Market Potential and Sustainability: A Comprehensive Analysis of Marine Renewable Energy Technologies

Ramazan Bayindir, Hafize Nurgul Durmus Senyapar

Abstract


The global energy transition towards cleaner and more sustainable alternatives is essential for mitigating climate change and enhancing energy security. Marine energy technologies, including offshore wind (OSW), tidal energy (TE), wave energy (WE), ocean thermal energy conversion (OTEC), and salinity gradient power (SGP), offer promising solutions to diversify the renewable energy portfolio and reduce reliance on traditional fossil fuels. This study comprehensively analyses marine energy's technical, environmental, and socio-economic dimensions. Key findings reveal the vast potential of marine energy technologies in addressing global energy challenges. Despite initial hurdles such as high upfront costs and environmental concerns, ongoing technological advancements and concerted global efforts drive increased interest and investment in marine energy projects worldwide. Market analysis underscores the significant role of marine energy in meeting growing electricity demand and providing sustainable solutions for desalination and wastewater treatment. Consumer perception and adoption patterns play a crucial role in shaping the future trajectory of marine energy technologies. Effective marketing and communication strategies are essential for fostering greater acceptance and adoption in the energy market. Economic viability analysis highlights job creation and infrastructure investment potential supported by government policies and incentives. Stakeholder engagement emerges as a critical determinant of success in the marine energy sector, emphasizing the importance of collaboration among businesses, policymakers, and local communities. Embracing the vast potential of ocean-based energy sources is imperative for navigating towards a cleaner, more resilient energy future. Continued research, investment, and collaboration are essential to unlocking the full potential of marine energy and ensuring a sustainable energy transition.  

Keywords


Marine renewable energy (MRE), sustainable energy market, environmental impact assessment, economic feasibility, social acceptance.

Full Text:

PDF

References


References

S. Uhunamure, “Potentials of Biogas as a Source of Renewable,” International Journal of Renewable Energy Research (IJRER), vol. 8, no. 2, Art. no. 2, Jun. 2018.

K. Echlouchi, M. Ouardouz, and A. Bernoussi, “Integrated management tool for the promotion of energy renovation on an urban scale,” International Journal of Renewable Energy Research (IJRER), vol. 12, no. 4, Art. no. 4, Dec. 2022.

E. Fragniere, S. Sandoz, N. Abdenadher, M. Moussa, G. Di Marzo Serugendo, and P. Glass, “Fostering ‘Energy Communities’: An Ethnographic-SECI Approach to User-Centered Residential Micro-Smart Grid Adoption,” in 2023 11th International Conference on Smart Grid (icSmartGrid), Jun. 2023, pp. 01–05. doi: 10.1109/icSmartGrid58556.2023.10171075.

A. Tanaka et al., “Study of introduce power storage device in PV system,” in 2022 10th International Conference on Smart Grid (icSmartGrid), Jun. 2022, pp. 145–148. doi: 10.1109/icSmartGrid55722.2022.9848740.

R. Meenal et al., “Weather Forecasting for Renewable Energy System: A Review,” Arch. Comput. Methods Eng., vol. 29, no. 5, pp. 2875–2891, Aug. 2022, doi: 10.1007/s11831-021-09695-3.

M. Ram, A. Aghahosseini and C. Breyer, “Job creation during the global energy transition towards 100% renewable power system by 2050,” Technol. Forecast. Soc. Change, vol. 151, Feb. 2020, doi: 10.1016/j.techfore.2019.06.008.

B. Ersöz and H. ?. Bülbül, “A Research on Importance of Using Renewable Energy Sources by Organizations within The Scope of Green Deal Preparations,” in 2022 11th International Conference on Renewable Energy Research and Application (ICRERA), Sep. 2022, pp. 213–218. doi: 10.1109/ICRERA55966.2022.9922809.

N. V. A. Ravikumar, R. S. S. Nuvvula, P. P. Kumar, N. H. Haroon, U. D. Butkar, and A. Siddiqui, “Integration of Electric Vehicles, Renewable Energy Sources, and IoT for Sustainable Transportation and Energy Management: A Comprehensive Review and Future Prospects,” in 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), Aug. 2023, pp. 505–511. doi: 10.1109/ICRERA59003.2023.10269421.

P. Sharma, “Analyzing the Role of Renewables in Energy Security by Deploying Renewable Energy Security Index,” J. Sustain. Dev. Energy Water Environ. Syst., vol. 11, no. 4, pp. 1–21, Dec. 2023, doi: 10.13044/j.sdewes.d11.0463.

N. Djellouli, L. Abdelli, M. Elheddad, R. Ahmed and H. Mahmood, “The effects of non-renewable energy, renewable energy, economic growth and foreign direct investment on the sustainability of African countries,” Renew. Energy, vol. 183, pp. 676–686, Jan. 2022, doi: 10.1016/j.renene.2021.10.066.

M. S. Chowdhury et al., “Current trends and prospects of tidal energy technology,” Environ. Dev. Sustain., vol. 23, no. 6, pp. 8179–8194, Jun. 2021, doi: 10.1007/s10668-020-01013-4.

Internet: International Energy Agency (IEA). (2023). Electricity Market Report 2023. https://www.iea.org/reports/electricity-market-report-2023 (Accessed: February 10, 2024).

Wilberforce, T., et el., “Overview of ocean power technology”. Energy, 175, 165–181, 2019. https://doi.org/10.1016/j.energy.2019.03.068

Paredes MG, Padilla-Rivera A and Güereca LP. “Life Cycle Assessment of Ocean Energy Technologies: A Systematic Review”. Journal of Marine Science and Engineering, 7(9), 322, 2019. https://doi.org/10.3390/jmse7090322

Dannheim, J. et al. “Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research.” ICES Journal of Marine Science, 2020. https://doi.org/10.1093/ICESJMS/FSZ018.

Mueller, M., & Wallace, R. “Enabling science and technology for marine renewable energy”. Energy Policy, 36, 4376-4382, 2018. https://doi.org/10.1016/J.ENPOL.2008.09.035.

Esteban, M., & Leary, D. “Current developments and prospects of offshore wind and ocean energy”. Applied Energy, 90, 128-136, 2012. https://doi.org/10.1016/J.APENERGY.2011.06.011.

Inger, R. et al. Marine renewable energy: potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology, 46, 1145-1153, 2009. https://doi.org/10.1111/J.1365-2664.2009.01697.X.

Gonzales, R. et al.. Salinity gradient energy generation by pressure retarded osmosis: A review. Desalination, 2020. https://doi.org/10.1016/j.desal.2020.114841.

V. Khare and M. A. Bhuiyan, “Tidal energy-path towards sustainable energy: A technical review,” Clean. Energy Syst., vol. 3, Dec. 2022, doi: 10.1016/j.cles.2022.100041.

J. Langer, J. Quist and K. Blok, “Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda,” Renew. Sustain. Energy Rev., vol. 130, Sep. 2020, doi: 10.1016/j.rser.2020.109960.

T. Xie, T. Wang, D. Diallo and H. Razik, “Imbalance Fault Detection Based on the Integrated Analysis Strategy for Marine Current Turbines under Variable Current Speed,” Entropy, vol. 22, no. 10, Art. no. 10, Oct. 2020, doi: 10.3390/e22101069.

S. Geerlofs, “Chapter 9 - Marine energy and the new blue economy,” in Preparing a Workforce for the New Blue Economy, L. Hotaling and R. W. Spinrad, Eds., Elsevier, 2021, pp. 171–178. doi: 10.1016/B978-0-12-821431-2.00037-8.

A. E. Copping and L. G. Hemery, “OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Report for Ocean Energy Systems (OES),” Pacific Northwest National Lab. (PNNL), Richland, WA (United States), PNNL-29976, Sep. 2020. doi: 10.2172/1632878.

Q. Jiang and S. I. Khattak, “Modeling the impact of innovation in marine energy generation-related technologies on carbon dioxide emissions in South Korea,” J. Environ. Manage., vol. 326, Jan. 2023, doi: 10.1016/j.jenvman.2022.116818.

M. A. J. R. Quirapas and A. Taeihagh, “Ocean renewable energy development in Southeast Asia: Opportunities, risks and unintended consequences,” Renew. Sustain. Energy Rev., vol. 137, Mar. 2021, doi: 10.1016/j.rser.2020.110403.

M. D. Caballero, T. Gunda and Y. J. McDonald, “Energy justice & coastal communities: The case for Meaningful Marine Renewable Energy Development,” Renew. Sustain. Energy Rev., vol. 184, Sep. 2023, doi: 10.1016/j.rser.2023.113491.

C. Fonseca et al., “Survey data of public awareness on climate change and the value of marine and coastal ecosystems,” Data Brief, vol. 47, p. 108924, Apr. 2023, doi: 10.1016/j.dib.2023.108924.

D. H. Jung, G. Ko, J.-S. Kwak, D. Y. Kim, S. G. Jeon and S. Hong, “Feasibility study of storing CO2 in the ocean by marine environmental impact assessment,” Sci. Total Environ., vol. 903, Dec. 2023, doi: 10.1016/j.scitotenv.2023.166270.

F. Weber and N. Esmaeili, “Marine biofouling and the role of biocidal coatings in balancing environmental impacts,” Biofouling, vol. 39, no. 6, pp. 661–681, Jul. 2023, doi: 10.1080/08927014.2023.2246906.

S. M. Abbas, H. D. S. Alhassany, D. Vera and F. Jurado, “Review of enhancement for ocean thermal energy conversion system,” J. Ocean Eng. Sci., vol. 8, no. 5, pp. 533–545, Oct. 2023, doi: 10.1016/j.joes.2022.03.008.

D. G. E. Gomes, J. J. Ruzicka, L. G. Crozier, D. D. Huff, R. D. Brodeur and J. D. Stewart, “Marine heatwaves disrupt ecosystem structure and function via altered food webs and energy flux.” bioRxiv, p. 2023.08.11.553012, Feb. 01, 2024. doi: 10.1101/2023.08.11.553012.

D. Clemente, P. Rosa-Santos and F. Taveira-Pinto, “On the potential synergies and applications of wave energy converters: A review,” Renew. Sustain. Energy Rev., vol. 135, p. 110162, Jan. 2021, doi: 10.1016/j.rser.2020.110162.

M. Huang, W. He, A. Incecik, A. Cichon, G. Królczyk and Z. Li, “Renewable energy storage and sustainable design of hybrid energy powered ships: A case study,” J. Energy Storage, vol. 43, Nov. 2021, doi: 10.1016/j.est.2021.103266.

A. E. Copping et al., “Potential Environmental Effects of Marine Renewable Energy Development—The State of the Science,” J. Mar. Sci. Eng., vol. 8, no. 11, Art. no. 11, Nov. 2020, doi: 10.3390/jmse8110879.

A. E. Copping, M. C. Freeman, A. M. Gorton and L. G. Hemery, “Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development,” J. Mar. Sci. Eng., vol. 8, no. 3, Art. no. 3, Mar. 2020, doi: 10.3390/jmse8030172.

P. A. Vinagre, T. Simas, E. Cruz, E. Pinori and J. Svenson, “Marine Biofouling: A European Database for the Marine Renewable Energy Sector,” J. Mar. Sci. Eng., vol. 8, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/jmse8070495.

V. Ramos, G. Giannini, T. Calheiros-Cabral, P. Rosa-Santos and F. Taveira-Pinto, “Legal framework of marine renewable energy: A review for the Atlantic region of Europe,” Renew. Sustain. Energy Rev., vol. 137, p. 110608, Mar. 2021, doi: 10.1016/j.rser.2020.110608.

S. Bhattacharya et al., “Timing value of marine renewable energy resources for potential grid applications,” Appl. Energy, vol. 299, p. 117281, Oct. 2021, doi: 10.1016/j.apenergy.2021.117281.

R. Samsó, J. Crespin, A. García-Olivares and J. Solé, “Examining the Potential of Marine Renewable Energy: A Net Energy Perspective,” Sustainability, vol. 15, no. 10, Art. no. 10, Jan. 2023, doi: 10.3390/su15108050.

J. K. Ward, U. Comer and S. Stone, “On Qualifying Qualitative Research: Emerging Perspectives and the ‘Deer’ (Descriptive, Exploratory, Evolutionary, Repeat) Paradigm,” Interchange, vol. 49, no. 1, pp. 133–146, Feb. 2018, doi: 10.1007/s10780-018-9313-x.

S. Rahimi and M. khatooni, “Saturation in qualitative research: An evolutionary concept analysis,” International Journal of Nursing Studies Advances, vol. 6, p. 100174, Jun. 2024, doi: 10.1016/j.ijnsa.2024.100174.

E. Weathers, G. McCarthy and A. Coffey, “Concept Analysis of Spirituality: An Evolutionary Approach,” Nursing Forum, vol. 51, no. 2, pp. 79–96, 2016, doi: 10.1111/nuf.12128.

E. Solomin, E. Sirotkin, E. Cuce, S. P. Selvanathan and S. Kumarasamy, “Hybrid Floating Solar Plant Designs: A Review,” Energies, vol. 14, no. 10, Art. no. 10, Jan. 2021, doi: 10.3390/en14102751.

Q. Abdelal, “Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions,” Int. J. Low-Carbon Technol., vol. 16, no. 3, pp. 732–739, Sep. 2021, doi: 10.1093/ijlct/ctab001.

G. Kakoulaki et al., “Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe,” Renew. Sustain. Energy Rev., vol. 171, p. 112989, Jan. 2023, doi: 10.1016/j.rser.2022.112989.

A. E. Cagle et al., “The Land Sparing, Water Surface Use Efficiency and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations,” Sustainability, vol. 12, no. 19, Art. no. 19, Jan. 2020, doi: 10.3390/su12198154.

M. Elshafei et al., “Study of Massive Floating Solar Panels over Lake Nasser,” J. Energy, vol. 2021, p. e6674091, Apr. 2021, doi: 10.1155/2021/6674091.

H. Liu, A. Kumar and T. Reindl, “The Dawn of Floating Solar—Technology, Benefits and Challenges,” in WCFS2019, C. M. Wang, S. H. Lim and Z. Y. Tay, Eds., in Lecture Notes in Civil Engineering. Singapore: Springer, 2020, pp. 373–383. doi: 10.1007/978-981-13-8743-2_21.

M. Fereshtehpour, R. Javidi Sabbaghian, A. Farrokhi, E. B. Jovein and E. Ebrahimi Sarindizaj, “Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures,” Renew. Energy, vol. 171, pp. 1171–1187, Jun. 2021, doi: 10.1016/j.renene.2020.12.005.

J. Haas, J. Khalighi, A. de la Fuente, S. U. Gerbersdorf, W. Nowak and P.-J. Chen, “Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility,” Energy Convers. Manag., vol. 206, p. 112414, Feb. 2020, doi: 10.1016/j.enconman.2019.112414.

S. Oliveira-Pinto and J. Stokkermans, “Assessment of the potential of different floating solar technologies – Overview and analysis of different case studies,” Energy Convers. Manag., vol. 211, May 2020, doi: 10.1016/j.enconman.2020.112747.

V. Yashas, B. Aman and S. Dhanush, “Feasibility study of floating solar panels over lakes in Bengaluru City, India,” Proc. Inst. Civ. Eng. - Smart Infrastruct. Constr., vol. 174, no. 1, pp. 1–10, Mar. 2021, doi: 10.1680/jsmic.21.00002a.

G. Exley, A. Armstrong, T. Page and I. D. Jones, “Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification,” Sol. Energy, vol. 219, pp. 24–33, May 2021, doi: 10.1016/j.solener.2021.01.076.

M. Esmaeili Shayan and J. Hojati, “Floating Solar Power Plants: A Way to Improve Environmental and Operational Flexibility,” Iran. J. Energy Environ., vol. 12, no. 4, pp. 337–348, Oct. 2021, doi: 10.5829/ijee.2021.12.04.07.

S. Gorjian, H. Sharon, H. Ebadi, K. Kant, F. B. Scavo and G. M. Tina, “Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems,” J. Clean. Prod., vol. 278, Jan. 2021, doi: 10.1016/j.jclepro.2020.124285.

S. Z. M. Golroodbari et al., “Pooling the cable: A techno-economic feasibility study of integrating offshore floating photovoltaic solar technology within an offshore wind park,” Sol. Energy, vol. 219, pp. 65–74, May 2021, doi: 10.1016/j.solener.2020.12.062.

M. Bruck and P. Sandborn, “Pricing bundled renewable energy credits using a modified LCOE for power purchase agreements,” Renew. Energy, vol. 170, pp. 224–235, Jun. 2021, doi: 10.1016/j.renene.2021.01.127.

V. Bax, W. I. van de Lageweg, B. van den Berg, R. Hoosemans and T. Terpstra, “Will it float? Exploring the social feasibility of floating solar energy infrastructure in the Netherlands,” Energy Res. Soc. Sci., vol. 89, p. 102569, Jul. 2022, doi: 10.1016/j.erss.2022.102569.

R. M. Almeida et al., “Floating solar power: evaluate trade-offs,” 2022, [Online]. Available: https://assets.super.so/9bc769b9-2607-4333-8ea9-2c761b0a0aa6/files/ed5cae99-ccdc-4b8f-9ed6-82d5e5006b84.pdf

A. Banik and A. Sengupta, “Scope, Challenges, Opportunities and Future Goal Assessment of Floating Solar Park,” in 2021 Innovations in Energy Management and Renewable Resources(52042), Feb. 2021, pp. 1–5. doi: 10.1109/IEMRE52042.2021.9386735.

E. De Kuyffer, K. Shen, L. Martens, W. Joseph and T. De Pessemier, “Offshore windmill and substation maintenance planning with Distance, Fuel consumption and Tardiness optimisation,” Oper. Res. Perspect., vol. 10, p. 100267, Jan. 2023, doi: 10.1016/j.orp.2023.100267.

J. Villalba et al., “Assessment of uncertain alternatives for co-located aquaculture and offshore wind farm in tasmania,” Ocean Eng., vol. 249, p. 110949, Apr. 2022, doi: 10.1016/j.oceaneng.2022.110949.

B. Keyvani and D. Flynn, “Coordinated investment in wind-rich regions using dynamic line rating, energy storage and distributed static series compensation to facilitate congestion management,” IET Renew. Power Gener., vol. 16, no. 9, pp. 1882–1896, 2022, doi: 10.1049/rpg2.12484.

S. Degraer et al., “Offshore Wind Farm Artificial Reefs Affect Ecosystem Structure and Functioning: A Synthesis,” Oceanography, vol. 33, no. 4, pp. 48–57, 2020.

O. Gaidai, F. Wang, Y. Wu, Y. Xing, A. R. Medina and J. Wang, “Offshore renewable energy site correlated wind-wave statistics,” Probabilistic Eng. Mech., vol. 68, p. 103207, Apr. 2022, doi: 10.1016/j.probengmech.2022.103207.

T. Letcher, Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines. Elsevier, 2023.

M. Bošnjakovi?, M. Katini?, R. Santa and D. Mari?, “Wind Turbine Technology Trends,” Appl. Sci., vol. 12, no. 17, Art. no. 17, Jan. 2022, doi: 10.3390/app12178653.

H. Acaro?lu and F. P. García Márquez, “High voltage direct current systems through submarine cables for offshore wind farms: A life-cycle cost analysis with voltage source converters for bulk power transmission,” Energy, vol. 249, p. 123713, Jun. 2022, doi: 10.1016/j.energy.2022.123713.

Á. M. Costa, J. A. Orosa, D. Vergara and P. Fernández-Arias, “New Tendencies in Wind Energy Operation and Maintenance,” Appl. Sci., vol. 11, no. 4, Art. no. 4, Jan. 2021, doi: 10.3390/app11041386.

R. Bhandari, B. Kumar and F. Mayer, “Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors,” J. Clean. Prod., vol. 277, Dec. 2020, doi: 10.1016/j.jclepro.2020.123385.

S. Bhattacharya, V. Fthenakis and D. Kammen, “The role of offshore Wind Farms in decarbonizing energy systems to tackle climate change,” Acad. Lett., Jan. 2022, doi: 10.20935/AL4416.

J. Amaral, “The Underwater Sound from Offshore Wind Farms,” Acoust. Today, vol. 16, no. 2, p. 13, 2020, doi: 10.1121/AT.2020.16.2.13.

H. Farr, B. Ruttenberg, R. K. Walter, Y.-H. Wang and C. White, “Potential environmental effects of deepwater floating offshore wind energy facilities,” Ocean Coast. Manag., vol. 207, p. 105611, Jun. 2021, doi: 10.1016/j.ocecoaman.2021.105611.

E. A. Virtanen et al., “Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design,” Renew. Sustain. Energy Rev., vol. 158, p. 112087, Apr. 2022, doi: 10.1016/j.rser.2022.112087.

J. C. Bandas, Y. Koldenhof and T. J. Sellers, “Determining Collision Risks for Fixed Offshore Constructions,” 2020.

P. K. Chaurasiya, H. Patidar, V. Shende, U. Rajak, T. N. Verma and G. Dwivedi, “Evaluation of the reduction in greenhouse gas emissions attributable to wind energy: A retrospective evaluation of Indian Offshore and Coastal Site,” Ocean Eng., vol. 281, Aug. 2023, doi: 10.1016/j.oceaneng.2023.114665.

I. Bunaziv, X. Ren and V. Olden, “A comparative study of laser-arc hybrid welding with arc welding for fabrication of offshore substructures,” J. Phys. Conf. Ser., vol. 2626, no. 1, Oct. 2023, doi: 10.1088/1742-6596/2626/1/012033.

J. Bonet Escalas, “Offshore wind farms decommissioning. A simulation-based study of the impact of the vessel characteristics in the decommissioning process,” Master thesis, Universitat Politècnica de Catalunya, 2023. Accessed: Feb. 23, 2024. [Online]. Available: https://upcommons.upc.edu/handle/2117/398853

G. E. Barter, L. Sethuraman, P. Bortolotti, J. Keller and D. A. Torrey, “Beyond 15 MW: A cost of energy perspective on the next generation of drivetrain technologies for offshore wind turbines,” Appl. Energy, vol. 344, p. 121272, Aug. 2023, doi: 10.1016/j.apenergy.2023.121272.

?. Önden, K. Kara, G. C. Yalç?n, M. Deveci, A. Önden and M. Eker, “Strategic location analysis for offshore wind farms to sustainably fulfill railway energy demand in Turkey,” J. Clean. Prod., vol. 434, p. 140142, Jan. 2024, doi: 10.1016/j.jclepro.2023.140142.

S. Klap, “Impact of wind energy deployment on job creation in the wind power industry,” 2024.

M. O. A. González, A. M. Santiso, D. C. de Melo and R. M. de Vasconcelos, “Regulation for offshore wind power development in Brazil,” Energy Policy, vol. 145, Oct. 2020, doi: 10.1016/j.enpol.2020.111756.

H.-S. Chung, “Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development,” Sustainability, vol. 13, no. 18, Art. no. 18, Jan. 2021, doi: 10.3390/su131810465.

K. Iwata, “Social acceptance of wind turbines in Japan: An empirical study using choice experiments,” 2022.

M. Haraldsson, A. Raoux, F. Riera, J. Hay, J. M. Dambacher and N. Niquil, “How to model social-ecological systems? – A case study on the effects of a future offshore wind farm on the local society and ecosystem and whether social compensation matters,” Mar. Policy, vol. 119, , Sep. 2020, doi: 10.1016/j.marpol.2020.104031.

N.-E. Clausen, D. Rudolph, J. Kirch Kirkegaard and S. V. Larsen, “Where to put wind farms? Challenges related to planning, EIA, noise and social acceptance,” Danmarks Tekniske Universitet, Institut for Vindenergi, Risø Campus, 4000, Roskilde, Danmark, 2021. doi: 10.11581/DTU.00000205.

L. Campbell-Hansen, N. K. Kristiansen and S. Zhang, “COULD IMPROVING CITIZEN INVOLVEMENT HELP INCREASE LOCAL ACCEPTANCE OF WINDMILL PROJECTS?,” Citiz. Sci. TALENT Programme, p. 61, 2023.

A. Al Arif and I. Herrera Anchustegui, “Regulatory and Policy Frameworks for Offshore Wind Projects: Spatial and Temporal Considerations in Light of Fisheries Sustainability amid Climate Change.” Rochester, NY, Oct. 01, 2022. doi: 10.2139/ssrn.4258322.

M. A. Almoghayer, D. K. Woolf, S. Kerr and G. Davies, “Integration of tidal energy into an island energy system – A case study of Orkney islands,” Energy, vol. 242, p. 122547, Mar. 2022, doi: 10.1016/j.energy.2021.122547.

S. P. Neill, K. A. Haas, J. Thiébot and Z. Yang, “A review of tidal energy—Resource, feedbacks and environmental interactions,” J. Renew. Sustain. Energy, vol. 13, no. 6, p. 062702, Nov. 2021, doi: 10.1063/5.0069452.

S. Barbarelli and B. Nastasi, “Tides and Tidal Currents—Guidelines for Site and Energy Resource Assessment,” Energies, vol. 14, no. 19, Art. no. 19, Jan. 2021, doi: 10.3390/en14196123.

S. A. Brown et al., “On the impact of motion-thrust coupling in floating tidal energy applications,” Appl. Energy, vol. 282, p. 116246, Jan. 2021, doi: 10.1016/j.apenergy.2020.116246.

M. W. Abd Rahim, A. A. Rahman, M. Izham and N. A. M. Amin, “Tidal Energy in Malaysia: An overview of potentials, device suitability, issues and outlook,” Reg. Stud. Mar. Sci., vol. 61, p. 102853, Jul. 2023, doi: 10.1016/j.rsma.2023.102853.

R. L. Dash, B. Mohanty and P. K. Hota, “Energy, economic and environmental (3E) evaluation of a hybrid wind/biodiesel generator/tidal energy system using different energy storage devices for sustainable power supply to an Indian archipelago,” Renew. Energy Focus, vol. 44, pp. 357–372, Mar. 2023, doi: 10.1016/j.ref.2023.01.004.

M. Parhamfar, I. Sadeghkhani and A. M. Adeli, “Towards the application of renewable energy technologies in green ports: Technical and economic perspectives,” IET Renew. Power Gener., vol. 17, no. 12, pp. 3120–3132, 2023, doi: 10.1049/rpg2.12811.

M. Kamidelivand, P. Deeney, F. D. McAuliffe, K. Leyne, M. Togneri and J. Murphy, “Scenario Analysis of Cost-Effectiveness of Maintenance Strategies for Fixed Tidal Stream Turbines in the Atlantic Ocean,” J. Mar. Sci. Eng., vol. 11, no. 5, Art. no. 5, May 2023, doi: 10.3390/jmse11051046.

N. Li, G. Zhou, Y. Zhou, W. Deng and Q. Luo, “Multi-objective pathfinder algorithm for multi-objective optimal power flow problem with random renewable energy sources: wind, photovoltaic and tidal,” Sci. Rep., vol. 13, no. 1, Art. no. 1, Jun. 2023, doi: 10.1038/s41598-023-37635-7.

A. F. D. H. Ali, R. Rosli and M. A. Basunia, “Tidal energy in Brunei Darussalam: Motivations, potentials and challenges,” AIP Conf. Proc., vol. 2643, no. 1, Jan. 2023, doi: 10.1063/5.0111546.

L. G. Hemery, A. E. Copping and D. M. Overhus, “Biological Consequences of Marine Energy Development on Marine Animals,” Energies, vol. 14, no. 24, Art. no. 24, Jan. 2021, doi: 10.3390/en14248460.

N. Horne, “Developing a Simulation-based Approach to Collision Risk of Tidal Energy Converters and Marine Wildlife,” Queen’s University Belfast, 2021.

P. Barman et al., “Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches,” Renew. Sustain. Energy Rev., vol. 183, p. 113518, Sep. 2023, doi: 10.1016/j.rser.2023.113518.

M. Shadman et al., “A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives,” Sustainability, vol. 15, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/su15021740.

D. Khojasteh et al., “A large-scale review of wave and tidal energy research over the last 20 years,” Ocean Eng., vol. 282, p. 114995, Aug. 2023, doi: 10.1016/j.oceaneng.2023.114995.

C. Ma, C. Zhang, Y. Gao and X. Li, “Analysis of Tidal Current Energy Technology and Industry in China,” SHS Web Conf., vol. 154, 2023, doi: 10.1051/shsconf/202315403019.

P. Amjadian, S. P. Neill and V. Martí Barclay, “Characterizing seabed sediments at contrasting offshore renewable energy sites,” Front. Mar. Sci., vol. 10, 2023, Accessed: Feb. 23, 2024. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmars.2023.1156486

J. McIlvenny et al., “Comparison of dense optical flow and PIV techniques for mapping surface current flow in tidal stream energy sites,” Int. J. Energy Environ. Eng., vol. 14, no. 3, pp. 273–285, Sep. 2023, doi: 10.1007/s40095-022-00519-z.

S. Batel, “Research on the social acceptance of renewable energy technologies: Past, present and future,” Energy Res. Soc. Sci., vol. 68, p. 101544, Oct. 2020, doi: 10.1016/j.erss.2020.101544.

T. Hooper, C. Hattam, A. Edwards-Jones and N. Beaumont, “Public perceptions of tidal energy: Can you predict social acceptability across coastal communities in England?,” Mar. Policy, vol. 119, Sep. 2020, doi: 10.1016/j.marpol.2020.104057.

G. Kallis, P. Stephanides, E. Bailey, P. Devine-Wright, K. Chalvatzis and I. Bailey, “The challenges of engaging island communities: Lessons on renewable energy from a review of 17 case studies,” Energy Res. Soc. Sci., vol. 81, Nov. 2021, doi: 10.1016/j.erss.2021.102257.

M. Lange and V. Cummins, “Managing stakeholder perception and engagement for marine energy transitions in a decarbonising world,” Renew. Sustain. Energy Rev., vol. 152, Dec. 2021, doi: 10.1016/j.rser.2021.111740.

N. Proimakis, H. Tara and P. A. Østergaard, “The role of small-scale and community-based projects in future development of the marine energy sector,” Int. J. Sustain. Energy Plan. Manag., vol. 32, pp. 155–166, Oct. 2021, doi: 10.5278/ijsepm.6657.

S. Hibbard, C. Lafleur, J. Leong, J. Ringberg, D. Artis and B. Maheswaran, “OSCILLUS: Harnessing Wave Energy,” in 2020 Northeast Section Meeting, 2021.

M. Z. A. Khan, H. A. Khan and M. Aziz, “Harvesting Energy from Ocean: Technologies and Perspectives,” Energies, vol. 15, no. 9, Art. no. 9, Jan. 2022, doi: 10.3390/en15093456.

T. Thennakoon et al., “Harnessing the Power of Ocean Energy: A Comprehensive Review of Power Generation Technologies and Future Perspectives,” 2023.

N. Agarwala, “Powering India’s Blue Economy through ocean energy,” Aust. J. Marit. Ocean Aff., vol. 14, no. 4, pp. 270–296, Oct. 2022, doi: 10.1080/18366503.2021.1954494.

H.-J. Kim, H.-S. Lee, S.-T. Lim and M. Petterson, “The Suitability of the Pacific Islands for Harnessing Ocean Thermal Energy and the Feasibility of OTEC Plants for Onshore or Offshore Processing,” Geosciences, vol. 11, no. 10, Art. no. 10, Oct. 2021, doi: 10.3390/geosciences11100407.

C. Ozkan, T. Mayo and D. L. Passeri, “The Potential of Wave Energy Conversion to Mitigate Coastal Erosion from Hurricanes,” J. Mar. Sci. Eng., vol. 10, no. 2, Art. no. 2, Feb. 2022, doi: 10.3390/jmse10020143.

K. A. Prasad, A. A. Chand, N. M. Kumar, S. Narayan and K. A. Mamun, “A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs,” Sustainability, vol. 14, no. 4, Art. no. 4, Jan. 2022, doi: 10.3390/su14042354.

R. Karduri and A. Gudhenia, The Potential of Wave Energy Converters in Coastal Regions. 2018. doi: 10.13140/RG.2.2.28810.03527/1.

S. A. Sandin et al., “Harnessing island–ocean connections to maximize marine benefits of island conservation,” Proc. Natl. Acad. Sci., vol. 119, no. 51, Dec. 2022, doi: 10.1073/pnas.2122354119.

M. H. Jahangir, M. Mazinani and Z. Ranji, “The Application of Energy Absorbers to Harness Wave Energy in the Caspian Sea: A Feasibility Study,” Int. J. Coast. Offshore Environ. Eng., vol. 6, no. 5, pp. 39–50, Nov. 2021, doi: 10.22034/ijcoe.2021.152612.

S. Ahn, V. S. Neary and K. A. Haas, “Global wave energy resource classification system for regional energy planning and project development,” Renew. Sustain. Energy Rev., vol. 162, Jul. 2022, doi: 10.1016/j.rser.2022.112438.

I. Galparsoro et al., “A new framework and tool for ecological risk assessment of wave energy converters projects,” Renew. Sustain. Energy Rev., vol. 151, p. 111539, Nov. 2021, doi: 10.1016/j.rser.2021.111539.

J. Tougaard, “Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals,” PLOS ONE, vol. 10, no. 7, Jul. 2015, doi: 10.1371/journal.pone.0132391.

O. Langhamer, K. Haikonen and J. Sundberg, “Wave power—Sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters,” Renew. Sustain. Energy Rev., vol. 14, no. 4, pp. 1329–1335, May 2010, doi: 10.1016/j.rser.2009.11.016.

M. Mahmoud, M. A. Abdelkareem and A. G. Olabi, “Chapter 1.5 - Strengths, weaknesses, opportunities and threats analysis of wave energy,” in Renewable Energy - Volume 2: Wave, Geothermal and Bioenergy, A. G. Olabi, Ed., Academic Press, 2024, pp. 69–83. doi: 10.1016/B978-0-323-95211-8.00005-1.

S. Astariz and G. Iglesias, “The economics of wave energy: A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 397–408, May 2015, doi: 10.1016/j.rser.2015.01.061.

S. Ambühl, L. Marquis, J. P. Kofoed and J. Dalsgaard Sørensen, “Operation and maintenance strategies for wave energy converters,” Proc. Inst. Mech. Eng. Part O J. Risk Reliab., vol. 229, no. 5, pp. 417–441, Oct. 2015, doi: 10.1177/1748006X15577877.

G. Chang, C. A. Jones, J. D. Roberts and V. S. Neary, “A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects,” Renew. Energy, vol. 127, pp. 344–354, Nov. 2018, doi: 10.1016/j.renene.2018.04.071.

P. Devine-Wright, “Place attachment and public acceptance of renewable energy: A tidal energy case study,” J. Environ. Psychol., vol. 31, no. 4, pp. 336–343, Dec. 2011, doi: 10.1016/j.jenvp.2011.07.001.

D. Greaves et al., “Environmental Impact Assessment: Gathering experiences from wave energy test centres in Europe,” Int. J. Mar. Energy, vol. 14, pp. 68–79, Jun. 2016, doi: 10.1016/j.ijome.2016.02.003.

G. Lavidas, “Energy and socio-economic benefits from the development of wave energy in Greece,” Renew. Energy, vol. 132, pp. 1290–1300, Mar. 2019, doi: 10.1016/j.renene.2018.09.007.

J. Herrera, S. Sierra and A. Ibeas, “Ocean Thermal Energy Conversion and Other Uses of Deep Sea Water: A Review,” J. Mar. Sci. Eng., vol. 9, no. 4, Art. no. 4, Apr. 2021, doi: 10.3390/jmse9040356.

L. Aresti, P. Christodoulides, C. Michailides and T. Onoufriou, “Reviewing the energy, environment and economy prospects of Ocean Thermal Energy Conversion (OTEC) systems,” Sustain. Energy Technol. Assess., vol. 60, p. 103459, Dec. 2023, doi: 10.1016/j.seta.2023.103459.

S. T. Thirugnana, A. B. Jaafar, T. Yasunaga, T. Nakaoka, Y. Ikegami and S. Su, “Estimation of Ocean Thermal Energy Conversion Resources in the East of Malaysia,” J. Mar. Sci. Eng., vol. 9, no. 1, Art. no. 1, Jan. 2021, doi: 10.3390/jmse9010022.

A. Hasan and I. Dincer, “An ocean thermal energy conversion based system for district cooling, ammonia and power production,” Int. J. Hydrog. Energy, vol. 45, no. 32, Jun. 2020, doi: 10.1016/j.ijhydene.2020.03.173.

L. Lin and H. Yu, “Offshore wave energy generation devices: Impacts on ocean bio-environment,” Acta Ecol. Sin., vol. 32, no. 3, pp. 117–122, Jun. 2012, doi: 10.1016/j.chnaes.2012.02.007.

A. Kazim, “Hydrogen production through an ocean thermal energy conversion system operating at an optimum temperature drop,” Appl. Therm. Eng., vol. 25, no. 14, Oct. 2005, doi: 10.1016/j.applthermaleng.2005.01.003.

W. Liu et al., “A review of research on the closed thermodynamic cycles of ocean thermal energy conversion,” Renew. Sustain. Energy Rev., vol. 119, Mar. 2020, doi: 10.1016/j.rser.2019.109581.

Z. Wu, H. Feng, L. Chen, W. Tang, J. Shi and Y. Ge, “Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle,” Energy Convers. Manag., vol. 210, p. 112727, Apr. 2020, doi: 10.1016/j.enconman.2020.112727.

T. Mohamed, “Chapter Eleven - Marine energy,” in Distributed Renewable Energies for Off-Grid Communities (Second Edition), N. El Bassam, Ed., Boston: Elsevier, 2021, pp. 231–245. doi: 10.1016/B978-0-12-821605-7.00012-X.

I. Dinçer and M. A. Rosen, Thermal Energy Storage: Systems and Applications. John Wiley & Sons, 2021.

R. Adiputra, T. Utsunomiya, J. Koto, T. Yasunaga and Y. Ikegami, “Preliminary design of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia,” J. Mar. Sci. Technol., vol. 25, no. 1, pp. 48–68, Mar. 2020, doi: 10.1007/s00773-019-00630-7.

M. L. Martínez et al., “A systemic view of potential environmental impacts of ocean energy production,” Renew. Sustain. Energy Rev., vol. 149, Oct. 2021, doi: 10.1016/j.rser.2021.111332.

S. Zereshkian and D. Mansoury, “A study on the feasibility of using solar radiation energy and ocean thermal energy conversion to supply electricity for offshore oil and gas fields in the Caspian Sea,” Renew. Energy, vol. 163, pp. 66–77, Jan. 2021, doi: 10.1016/j.renene.2020.08.111.

M. Z. Malik, F. Musharavati, S. Khanmohammadi, M. M. Baseri, P. Ahmadi and D. D. Nguyen, “Ocean thermal energy conversion (OTEC) system boosted with solar energy and TEG based on exergy and exergo-environment analysis and multi-objective optimization,” Sol. Energy, vol. 208, pp. 559–572, Sep. 2020, doi: 10.1016/j.solener.2020.07.049.

M. Apunda and B. Nyangoye, “ENVIRONMENTAL CHALLENGES FOR OCEAN ENERGY GENERATION,” Aug. 2018.

A. Rahman, O. Farrok and M. M. Haque, “Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean and osmotic,” Renew. Sustain. Energy Rev., vol. 161, Jun. 2022, doi: 10.1016/j.rser.2022.112279.

E. C. C. Chan et al., “Environmental Impact Assessment of the Operation of an Open Cycle OTEC 1MWe Power Plant in the Cozumel Island, Mexico,” in Ocean Thermal Energy Conversion (OTEC) - Past, Present and Progress, IntechOpen, 2020. doi: 10.5772/intechopen.91179.

A. Bordbar et al., “Waterbodies thermal energy based systems interactions with marine environment — A review,” Energy Rep., vol. 9, pp. 5269–5286, Dec. 2023, doi: 10.1016/j.egyr.2023.04.352.

Utilitiesone, “The Potential of Ocean Thermal Energy Conversion for High-Rise Urban Areas,” Utilities One. Accessed: Feb. 24, 2024. [Online]. Available: https://utilitiesone.com/the-potential-of-ocean-thermal-energy-conversion-for-high-rise-urban-areas

Linkedin, “Ocean Thermal Energy Conversion.” Accessed: Feb. 24, 2024. [Online]. Available: https://www.linkedin.com/pulse/ocean-thermal-energy-conversion-natain-bogdan

Valuates, “Ocean Thermal Energy Conversion(OTEC) Systems Market, Report Size, Worth, Revenue, Growth, Industry Value, Share 2023,” Valuates Reports. Accessed: Feb. 24, 2024. [Online]. Available: https://reports.valuates.com/market-reports/QYRE-Auto-19N16137/global-ocean-thermal-energy-conversion-otec-systems

S. Landini, “Competitiveness of Ocean Thermal Energy Conversion (OTEC) systems compared with other renewable technologies,” Aug. 2015. doi: 10.13140/RG.2.1.1941.4882.

A. Copping and H. Farr, “Feasibility, Environmental Effects and Social Acceptance of Ocean Thermal Energy Conversion,” 2023, [Online]. Available: https://tethys.pnnl.gov/sites/default/files/publications/Copping-Farr-2023-OTEC-Report.pdf

Linkedin, “How can ocean energy create jobs and economic benefits?” Accessed: Feb. 24, 2024. [Online]. Available: https://www.linkedin.com/advice/1/how-can-ocean-energy-create-jobs-economic

A. Lavi and G. H. Lavi, “Ocean thermal energy conversion /OTEC/ - Social and environmental issues,” Energy, vol. 4, pp. 833–840, Oct. 1979.

P. A. J. Bonar, I. G. Bryden and A. G. L. Borthwick, “Social and ecological impacts of marine energy development,” Renew. Sustain. Energy Rev., vol. 47, pp. 486–495, Jul. 2015, doi: 10.1016/j.rser.2015.03.068.

X. Tong, S. Liu, J. Crittenden and Y. Chen, “Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting,” ACS Nano, vol. 15, no. 4, Apr. 2021, doi: 10.1021/acsnano.0c09513.

J. Li, C. Zhang, Z. Wang, Z. Bai and X. Kong, “Salinity gradient energy harvested from thermal desalination for power production by reverse electrodialysis,” Energy Convers. Manag., vol. 252, Jan. 2022, doi: 10.1016/j.enconman.2021.115043.

A. Culcasi, L. Gurreri, A. Zaffora, A. Cosenza, A. Tamburini and G. Micale, “On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients,” Appl. Energy, vol. 277, Nov. 2020, doi: 10.1016/j.apenergy.2020.115576.

X. Shiming et al., “Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy,” Desalination, vol. 495, Dec. 2020, doi: 10.1016/j.desal.2020.114541.

K. Zachopoulos, N. Kokkos, C. Elmasides and G. Sylaios, “Coupling Hydrodynamic and Energy Production Models for Salinity Gradient Energy Assessment in a Salt-Wedge Estuary (Strymon River, Northern Greece),” Energies, vol. 15, no. 9, Art. no. 9, Jan. 2022, doi: 10.3390/en15092970.

L. Jianbo, Z. Chen, L. Kai, Y. Li and K. Xiangqiang, “Experimental study on salinity gradient energy recovery from desalination seawater based on RED,” Energy Convers. Manag., vol. 244, Sep. 2021, doi: 10.1016/j.enconman.2021.114475.

O. Reyes-Mendoza, O. Alvarez-Silva, X. Chiappa-Carrara and C. Enriquez, “Variability of the thermohaline structure of a coastal hypersaline lagoon and the implications for salinity gradient energy harvesting,” Sustain. Energy Technol. Assess., vol. 38, Apr. 2020, doi: 10.1016/j.seta.2020.100645.

Z. Jia, B. Wang, S. Song and Y. Fan, “Blue energy: Current technologies for sustainable power generation from water salinity gradient,” Renew. Sustain. Energy Rev., vol. 31, pp. 91–100, Mar. 2014, doi: 10.1016/j.rser.2013.11.049.

C. Seyfried, H. Palko and L. Dubbs, “Potential local environmental impacts of salinity gradient energy: A review,” Renew. Sustain. Energy Rev., vol. 102, pp. 111–120, Mar. 2019, doi 10.1016/j.rser.2018.12.003.

M. Papapetrou and K. Kumpavat, “10 - Environmental aspects and economics of salinity gradient power (SGP) processes,” in Sustainable Energy from Salinity Gradients, A. Cipollina and G. Micale, Eds., Woodhead Publishing, 2016, pp. 315–335. doi: 10.1016/B978-0-08-100312-1.00010-9.

F. Helfer and C. Lemckert, “The power of salinity gradients: An Australian example,” Renew. Sustain. Energy Rev., vol. 50, pp. 1–16, Oct. 2015, doi: 10.1016/j.rser.2015.04.188.

IRENA, “salinity gradient, ocean energy, renewable energy.” Accessed: Feb. 24, 2024. [Online]. Available: https://www.irena.org/publications/2014/Jun/Salinity-Gradient

P. Palenzuela et al., “Performance Analysis of a RED-MED Salinity Gradient Heat Engine,” Energies, vol. 11, no. 12, p. 3385, Dec. 2018, doi: 10.3390/en11123385.

M. Vanoppen, G. Blandin, S. Derese, P. Le Clech, J. Post and A. R. D. Verliefde, “9 - Salinity gradient power and desalination,” in Sustainable Energy from Salinity Gradients, A. Cipollina and G. Micale, Eds., Woodhead Publishing, 2016, pp. 281–313. doi: 10.1016/B978-0-08-100312-1.00009-2.

W.-S. Hsu, A. Preet, T.-Y. Lin and T.-E. Lin, “Miniaturized Salinity Gradient Energy Harvesting Devices,” Molecules, vol. 26, no. 18, Art. no. 18, Jan. 2021, doi: 10.3390/molecules26185469.




DOI (PDF): https://doi.org/10.20508/ijrer.v14i4.15304.g8963

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4