 2017.
T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, vol. 70, pp. 1286-1297, 2017.
H. Sterling and R. Swann, "Chemical vapour deposition promoted by rf discharge," Solid-State Electronics, vol. 8, pp. 653-654, 1965.
W. Spear and P. Le Comber, "Substitutional doping of amorphous silicon," Solid state communications, vol. 17, pp. 1193-1196, 1975.
J. Poortmans and V. Arkhipov, Thin film solar cells: fabrication, characterization and applications vol. 5: John Wiley & Sons, 2006.
D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, pp. 671-673, 1976.
A. Kolodziej, C. Wronski, P. Krewniak, and S. Nowak, "Silicon thin film multijunction solar cells," OPTOELECTRONICS REVIEW, pp. 339-345, 2000.
D. Staebler and C. Wronski, "Reversible conductivity changes in dischargeâ€produced amorphous Si," Applied physics letters, vol. 31, pp. 292-294, 1977.
R. Mickelsen and W. Chen, "Polycrystalline thin-film CuInSe2 solar cells," in 16th Photovoltaic Specialists Conference, 1982, pp. 781-785.
Y. Tawada, H. Okamoto, and Y. Hamakawa, "aâ€SiC: H/aâ€Si: H heterojunction solar cell having more than 7.1% conversion efficiency," Applied Physics Letters, vol. 39, pp. 237-239, 1981.
R. Arya, A. Catalano, and R. Oswald, "Amorphous silicon pâ€iâ€n solar cells with graded interface," Applied physics letters, vol. 49, pp. 1089-1091, 1986.
J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, "Intrinsic microcrystalline silicon (/spl mu/c-Si: H)-a promising new thin film solar cell material," in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on, 1994, pp. 409-412.
K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, "Thin film Si solar cell fabricated at low temperature," Journal of Non-Crystalline Solids, vol. 266, pp. 1082-1087, 2000.
J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, et al., "Potential of amorphous and microcrystalline silicon solar cells," Thin Solid Films, vol. 451, pp. 518-524, 2004.
T. Matsui, A. Bidiville, K. Maejima, H. Sai, T. Koida, T. Suezaki, et al., "High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability," Applied Physics Letters, vol. 106, p. 053901, 2015.
H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo, S. Sugiyama, et al., "Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%," Applied Physics Letters, vol. 106, p. 213902, 2015.
E. Arushanov, L. Essaleh, J. Galibert, J. Leotin, and S. Askenazy, "Shubnikov-De Haas oscillations in n-CuInSe2," Physica B: Condensed Matter, vol. 184, pp. 229-231, 1993.
A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering: John Wiley & Sons, 2011.
M. Stuckelberger, R. Biron, N. Wyrsch, F.-J. Haug, and C. Ballif, "Progress in solar cells from hydrogenated amorphous silicon," Renewable and Sustainable Energy Reviews, vol. 76, pp. 1497-1523, 2017.
S. F. U. Farhad, N. I. Tanvir, S. Hossain, M. S. Bashar, M. Sultana, and N. Khatun, "Facile synthesis of oriented Zinc Oxide seed layer for the subsequent hydrothermal growth of Zinc Oxide Nanorods," Bangladesh J. Sci. Ind. Res., vol. 54, pp. xxx - xxx, 2018(In press).
D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Applied Physics Letters, vol. 89, p. 093103, 2006.
S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, "Opto-electronic properties of rough LP-CVD ZnO: B for use as TCO in thin-film silicon solar cells," Thin Solid Films, vol. 515, pp. 8558-8561, 2007.
S. R. Jadkar, J. V. Sali, S. T. Kshirsagar, and M. G. Takwale, "Narrow band gap, high photosensitivity a-SiGe:H films prepared by hot wire chemical vapor deposition (HW-CVD) method," Materials Letters, vol. 52, pp. 399-403, 2002/02/01/ 2002.
M. I. Kabir, S. A. Shahahmadi, V. Lim, S. Zaidi, K. Sopian, and N. Amin, "Amorphous silicon single-junction thin-film solar cell exceeding 10% efficiency by design optimization," International Journal of Photoenergy, vol. 2012, 2012.
R. Chittick, J. Alexander, and H. Sterling, "The preparation and properties of amorphous silicon," Journal of the Electrochemical Society, vol. 116, pp. 77-81, 1969.
W. Spear and P. Le Comber, "Substitutional doping of amorphous silicon," Solid state communications, vol. 88, pp. 1015-1018, 1993.
H. Ãguas, S. K. Ram, A. Araújo, D. Gaspar, A. Vicente, S. A. Filonovich, et al., "Silicon thin film solar cells on commercial tiles," Energy & Environmental Science, vol. 4, pp. 4620-4632, 2011.
H. Tanimoto, H. Arai, H. Mizubayashi, M. Yamanaka, and I. Sakata, "Light-induced hydrogen evolution from hydrogenated amorphous silicon: Hydrogen diffusion by formation of bond centered hydrogen," Journal of Applied Physics, vol. 115, p. 073503, 2014.
X. Deng and E. A. Schif, "Amorphous Silicon–based Solar Cells," in Handbook of Photovoltaic Science and Engineering, A. L. a. S. Hegedus, Ed., ed: John Wiley & Sons, Chichester, 2003, pp. 505 - 565.
U. Rau and H. W. Schock, "Cu (In, Ga) Se 2 solar cells," in Clean Electricity from Photovoltaics, ed: World Scientific, 2001, pp. 277-345.
J. Shay and J. Wernick, "Ternary chalcopyrite semiconductors: Growth, electronic properties and applications (Pergamon Press, Oxford, 1974)."
S. Wagner, J. Shay, P. Migliorato, and H. Kasper, "CuInSe2/CdS heterojunction photovoltaic detectors," Applied Physics Letters, vol. 25, pp. 434-435, 1974.
R. Mickelsen and W. Chen, "Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell," in 15th photovoltaic specialists conference, 1981, pp. 800-804.
J. Tuttle, M. Contreras, T. Gillespie, K. Ramanathan, A. Tennant, J. Keane, et al., "Accelerated publication 17.1% efficient Cu (In, Ga) Se2â€based thinâ€film solar cell," Progress in Photovoltaics: Research and Applications, vol. 3, pp. 235-238, 1995.
M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, et al., "Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thinâ€film solar cells," Progress in Photovoltaics: Research and applications, vol. 7, pp. 311-316, 1999.
I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, et al., "Characterization of 19.9%-efficient CIGS absorbers," in Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE, 2008, pp. 1-6.
T. Satoh, Y. Hashimoto, S.-i. Shimakawa, S. Hayashi, and T. Negami, "Cigs solar cells on flexible stainless steel substrates," in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, pp. 567-570.
R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, et al., "CIGS thin-film solar cells on steel substrates," Thin Solid Films, vol. 517, pp. 2415-2418, 2009.
C. Shi, Y. Sun, Q. He, F. Li, and J. Zhao, "Cu (In, Ga) Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers," Solar Energy Materials and Solar Cells, vol. 93, pp. 654-656, 2009.
B. M. BaÅŸol, V. K. Kapur, C. R. Leidholm, A. Halani, and K. Gledhill, "Flexible and light weight copper indium diselenide solar cells on polyimide substrates," Solar Energy Materials and Solar Cells, vol. 43, pp. 93-98, 1996.
G. M. Hanket, U. P. Singh, E. Eser, W. N. Shafarman, and R. W. Birkmire, "Pilot-scale manufacture of Cu (InGa) Se/sub 2/films on a flexible polymer substrate," in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, 2002, pp. 567-570.
H. Zachmann, S. Heinker, A. Braun, A. Mudryi, V. Gremenok, A. Ivaniukovich, et al., "Characterisation of Cu (In, Ga) Se2-based thin film solar cells on polyimide," Thin Solid Films, vol. 517, pp. 2209-2212, 2009.
B. M. BaÅŸol, V. K. Kapur, A. Halani, and C. Leidholm, "Copper indium diselenide thin film solar cells fabricated on flexible foil substrates," Solar Energy Materials and Solar Cells, vol. 29, pp. 163-173, 1993.
(2013, 24 Sept. 2018). Empa takes thin film solar cells to a new level, A new world record for solar cell efficiency Available: https://www.empa.ch/web/s604/weltrekord
L. Kazmerski, F. White, and G. Morgan, "Thinâ€film CuInSe2/CdS heterojunction solar cells," Applied Physics Letters, vol. 29, pp. 268-270, 1976.
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 42)," Progress in Photovoltaics: Research and Applications, vol. 5, pp. 827-837, 2013.
S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, et al., "CIGS absorbers and processes," Progress in Photovoltaics: Research and Applications, vol. 18, pp. 453-466, 2010.
(2011, 24 Sept, 2018). Nanosolar Achieves 17.1% Aperture Efficiency Through Printed CIGS Process Available: http://www.marketwired.com/press-release/nanosolar-achieves-171-aperture-efficiency-through-printed-cigs-process-1569273.htm
F. Pianezzi, A. Chirilă, P. Blösch, S. Seyrling, S. Buecheler, L. Kranz, et al., "Electronic properties of Cu (In, Ga) Se2 solar cells on stainless steel foils without diffusion barrier," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 253-259, 2012.
Y. H. Jyh-Lih Wu, Takuya Kato, Hiroki Sugimoto, Veronica Bermudez, "New World Record Efficiency up to 22.9% for Cu(In,Ga)(Se,S)2 Thin-Film Solar Cells ", 2018.
P. Jackson, R. Würz, U. Rau, J. Mattheis, M. Kurth, T. Schlötzer, et al., "High quality baseline for high efficiency, Cu (In1− x, Gax) Se2 solar cells," Progress in Photovoltaics: Research and Applications, vol. 15, pp. 507-519, 2007.
W. N. Shafarman and L. Stolt, "Cu (InGa) Se2 Solar Cells," Handbook of photovoltaic science and engineering, pp. 567-616, 2003.
P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., "New world record efficiency for Cu (In, Ga) Se2 thinâ€film solar cells beyond 20%," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 894-897, 2011.
A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, et al., "Highly efficient Cu (In, Ga) Se 2 solar cells grown on flexible polymer films," Nature materials, vol. 10, p. 857, 2011.
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, et al., "19• 9%â€efficient ZnO/CdS/CuInGaSe2 solar cell with 81• 2% fill factor," Progress in Photovoltaics: Research and applications, vol. 16, pp. 235-239, 2008.
N. G. Dhere, "Toward GW/year of CIGS production within the next decade," Solar Energy Materials and Solar Cells, vol. 91, pp. 1376-1382, 2007.
D. Hariskos, S. Spiering, and M. Powalla, "Buffer layers in Cu (In, Ga) Se2 solar cells and modules," Thin Solid Films, vol. 480, pp. 99-109, 2005.
S. F. U. Farhad, "Copper Oxide Thin Films grown by Pulsed Laser Deposition for Photovoltaic Applications," PhD, School of Physics, University of Bristol, UK, British Library EThOS, January 2016.
K. Kushiya, Y. Tanaka, H. Hakuma, Y. Goushi, S. Kijima, T. Aramoto, et al., "Interface control to enhance the fill factor over 0.70 in a large-area CIS-based thin-film PV technology," Thin Solid Films, vol. 517, pp. 2108-2110, 2009.
R. I. Chowdhury, M. A. Hossen, G. Mustafa, S. Hussain, S. N. Rahman, S. F. U. Farhad, et al., "Characterization of Chemically Deposited Cadmium Sulfide Thin Films," International Journal of Modern Physics B, vol. 24, pp. 5901-5911, 2010.
V. Fthenakis and P. Moskowitz, "Thinâ€film Photovoltaic Cells: Health and Environmental Issues in their Manufacture Use and Disposal," Progress in Photovoltaics: Research and Applications, vol. 3, pp. 295-306, 1995.
R. Nitsche, D. Sargent, and P. Wild, "Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport," Journal of Crystal Growth, vol. 1, pp. 52-53, 1967.
K. Ito and T. Nakazawa, "Electrical and optical properties of stannite-type quaternary semiconductor thin films," Japanese Journal of Applied Physics, vol. 27, p. 2094, 1988.
H. Katagiri, M. Nishimura, T. Onozawa, S. Maruyama, M. Fujita, T. Sega, et al., "Rare-metal free thin film solar cell," in Power Conversion Conference-Nagaoka 1997., Proceedings of the, 1997, pp. 1003-1006.
H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, "Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of Eî—¸ B evaporated precursors," Solar Energy Materials and Solar Cells, vol. 49, pp. 407-414, 1997.
T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, and H. Schock, "Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films," in Proceedings of the 14th European Conference of Photovoltaic Science and Engineering and Exhibition, 1997.
K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, et al., "Cu2ZnSnS4-type thin film solar cells using abundant materials," Thin solid films, vol. 515, pp. 5997-5999, 2007.
H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, et al., "Development of CZTS-based thin film solar cells," Thin Solid Films, vol. 517, pp. 2455-2460, 2009.
T. K. Todorov, K. B. Reuter, and D. B. Mitzi, "Highâ€efficiency solar cell with earthâ€abundant liquidâ€processed absorber," Advanced materials, vol. 22, pp. E156-E159, 2010.
T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, et al., "Beyond 11% efficiency: characteristics of stateâ€ofâ€theâ€art Cu2ZnSn (S, Se) 4 solar cells," Advanced Energy Materials, vol. 3, pp. 34-38, 2013.
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, et al., "Device characteristics of CZTSSe thinâ€film solar cells with 12.6% efficiency," Advanced Energy Materials, vol. 4, p. 1301465, 2014.
D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, "The path towards a high-performance solution-processed kesterite solar cell," Solar Energy Materials and Solar Cells, vol. 95, pp. 1421-1436, 2011/06/01/ 2011.
X. Lu, Z. Zhuang, Q. Peng, and Y. Li, "Wurtzite Cu 2 ZnSnS 4 nanocrystals: a novel quaternary semiconductor," Chemical Communications, vol. 47, pp. 3141-3143, 2011.
J. Paier, R. Asahi, A. Nagoya, and G. Kresse, "Cu 2 ZnSnS 4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study," Physical Review B, vol. 79, p. 115126, 2009.
S. Chen, X. Gong, A. Walsh, and S.-H. Wei, "Crystal and electronic band structure of Cu 2 ZnSn X 4 (X= S and Se) photovoltaic absorbers: First-principles insights," Applied Physics Letters, vol. 94, p. 041903, 2009.
A. Wangperawong, J. King, S. Herron, B. Tran, K. Pangan-Okimoto, and S. Bent, "Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers," Thin Solid Films, vol. 519, pp. 2488-2492, 2011.
H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, "Development of thin film solar cell based on Cu2ZnSnS4 thin films," Solar Energy Materials and Solar Cells, vol. 65, pp. 141-148, 2001.
M. Jiang and X. Yan, "Cu2ZnSnS4 thin film solar cells: present status and future prospects," in Solar Cells-Research and Application Perspectives, ed: InTech, 2013.
X. Wang, Z. Sun, C. Shao, D. M. Boye, and J. Zhao, "A facile and general approach to polynary semiconductor nanocrystals via a modified two-phase method," Nanotechnology, vol. 22, p. 245605, 2011.
S. Akhanda, R. Matin, M. Bashar, A. Kowsar, and M. Rahaman, "Experimental Study on Structural, Optical and Electrical Properties of Chemical Bath Deposited CdZnS Thin Films. J Fundam Renewable Energy Appl 7: 222. doi: 10.4172/20904541.1000222 Volume 7• Issue 1• 1000222 Page 2 of 3 J Fundam Renewable Energy Appl, an open access journal ISSN: 2090-4541 Figure 1: XRD images of CdZnS thin films," ed: Figure, 2017.
S. Akhanda, R. Matin, M. Bashar, M. Sultana, A. Kowsar, M. Rahaman, et al., "Effect of annealing atmosphere on structural and optical properties of CZTS thin films prepared by spin-coating," Bangladesh Journal of Scientific and Industrial Research, vol. 53, pp. 13-20, 2018.
S. K. Swami, A. Kumar, and V. Dutta, "Deposition of kesterite Cu2ZnSnS4 (CZTS) thin films by spin coating technique for solar cell application," Energy Procedia, vol. 33, pp. 198-202, 2013.
S. R. Kodigala, Thin film solar cells from earth abundant materials: growth and characterization of Cu2 (ZnSn)(SSe) 4 thin films and their solar cells: Newnes, 2013.
H. Katagiri, N. Ishigaki, T. Ishida, and K. Saito, "Characterization of Cu2ZnSnS4 thin films prepared by vapor phase sulfurization," Japanese Journal of Applied Physics, vol. 40, p. 500, 2001.
J. Leitão, N. M. Santos, P. Fernandes, P. Salomé, A. da Cunha, J. González, et al., "Study of optical and structural properties of Cu2ZnSnS4 thin films," Thin Solid Films, vol. 519, pp. 7390-7393, 2011.
M. Cao and Y. Shen, "A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles," Journal of Crystal Growth, vol. 318, pp. 1117-1120, 2011.
H. Yoo and J. Kim, "Comparative study of Cu2ZnSnS4 film growth," Solar Energy Materials and Solar Cells, vol. 95, pp. 239-244, 2011.
B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, et al., "Cu2ZnSnS4 thin film solar cells by fast coevaporation," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 93-96, 2011.
K. Moriya, K. Tanaka, and H. Uchiki, "Cu2ZnSnS4 thin films annealed in H2S atmosphere for solar cell absorber prepared by pulsed laser deposition," Japanese Journal of Applied Physics, vol. 47, p. 602, 2008.
K. Woo, Y. Kim, and J. Moon, "A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells," Energy & Environmental Science, vol. 5, pp. 5340-5345, 2012.
J. Margottet, "Researches on sulphur, selenium, and tellurium alloys," in Annales Scientifiques de l'École Normale Superieure, 1879, pp. 247-298.
D. A. Jenny and R. H. Bube, "Semiconducting cadmium telluride," Physical Review, vol. 96, p. 1190, 1954.
J. J. Loferski, "Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion," Journal of Applied Physics, vol. 27, pp. 777-784, 1956.
P. Rappaport, "The photovoltaic effect and its utilization," Solar Energy, vol. 3, pp. 8-18, 1959.
D. Bonnet and H. Rabenhorst, "New results on the development of a thin-film p-CdTe-n-CdS heterojunction solar cell," in Photovoltaic Specialists Conference, 9 th, Silver Spring, Md, 1972, pp. 129-132.
K. Mitchell, A. L. Fahrenbruch, and R. H. Bube, "Photovoltaic determination of opticalâ€absorption coefficient in CdTe," Journal of Applied Physics, vol. 48, pp. 829-830, 1977.
J. Mimila-Arroyo, Y. Marfaing, G. Cohen-Solal, and R. Triboulet, "Electric and photovoltaic properties of CdTe pn homojunctions," Solar energy materials, vol. 1, pp. 171-180, 1979.
G. Cohen-Solal, D. Lincot, and M. Barbe, "High efficiency shallow p+ nn+ cadmium telluride solar cells," in Fourth EC Photovoltaic Solar Energy Conference, 1982, pp. 621-626.
J. Britt and C. Ferekides, "Thinâ€film CdS/CdTe solar cell with 15.8% efficiency," Applied Physics Letters, vol. 62, pp. 2851-2852, 1993.
X. Wu, J. Keane, R. Dhere, C. DeHart, D. Albin, A. Duda, et al., "16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell," in Proceedings of the 17th European photovoltaic solar energy conference, 2001.
(2009, 25 Sept). Flexible CdTe thin-film cells reach 12.4% efficiency. Available: https://www.pv-tech.org/news/flexible_cdte_thin-film_cells_reach_12.4_efficiency
(2011, 25 Sept). First Solar reaches new world record CdTe cell efficiency of 17.3%. Available: https://www.solarserver.com/solar-magazine/solar-news/archive-2011/kw30/first-solar-reaches-new-world-record-cdte-cell-efficiency-of-173.html
A. Morales-Acevedo, "Design of Very thin CdTe Solar Cells with High Efficiency," Energy Procedia, vol. 57, pp. 3051-3057, 2014/01/01/ 2014.
(2016, 26 Sept). First Solar Hits Record 22.1% Conversion Efficiency for CdTe Solar Cell Available: https://www.greentechmedia.com/articles/read/first-solar-hits-record-22-1-conversion-efficiency-for-cdte-solar-cell
(2016, 26 Sept). First Solar Achieves Yet Another Cell Conversion Efficiency World Record. Available: http://investor.firstsolar.com/news-releases/news-release-details/first-solar-achieves-yet-another-cell-conversion-efficiency
Y. Yan, M. Al-Jassim, K. Jones, S.-H. Wei, and S. Zhang, "Observation and first-principles calculation of buried wurtzite phases in zinc-blende CdTe thin films," Applied Physics Letters, vol. 77, pp. 1461-1463, 2000.
N. R. Paudel, M. Young, P. J. Roland, R. J. Ellingson, Y. Yan, and A. D. Compaan, "Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells," Journal of Applied Physics, vol. 115, p. 064502, 2014.
W. Rance, J. Burst, D. Meysing, C. Wolden, M. Reese, T. Gessert, et al., "14%-efficient flexible CdTe solar cells on ultra-thin glass substrates," Applied Physics Letters, vol. 104, p. 143903, 2014.
N. Romeo, A. Bosio, R. Tedeschi, and V. Canevari, "Growth of polycrystalline CdS and CdTe thin layers for high efficiency thin film solar cells," Materials Chemistry and Physics, vol. 66, pp. 201-206, 2000.
N. Romeo, A. Bosio, V. Canevari, and A. Podesta, "Recent progress on CdTe/CdS thin film solar cells," Solar Energy, vol. 77, pp. 795-801, 2004.
K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, "Stability of CdTe/CdS thin-film solar cells," Solar Energy Materials and Solar Cells, vol. 62, pp. 295-325, 2000.
K. H. Wedepohl, "The composition of the continental crust," Geochimica et cosmochimica Acta, vol. 59, pp. 1217-1232, 1995.
C. Candelise, M. Winskel, and R. Gross, "Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 816-831, 2012.
J. Skarp, Y. Koskinen, S. Lindfors, A. Rautiainen, and T. Suntola, "Development and evaluation of CdS/CdTe thin film PV cells," in Tenth EC Photovoltaic Solar Energy Conference, 1991, pp. 567-569.
J. Moser, "Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung," Monatshefte für Chemie/Chemical Monthly, vol. 8, pp. 373-373, 1887.
H. Gerischer, M. Michel-Beyerle, F. Rebentrost, and H. Tributsch, "Sensitization of charge injection into semiconductors with large band gap," Electrochimica Acta, vol. 13, pp. 1509-1515, 1968.
H. Tributsch, "Reaction of excited chlorophyll molecules at electrodes and in photosynthesis," Photochemistry and Photobiology, vol. 16, pp. 261-269, 1972.
(2018, 2 October). Dye-sensitized solar cell. Available: https://en.wikipedia.org/wiki/Dye-sensitized_solar_cell#cite_note-3
B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, p. 737, 1991.
P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, ed: World Scientific, 2011, pp. 88-93.
N. R.-I. a. M. Grätzel. (2006, 29 Sept). Solid hybrid dye-sensitized solar cells new organic materials, charge recombination and stability Available: https://infoscience.epfl.ch/record/64348
M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, and C. A. Grimes, "Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes," Nanotechnology, vol. 17, p. 1446, 2006.
W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, et al., "Highly efficient porphyrin sensitizers for dye-sensitized solar cells," The Journal of Physical Chemistry C, vol. 111, pp. 11760-11762, 2007.
Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, et al., "Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films," The Journal of Physical Chemistry B, vol. 109, pp. 15397-15409, 2005.
Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, et al., "High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts," Nature materials, vol. 7, p. 626, 2008.
A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency," science, vol. 334, pp. 629-634, 2011.
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, p. 316, 2013.
M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, 2003.
(2012, 2 October). Dyeing for a place in the sun. Available: https://www.chemistryworld.com/feature/dyeing-for-a-place-in-the-sun/4992.article
S.-L. Li, K.-J. Jiang, K.-F. Shao, and L.-M. Yang, "Novel organic dyes for efficient dye-sensitized solar cells," Chemical Communications, pp. 2792-2794, 2006.
L. Schmidtâ€Mende, U. Bach, R. Humphryâ€Baker, T. Horiuchi, H. Miura, S. Ito, et al., "Organic dye for highly efficient solidâ€state dyeâ€sensitized solar cells," Advanced Materials, vol. 17, pp. 813-815, 2005.
H. Zhou, L. Wu, Y. Gao, and T. Ma, "Dye-sensitized solar cells using 20 natural dyes as sensitizers," Journal of Photochemistry and Photobiology A: Chemistry, vol. 219, pp. 188-194, 2011.
Q. Shen, D. Arae, and T. Toyoda, "Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 75-80, 2004.
J. D. Roy-Mayhew and I. A. Aksay, "Graphene materials and their use in dye-sensitized solar cells," Chemical reviews, vol. 114, pp. 6323-6348, 2014.
J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, et al., "Progress on the electrolytes for dye-sensitized solar cells," Pure and Applied Chemistry, vol. 80, pp. 2241-2258, 2008.
B. Lee, J. He, R. P. Chang, and M. G. Kanatzidis, "All-solid-state dye-sensitized solar cells with high efficiency," Nature, vol. 485, p. 486, 2012.
B. O'Regan and D. T. Schwartz, "Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL ‘NCS/CuSCN: initiation and potential mechanisms," Chemistry of Materials, vol. 10, pp. 1501-1509, 1998.
A. Konno, G. Kumara, R. Hata, and K. Tennakone, "Effect of imidazolium salts on the performance of solid-state dye-sensitized photovoltaic cell using copper iodide as a hole collector," Electrochemistry, vol. 70, pp. 432-434, 2002.
S. Wu, S. Yuan, L. Shi, Y. Zhao, and J. Fang, "Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals," Journal of colloid and interface science, vol. 346, pp. 12-16, 2010.
S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, et al., "Fabrication of screenâ€printing pastes from TiO2 powders for dyeâ€sensitised solar cells," Progress in photovoltaics: research and applications, vol. 15, pp. 603-612, 2007.
Y. Zhang, L. Wu, E. Xie, H. Duan, W. Han, and J. Zhao, "A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells," Journal of Power Sources, vol. 189, pp. 1256-1263, 2009.
T. Miyasaka and Y. Kijitori, "Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers," Journal of the Electrochemical Society, vol. 151, pp. A1767-A1773, 2004.
E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, S. Lambert, et al., "Nanostructured hybrid solar cells based on self-assembled mesoporous titania thin films," Chemistry of materials, vol. 18, pp. 6152-6156, 2006.
N. Ikeda and T. Miyasaka, "Plastic and solid-state dye-sensitized solar cells incorporating single-wall carbon nanotubes," Chemistry letters, vol. 36, pp. 466-467, 2007.
S. Ito, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode," Chemical Communications, pp. 4004-4006, 2006.
M. I. A Kowsar, KR Mehzabeen, ZH Mahmood, "Study on the Efficiency of the GaInP2/GaAs/Ge Multijunction Solar Cell," in Proc. of International Conference on Environmental Aspects of Bangladesh,BEN, Japan, 2010, pp. 116-119.
W. Palz, Photovoltaic Solar Energy Conference: Proceedings of the International Conference, Held at Cannes, France, 27–31 October 1980: Springer Science & Business Media, 2012.
Z. Wang, U. Helmersson, and P.-O. Käll, "Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature," Thin Solid Films, vol. 405, pp. 50-54, 2002.
B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earthâ€abundant Cu2ZnSnS4 absorber," Progress in Photovoltaics: Research and Applications, vol. 21, pp. 72-76, 2013.
B. J. Stanbery, "Copper indium selenides and related materials for photovoltaic devices," Critical reviews in solid state and materials sciences, vol. 27, pp. 73-117, 2002.
A. Rakhshani, "Electrodeposited CdTe—optical properties," Journal of applied physics, vol. 81, pp. 7988-7993, 1997.
S. Fonash, Solar cell device physics: Elsevier, 2012.
G. Swartz, "Computer model of amorphous silicon solar cell," Journal of Applied Physics, vol. 53, pp. 712-719, 1982.
J. T. Heath, J. D. Cohen, and W. N. Shafarman, "Bulk and metastable defects in CuIn 1− x Ga x Se 2 thin films using drive-level capacitance profiling," Journal of Applied Physics, vol. 95, pp. 1000-1010, 2004.
J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, "New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material," physica status solidi (b), vol. 245, pp. 1772-1778, 2008.
P. Fernandes, P. Salomé, A. Da Cunha, and B.-A. Schubert, "Cu2ZnSnS4 solar cells prepared with sulphurized dc-sputtered stacked metallic precursors," Thin Solid Films, vol. 519, pp. 7382-7385, 2011.
F. Liu, K. Zhang, Y. Lai, J. Li, Z. Zhang, and Y. Liu, "Growth and characterization of Cu2ZnSnS4 thin films by dc reactive magnetron sputtering for photovoltaic applications," Electrochemical and Solid-State Letters, vol. 13, pp. H379-H381, 2010.
J. Liang, E. A. Schiff, S. Guha, B. Yan, and J. Yang, "Hole-mobility limit of amorphous silicon solar cells," Applied physics letters, vol. 88, p. 063512, 2006.
S. Siebentritt, "Hole transport mechanisms in CuGaSe2," Thin Solid Films, vol. 480, pp. 312-317, 2005.
(2013, 29 Sept). First solar reports largest quarterly decline in CdTe module cost per-watt since 2007. Available: https://cleantechnica.com/2013/11/07/first-solar-reports-largest-quarterly-decline-cdte-module-cost-per-watt-since-2007/
H. Neumann and R. Tomlinson, "Relation between electrical properties and composition in CuInSe2 single crystals," Solar Cells, vol. 28, pp. 301-313, 1990.
DOI (PDF): https://doi.org/10.20508/ijrer.v9i2.9054.g7628
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4