Finite Element Analysis for Dynamic Simulation of Composite HAWT Blade
Abstract
Wind turbines harvest wind energy and transform it into electricity every day, offering a sustainable energy source. The case study for this research was a HAWT (horizontal-axis wind turbine). General Electric's 1.5 MW series of HAWT was examined using a finite element FE modelling approach. The one-way connection was subjected to a fluid-mechanical, fluid-structural interaction (FSI) investigation. The maximum distortion energy theory may be used to determine the maximum value of strains on a HAWT, and total deformation at various speeds was discovered to be at 7, 10, 12, 15, and 20 m/s. Five composite materials were compared, including epoxy-S-glass, epoxy-e-glass, epoxy-carbon, Kevlar, and Technora. The reported results and the CFD and mode shape values agreed reasonably well.
Keywords
Full Text:
PDFReferences
A.A.S. Moussa, Wind Energy in Egypt, DEWI Mag. Nr 17, August 2000. (2000) 55–57.
M.O.L. Hansen, Aerodynamics of Wind Turbines, 2008.
G. Hou, J. Wang, A. Layton, Numerical methods for fluid-structure interaction - A review, Commun. Comput. Phys. 12 (2012) 337–377. https://doi.org/10.4208/cicp.291210.290411s.
K. Lee, Z. Huque, R. Kommalapati, S.E. Han, Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis, Renew. Energy. 113 (2017) 512–531. https://doi.org/10.1016/j.renene.2017.02.071.
M. V. Munteanu, M.D. Stanciu, S.M. N?stac, A. Savin, Modal analysis of small turbine blade made from glass fibres composites, IOP Conf. Ser. Mater. Sci. Eng. 444 (2018). https://doi.org/10.1088/1757-899X/444/6/062004.
E.A.Z. Khazem, O.I. Abdullah, L.A. Sabri, Steady-state and vibration analysis of a WindPACT 1.5-MW turbine blade, FME Trans. 47 (2019) 195–201. https://doi.org/10.5937/fmet1901195K.
R. Roul, A. Kumar, Fluid-structure interaction of wind turbine blade using four different materials: Numerical investigation, Symmetry (Basel). 12 (2020). https://doi.org/10.3390/sym12091467.
M. Lipian, P. Czapski, D. Obidowski, Fluid-structure interaction numerical analysis of a small, urban wind turbine blade, Energies. 13 (2020) 1–15. https://doi.org/10.3390/en13071832.
J. Lambert, A.R. Chambers, I. Sinclair, S.M. Spearing, Damage Characterisation and the Role of Voids in, (n.d.) 1–6.
L. Wang, R. Quant, A. Kolios, Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA, J. Wind Eng. Ind. Aerodyn. 158 (2016) 11–25. https://doi.org/10.1016/j.jweia.2016.09.006.
L. Wang, A. Kolios, T. Nishino, P.L. Delafin, T. Bird, Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm, Compos. Struct. 153 (2016) 123–138. https://doi.org/10.1016/j.compstruct.2016.06.003.
E. Shamso, M. Elhadek, G. Osmun, A. El-Megharbel, Fatigue Cycling of NACA 821 Blades in Horizontal Wind Turbines, SYLWAN. (2019) 79–99.
M. Rajaram Narayanan, S. Nallusamy, Analysis on vibration characteristics of wind turbine blade to improve the effectiveness through cfd developed by ansys, Mater. Sci. Forum. 937 MSF (2018) 43–50. https://doi.org/10.4028/www.scientific.net/MSF.937.43.
K. Natarajan, T. Suthakar, Insight aerodynamic analysis on small-scale wind turbines airfoils for low Reynolds number applications, Environ. Prog. Sustain. Energy. 41 (2022). https://doi.org/10.1002/ep.13807.
Stephen Timoshenko - Strength of Materials_ Elementary Theory and Problems - Vol. I-CBS (1 December 200).pdf, n.d.
M.A. El-Hadek, Dynamic equivalence of ultrasonic stress wave propagation in solids, Ultrasonics. 83 (2018) 214–221. https://doi.org/10.1016/j.ultras.2017.06.007.
B.R. Resor, J. Paquette, Printed October 2012 A NuMAD Model of the Sandia TX-100 Blade, (2012).
F.K. Benra, H.J. Dohmen, J. Pei, S. Schuster, B. Wan, A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions, J. Appl. Math. 2011 (2011). https://doi.org/10.1155/2011/853560.
G. Ingram, Wind Turbine Blade Analysis using the Blade Element Momentum Method., October. 1.1 (2011) 1–21. https://community.dur.ac.uk/g.l.ingram/download/wind_turbine_design.pdf.
T.C.E.T. Cest, Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns, (2017) 27–28.
J.M. Jonkman, M.L. Buhl Jr, FAST User’s Guide 2005, Contract. (2005).
P.J. Schubel, R.J. Crossley, Wind turbine blade design, Wind Turbine Technol. Princ. Des. (2014) 1–34. https://doi.org/10.1201/b16587.
D.M. Somers, The S829 Airfoil Period of Performance : 1994 – 1995 The S829 Airfoil, (2005) 1994–1995.
E. Herter, Wind turbine., (1979).
https://en.wind-turbine-models.com/turbines/656-ge-general-electric-ge-1.5xle, (n.d.).
airfoiltools, (n.d.). http://airfoiltools.com/airfoil/details?airfoil=s818-nr.
ANSYS Inc., Ansys Fluent 14.0 Tutorial Guide, Ansys INC. 15317 (2009) 724–746. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ANSYS+FLUENT+Tutorial+Guide#0.
Fluent, Ansys, Ansys Fluent 16.0 Theory Guide, (2016).
Fluent, Ansys. “Ansys Fluent 12.0 Theory Guide.” ANSYS Inc., Canonsburg, PA (2009)., (n.d.).
M.B. Farghaly, E.S. Abdelghany, Study the Effect of Trailing Edge Flap Deflection on Horizontal Axis Wind Turbine Performance Using Computational Investigation, Int. J. Renew. Energy Res. 12 (2022) 1942–1953. https://doi.org/10.20508/ijrer.v12i4.13433.g8617.
K. Osintsev, S. Aliukov, A. Shishkov, Improvement dependability of offshore horizontal-axis wind turbines by applying new mathematical methods for calculation the excess speed in case of wind gusts, Energies. 14 (2021). https://doi.org/10.3390/en14113085.
N.A. Mezaal, K. V. Osintsev, S. V. Alyukov, The computational fluid dynamics performance analysis of horizontal axis wind turbine, Int. J. Power Electron. Drive Syst. 10 (2019) 1072–1080. https://doi.org/10.11591/ijpeds.v10.i2.1072-1080.
E.H. Dill, The finite element method for mechanics of solids with ANSYS applications, 2011. https://doi.org/10.1201/b11455.
X. Chen, Y. Liu, Finite element modeling and simulation with ANSYS workbench, 2014. https://doi.org/10.1201/b17284.
S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, 2007. http://www.amazon.com/Finite-Element-Analysis-Application-Edition/dp/0131890808.
Ansys, ANSYS Workbench Release 10.0, ANSYS Work. Release 10.0. (2005). http://kashanu.ac.ir/Files/Content/ANSYS Workbench.pdf.
SHELL181, (n.d.).
Y.A. Bahei-El-din, Finite element analysis of viscoplastic composite materials and structures, 1996. https://doi.org/10.1080/10759419608945852.
A. Ismaiel, S. Metwalli, S. Yoshida, VERIFICATION OF EQUIVALENT ISOTROPIC MODEL FOR A COMPOSITE HAWT, (2016).
DOI (PDF): https://doi.org/10.20508/ijrer.v13i2.13914.g8754
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4