Thermal Annealing on P3HT/PC70BM Solar Cells Incorporated with Au and CuO Nanoparticales
Abstract
In this work, thermal annealing is investigated to augment photovoltaic conversion efficiency (PCE) in bulk heterojunction polymer solar cells (BHJ-PSCs). Active layer (P3HT/PC70BM) and PEDOT: PSS film of these PSCs contain copper oxide nanoparticles (CuO-NPs) and gold nanoparticles (Au-NPs) respectively. Thermal annealing of P3HT/PC70BM thin films was performed at 150ºC for 30 minutes. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) examination show an increased crystallinity of the heat-treated samples. Atomic force microscopic analysis (AFM) shows increased surface roughness after annealing, producing extra locations for crystallization of P3HT. Ultraviolet (UV)-visible as well as external quantum efficiency (EQE) spectra show enhanced self-organization, enhancing both crystallinity of P3HT and phase separation of the spin coated P3HT/PC70BM polymer films. However, ultraviolet-visible spectra do not show remarkable enhancement in light absorption with increasing gold concentration of PEDOT:PSS thin film owing to localised surface plasmonic resonance (LSPR) being distributed horizontally through the PEDOT:PSS film. PCE improved by 24% in the heat treated (Au/PEDOT: PSS)/(CuO/P3HT/PC70BM) solar cells.
Keywords
Full Text:
PDFReferences
N. Abu-Zahra, and M. Algazzar, Abu-Zahra, N. Algazzar, M.: “Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells†International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering. 8 (4), pp248-253, 2014.
S.I. Na, D.P. Park, S.S.Kim, S.Y. Yang, K. Lee, M.H Lee â€ITO-free flexible polymer solar cells with ink-jet-printed Ag grids†Semicond. Sci. Technol. 27 125002, 2012
W. Shen, J. Tang, R. Yang, H. Cong, X. Bao, Y. Wang, X. Wang, Z. Huang, J. Liu, L. Huang, J. Jiao, Q. Xu, W. Chenb, and L. A. Belfiore, Enhanced efficiency of polymer solar cells by incorporated Ag–SiO2 core–shell nanoparticles in the active layer. RSC Advances. 4: pp 4379-4386, 2014. doi: 10.1039/C3RA45495A
A. Konkin, C. Bounioux, U. Ritter, P. Scharff, E.A. Katz, A. Aganov, G. Gobsch, H. Hoppec, G. Ecke, H.K. Roth, ESR and LESR X-band study of morphology and charge carrier interaction in blended P3HT–SWCNT and P3HT–PCBM–SWCNT solid thin films, Synthetic Metals. 161: 2241–2248, (2011). doi: 10.1016/j.synthmet.2011.08.027
S. Jin, B.V.K. Naidu, H. Jeon, S. Park, , J. Park, S.C. Kim, J.W. Lee, and Y. Gal, Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT: PCBM system. Solar Energy Materials and Solar Cells. 91: 1187–1193, (2007). doi: 10.1016/j.solmat.2007.04.001
A.Wicklein, S.Ghosh, M.Sommer, F.Wurthner, M.Thelakkat, “Self-Assembly of Semiconductor Organogelator Nanowires for Photoinduced Charge Separation†ACS Nano 3 (5), pp 1107–1114, 2009.
M. Jorgensen, K.Norrman, F.C.Krebs, “Stability/degradation of polymer solar cellsâ€,Sol. Energ. Mat. Sol. Cells, 92, pp 686–714, 2008.
T.Oyamada, C.Maeda, H.Sasabe, C.Adachi, “Efficient Electron Injection Mechanism in Organic Light-Emitting Diodes Using an Ultra-Thin Layer of Low-Work-Function Metals†Japanese Journal of Applied Physics 42, 2003
F. Padinger, R.S. Rittberger, N.S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cellsâ€Adv. Funct. Mater. 13, pp85-88, January 2003.
W.H. Lee, S.Y. Chuang, H.L. Chen, W.F. Su, and C.H. Lin, “Exploiting optical properties of P3HT: PCBM films for organic solar cells with semitransparent anodeâ€Thin Solid Films. 518, pp7450–7454 7450, 2010.
Y. Kim, S.A. Choulis, J. Nelson, D.D.C. Bradley, S. Cook, J.R. Durrant,†Composition and annealing effects in polythiophene/fullerene solar cells†J. Mater. Sci. 40, pp 1371-1376, March 2005.
G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang,†“Solvent Annealing†Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes†Adv. Funct. Mater. 17, pp 1636–1644, July, 2007.
T. Salim, L.H. Wong, B. Brauer, R. Kukreja, Y. L. Foo, Z. Bao, Y. M Lam, “Solvent additives and their effects on blend morphologies of bulk heterojunctions†J. Mater. Chem., 21, pp 242-250, 2011.
D. E. Motaung, G. F. Malgas, S. S. Ray, C. J. Arendse, “Annealing effect of hybrid solar cells based on poly (3-hexylthiophene) and zinc-oxide nanostructures†Thin Solid Films 537, pp 90-96, 2013.
R. Kang, S. Oh, S. Na, T. S. Kim, D. Y. Kim, “Investigation into the effect of post-annealing on inverted polymer solar cellsâ€Sol. Energ. Mat. Sol. Cells, 120, pp 131-135, January 2014.
W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen,†Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer†Adv. Mater. 16, pp 1009–1013, June 2004.
H. Liao, C. Tsao, T. Lin, M. Jao, C. Chuang, S, Chang, Y. Huang, Y. Shao, C. Chen, C. Jeng, Y. Chen, and W. Su, “Nanoparticle-tuned self-organization of a bulk heterojunction hybrid solar cell with enhanced performance†ACS Nano, 6, pp 1657-1666, January 2012
A. P. Wanninayake, S. Gunashekar, S. Li, B.C. Church and N. Abu-Zahra,†CuO Nanoparticles Based Bulk Heterojunction Solar Cells: Investigations on Morphology and Performance†J. Sol. Energy Eng. 137, 031016, January 2015.
A. Wanninayake, S. Gunashekar, S. Li, B. C. Church and N. Abu-Zahra,†Performance enhancement of polymer solar cells using copper oxide nanoparticles†Semicond. Sci. Technol. 30, 064004, May 2015
F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles†Appl. Phys. Lett. 95, 013305, July 2009.
F. X. Xie, W. C. H. Choy, C. C. D. Wang, W. E. I Sha, D. D. S. Fung,†Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers†Appl. Phys. Lett. 99 153304, October 2011.
F. X. Xie, W. C. H. Choy, X. Zhu, X. Li, Z. Li, and C. Liang,†Improving polymer solar cell performances by manipulating the self-organization of polymer†Appl. Phys. Lett. 98, 243302, June, 2011.
S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, J. Y. Lee, “Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Methodâ€Nat. Sci. Rep., 3, 1726, April 2013.
X. Chen, L. Zuo, W. Fu, Q. Yan, C. Fan, H. Chen, “Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles â€Sol. Energy. Mat. Sol. 111, pp 1-8, April 2013.
F. A. George, A. Dibb, M. A. Muth, T. Kirchartz, S. Engmann, H. Hoppe, G. Gobsch, M. Thelakkat, N. Blouin, S. Tierney, M. Carrasco Orozco, J. R. Durrant, and J. Nelson, “Influence of doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cellsâ€, Scientific Reports, 3, pp. 3335. 2013 doi: 10. 1038 / srep 03335
T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, and C. J. Brabec,†Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells†Adv. Funct. Mater. 15, pp 1193-1196, July 2005.
S. W. Heo, K. W. Song, K. H. Baek, T.H. Lee, J.Y. Lee and D. K. Moon,†Enhanced performance in inverted polymer solar cells via solution process: Morphology controlling of PEDOT:PSS as anode buffer layer by adding surfactants†Organic Electronics, 14, pp 1629–1635 June 2013.
D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie and S. He, “Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer†J. Mater. Chem. 21, pp 16349–16356, 2011.
S. A. Choulis, Y. Kim, J. Nelson, D. D. C. Bradley, M. Giles, M. Shkunov, and I. Mc Culloch, High ambipolar and balanced carrier mobility in regioregular poly (3-hexy thiophene). Applied Physics Letters. 85 (17), pp 3890-3892, 2004. doi: 10.1063/1.1805175
J. Choulis, A. Baumumann, A. Wagenpfahl, C. Deibel, and V. Dyakonov, Oxygen doping of P3HT: PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance" Organic Electronics. 11 (10), pp 1693–1700, 2010. doi: 10.1016/ j.orgel. 2010. 07.016
B.P. Nguyen, T. Kim, and C.R. Park,†Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cellsâ€J. Nanomater., 2014, January 2014.
L. Lu, Z. Luo, T. Xu, and L. Yu,†Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells†Nano Letters. 13(1), pp 59-64, December 2013.
V. Jankovic, Y. M. Yang, J. You, L. Dou, Y. Liu, P. Cheung, J. P. Chang, and Y. Yang, Active Layer-Incorporated, Spectrally Tuned Au/SiO2 Core/Shell Nanorod-Based Light Trapping for Organic Photovoltaics. ACS Nano. 7(5) pp 3815–3822, 2013. doi: 10.1021/ nn400246q
Gadisa, A., Svensson, M., Andersson, M. R., Inganäs, O., “Correlation between Oxidation Potential and Open Circuit Voltage of Composite Solar Cells based on Blends of Polythiophenes/Fullerene Derivativeâ€, Appl. Phys. Lett., 84, pp.1609−1611, 2004.
N. Kudo, Y. Shimazaki, H. Ohkita, M. Ohoka, S. Ito, Organic–inorganic hybrid solar cells based on conducting polymer and SnO2 nanoparticles chemically modified with a fullerene derivative. Solar Energy Materials and Solar Cells. Vol 91,(13),15, pp 1243–1247, (2007). doi:10.1016/j.solmat.2006.11.019
P. S. Mbule, T. H. Kim, B. S. Kimb, H. C. Swart, and O. M. Ntwaeaborw, “Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices.†Solar Energy Materials and Solar Cells 112(2013), pp 6–12 2013. doi: 10.1016/j.solmat.2013.01.010
S. Jin, B. V. K. Naidu, H. Jeon, S. Park, J. Park, S. C. Kim, J. W. Lee, and Y. Gal, "Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT: PCBM system." Solar Energy Materials and Solar Cells 91, pp 1187–1193, 2007. doi: 10.1016/j.solmat.2007.04.001
Y. Kim, S.A. Choulis, J. Nelson, D.D.C. Bradley, S. Cook, J.R. Durrant, Composition and annealing effects in polythiophene/fullerene solar cells. J. Mater. Sci. 40, 1371, 2005.
F. C. Krebs, Y. Thomann, R. Thomann and J. W. Andreasen,†A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air†Nanotechnology 19, 424013, December 2008.
DOI (PDF): https://doi.org/10.20508/ijrer.v5i4.2716.g6680
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4