Behavior of Four Solar PV Modules with Temperature Variation
Abstract
This paper presents a behavior and performance comparison of four different photovoltaic PV modules: mono-crystalline Silicon, poly-crystalline Silicon, amorphous Silicon and Cupper Indium Gallium diselenide (CIGS) under Iraqi climate conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally. the temperature coefficients of open circuit voltage, short circuit current and maximum power output for the four modules was calculated. These temperature coefficients are important for all systems design and sizing. Two mathematical models were implemented to extract the governing parameters of the PV modules. A detailed explanation for the temperature influence on the PV module parameters is presented. The results showed that the amorphous silicon and CIGS modules perform better than the crystalline modules in high operating temperature.
Keywords
Full Text:
PDFReferences
Duran E., Galan J., Sidrach-de-Cardona M., Ferrera M.B. and Anduja J.M., "A New Application of Duty Cycle Sweep Based on Microcontrol1er to Obtain The I-V Characteristic Curve of Photovoltic Modules", pp1-6, print ISBN: 978-1-4224-1705-6, Apr. 2008.
Smestad, G. P. “Optoelectronics of Solar Cellsâ€, SPIE-The International Society of Optical Engineering, Washington, USA, 2002.
Hirshman, W. P., G. Hering and M. Schmela, “Cell and Module Production 2007†Photon International, 152. 2008.
Hirshman WP. “Market Survey on Worldwide Cell Production 2008â€. Photon
International, 170 – 206. March 2009.
Hu, C. and White, R.M. “Solar Cellsâ€, McGraw-Hill, New York, pp. 21. 1983.
Khezzar, R., Zereg, M. and Khezzar, A., “Comparative Study of Mathematical Methods for Parameters Calculation of Current-Voltage Characteristic of Photovoltaic Moduleâ€, in 2009 International Conference on Electrical and Electronics Engineering, pp. 124–128. November 2009.
Villalva, M.G., Gazoli, J.R. and Filho, E.R., “Comprehensive Approach to Modelling and Simulation of Photovoltaic Arraysâ€. IEEE Trans. Power Electron. 24, 1198-1208. 2009.
Green, M. A. “Accuracy of Analytical Expressions for Solar Cell Fill Factorsâ€. Solar Cells, 7(3), 337-340. 1982.
Nell, M. E., and Barnett, A. M. “The Spectral P-N Junction Model for Tandem Solar-Cell Designâ€. Electron Devices, IEEE Transactions on, 34(2), 257-266. 1987.
Muzathik, A. M. “Photovoltaic Modules Operating Temperature Estimation Using a Simple Correlationâ€. International Journal of Energy Engineering, 4(4), 151. 2014.
Radziemska, E., “Effect of temperature on dark current characteristics of silicon solar cells and diodesâ€, International Journal of Energy Research, 30, (2) 127-134, 2005.
Kandil, K. M., Altouq, M. S., Al-asaad, A. M., Alshamari, L. M., Kadad, I. M., and Ghoneim, A. A., “Investigation of the Performance of CIS Photovoltaic Modules under Different Environmental Conditions†Smart Grid and Renewable Energy, 2, 375-387, 2011.
Kishor, N., Villalva, M. G., Mohanty, S. R., and Ruppert, E.,â€Modeling of PV module with consideration of environmental factorsâ€. In ISGT Europe (pp. 1-5). October, 2010.
Bensalem, S., and Chegaar, M. “Thermal behavior of parasitic resistances of polycrystalline silicon solar cellsâ€. Revue des Energies Renouvelables, 16(1), 171-176. 2013.
De Soto, W., Klein, S.A., Beckman, W.A., “Improvement and validation of a model for photovoltaic array performanceâ€. Sol. Energy 80, 78–88. 2006.
Duffie, J. A., and Beckman, W. A., “Solar engineering of thermal processesâ€. (4th Ed.). New York etc.: Wiley. 2013.
Karatepe, E., Boztepe, M. and Colak, M. “Neural Network Based Solar Cell Modelâ€, Energy Conversion and Management, Vol. 47, 9-10, pp. 1159 - 1178, 2006.
Häberlin, H. “Photovoltaics system design and practiceâ€. John Wiley & Sons. 1st ed. 2012.
Radziemska, E., “The effect of temperature on the power drop in crystalline silicon solar cellsâ€, Renewable Energy, (28) 1–12, 2003.
Tobnaghi, D. M., Madatov, R. and Naderi, D. “The Effect of Temperature on Electrical Parameters of Solar Cellsâ€, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2, Issue 12, December 2013.
DOI (PDF): https://doi.org/10.20508/ijrer.v6i3.4188.g6892
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4