Analysis of Distributed Geographical Locations Impact on Intermittency Reduction of Solar Power Plants in Java, Madura, and Bali, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
IEA, “An Energy Sector Roadmap to Net Zero Emissions in Indonesia,” International Energy Agency, Special Report, 2022. [Online]. Available: https://www.iea.org/reports/an-energy-sector-roadmap-to-net-zero-emissions-in-indonesia
MEMR, “Rencana Usaha Penyedia Tenaga Listrik (RUPTL) PT PLN (Persero) Tahun 2021-2030,” Ministry of Energy and Mineral Resources, Ministerial Decree 188.K/HK.02/MEM.L/2021, Sep. 2021.
C. Wu, X.-P. Zhang, and M. Sterling, “Solar power generation intermittency and aggregation,” Sci Rep, DOI: 10.1038/s41598-022-05247-2, vol. 12, no. 1, Art. no. 1, Jan. 2022.
K. Adye, N. Pearre, and L. Swan, “Contrasting distributed and centralized photovoltaic system performance using regionally distributed pyranometers,” Solar Energy, DOI: 10.1016/j.solener.2017.11.042, vol. 160, pp. 1–9, Jan. 2018.
J. J. Cook, K. B. Ardani, E. J. O’Shaughnessy, R. M. Margolis, and B. Smith, “Expanding PV Value: Lessons Learned from Utility-led Distributed Energy Resource Aggregation in the United States,” National Renewable Energy Lab. (NREL), Golden, CO (United States), NREL/TP-6A20-71984, Nov. 2018. DOI: 10.2172/1483067,
M. R. Aldeman, J. H. Jo, D. G. Loomis, and B. Krull, “Reduction of solar photovoltaic system output variability with geographical aggregation,” Renewable and Sustainable Energy Transition, DOI: 10.1016/j.rset.2023.100052, vol. 3, p. 100052, Aug. 2023.
P. Haurant, M. Muselli, L. Gaillard, and P. Oberti, “A new methodology to analyse and optimize territorial compensations of solar radiation intermittency: A case study in Corsica Island (France),” Renewable Energy, DOI: 10.1016/j.renene.2021.12.010, vol. 185, pp. 598–610, Feb. 2022.
T. Hookoom, K. Bangarigadu, and Y. K. Ramgolam, “Optimisation of geographically deployed PV parks for reduction of intermittency to enhance grid stability,” Renewable Energy, DOI: 10.1016/j.renene.2022.02.007, vol. 187, pp. 1020–1036, Mar. 2022.
R. Perez, S. Kivalov, J. Schlemmer, K. Hemker, and T. E. Hoff, “Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance,” Solar Energy, DOI: 10.1016/j.solener.2012.02.027, vol. 86, no. 8, pp. 2170–2176, Aug. 2012.
A. Mills and R. Wiser, “Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power,” LBNL-3884E, 986925, Aug. 2010. DOI: 10.2172/986925,
M. Lave and J. Kleissl, “Solar variability of four sites across the state of Colorado,” Renewable Energy, DOI: 10.1016/j.renene.2010.05.013, vol. 35, no. 12, pp. 2867–2873, Dec. 2010.
K. Klima and J. Apt, “Geographic smoothing of solar PV: results from Gujarat,” Environ. Res. Lett., DOI: 10.1088/1748-9326/10/10/104001, vol. 10, no. 10, p. 104001, Oct. 2015.
H. Halidah, A. Prastawa, Z. A. Fikriyadi, F. Mardiansah, Riza, and N. A. Aryono, “The Geographic Smoothing Potential of Solar Irradiation in Java, Madura, and Bali Electric Power System,” in 2022 5th International Conference on Power Engineering and Renewable Energy (ICPERE), Bandung, Indonesia: IEEE, Nov. 2022, pp. 1–5. DOI: 10.1109/ICPERE56870.2022.10037361.
J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Third. the United States: Prentice-Hall, 1996.
K. Klima, J. Apt, M. Bandi, P. Happy, C. Loutan, and R. Young, “Geographic smoothing of solar photovoltaic electric power production in the Western USA,” Journal of Renewable and Sustainable Energy, DOI: 10.1063/1.5038028, vol. 10, no. 5, p. 053504, Sep. 2018.
P. S. Kundur and O. P. Malik, Power System Stability and Control, Second. the United States: McGraw Hill, 2022.
W. Katzenstein, E. Fertig, and J. Apt, “The variability of interconnected wind plants,” Energy Policy, DOI: 10.1016/j.enpol.2010.03.069, vol. 38, no. 8, pp. 4400–4410, Aug. 2010.
T. E. Hoff and R. Perez, “Modeling PV fleet output variability,” Solar Energy, DOI: 10.1016/j.solener.2011.11.005, vol. 86, no. 8, pp. 2177–2189, Aug. 2012.
A. Prastawa, A. Rezavidi, D. M. Dolaputra, Y. S. Perdana, D. E. Hindarto, and Y. S. Hadi, “Hosting Capacity of Solar Power Plant in Java Madura Bali,” in 2022 5th International Conference on Power Engineering and Renewable Energy (ICPERE), Bandung, Indonesia: IEEE, Nov. 2022, pp. 1–5. DOI: 10.1109/ICPERE56870.2022.10037282.
Bidang Perencanaan, P2B, Ed., Evaluasi Operasi Sistem Tenaga Listrik Jawa Bali 2015. PT PLN (PERSERO) P2B - Bidang Perencanaan, 2016.
M. P. Marbun, A. Y. Salile, and A. S. Surya, “Grid Impact Study of Variable Renewable Energy Integration to Java-Bali System,” in 2018 8th International Conference on Power and Energy Systems (ICPES), Colombo, Sri Lanka: IEEE, Dec. 2018, pp. 182–189. DOI: 10.1109/ICPESYS.2018.8626922,
I. J. Perez-Arriaga, “Managing Large-Scale Penetration of Intermittent Renewables,” presented at the MIT Energy Initiative Symposium, MIT, Apr. 2011.
MEMR, “Aturan Jaringan Sistem Tenaga Listrik (Grid Code),” Ministry of Energy and Mineral Resources, Ministerial Decree 20/2020, Dec. 2020.
DOI (PDF): https://doi.org/10.20508/ijrer.v14i3.14420.g8938
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4