Experimental Validation Under dSPACE of the ANN-PID Control of the DC Link for Injection of Solar Energy to the Grid

Daouda Gueye, Alphoussenyi Ndiaye, Amadou Diao, Mahamadou Abdou Tankari, Mamadou Traore, El Hadji Mbaye Ndiaye, Amadou Ba

Abstract


Dans cet article, l'objectif principal est de faire une validation expérimentale de la Dérivée Intégrale Proportionnelle adaptative basée sur le Réseau de Neurones Artificiels (PID-ANN). Cette technique est utilisée pour réguler la tension de liaison CC d'un convertisseur CC-CA triphasé photovoltaïque (3P-DC-A2C) connecté au réseau. Les résultats de la simulation montrent que le contrôle neuronal assure une meilleure tension de liaison continue et une forme sinusoïdale des courants injectés. Ces résultats de simulation de la tension de liaison continue sont prouvés par ceux expérimentaux où l'on trouve le meilleur suivi de la tension de référence de liaison continue avec une précision optimale en utilisant le PID neuronal que le PID classique. Un temps de réponse de 10 ms est également obtenu contre 55 ms du PID classique. Avec un changement brutal, la méthode proposée prouve sa robustesse et sa stabilité.


Full Text:

PDF

References


M. Akil, E. Dokur, and R. Bayindir, “A Coordinated EV Charging Scheduling Containing PV System”, International Journal of Smart Grid, pp. 66-71, Vol.6, No.3, September, 2022.

P. Mahesh, S. Meyyappan, and R. Alla “Maximum Power Point Tracking with Regression Machine Learning Algorithms for Solar PV systems,” International Journal of Renewable Energy Research, Vol.12, No.3, September 2022.

A. Nureddin, J. Rahebi, and A. Ab-BelKhair, “Power Management Controller for Microgrid Integration of Hybrid PV/Fuel Cell System Based on Artificial Deep Neural Network,” International Journal of Photoenergy, Article ID 8896412, 21 pages, 2020.

B. Boukezata, J. Gaubert, A. Chaoui, and M. Hachemi, “Photovoltaic generator with direct power control and connected with the addition of services to the grid,” Symposium of Electrical Engineering, Grenoble, France, 2016.

S. Jaber, and A. Shakir, “Design and Simulation of a Boost-Microinverter for Optimized Photovoltaic System Performance”, International Journal of Smart Grid, Vol.5, No.2, pp. 94-102, June, 2021.

S. Ilyas, A. Hassan, H. Mufti, “Review of the Renewable Energy Status and Prospects in Pakistan”, International Journal of Smart Grid, Vol.5, No.4, pp. 167-173, December 2022.

Y. Sun, M. Sun, and X. Tang, “Influence Analysis of Renewable Energy on Crude Oil Future Market,” 3rd IEEE International Conference on Green Energy and Applications, 2019.

S. Benhadouga, A. Belkaid , I. Colak, M. Meddad, and A. Eddiaie, “Experimental Validation of The Sliding Mode Controller to Improve The Efficiency of The MPPT Solar System”, 10th IEEE International Conference on Renewable Energy Research and Applications, pp. 333-337, Istanbul, 26-29 September 2021.

D. Thiam, “Renewable decentralized in developing countries: Appraisal from microgrids project in Senegal”, Renewable Energy, 2010, doi.org/10.1016/j.renene.2010.01.015, Vol.35, pp. 1615-1623.

F. Ayadi, I. Colak, I. Garip, and H. Bulbul, “Impacts of Renewable Energy Resources in Smart Grid,” 8th IEEE International Conference on Smart Grid, Paris, pp. 183-188, June 17-19, 2020.

A. Ab-BelKhair, J. Rahebi, A. Abdulhamed, “A Study of Deep Neural Network Controller-Based Power Quality Improvement of Hybrid PV/Wind Systems by Using Smart Inverter,” International Journal of Photoenergy, Article ID 8891469, 22 pages, 2020.

I. Hussein, Ö. Çelik, and A. Tek, “A hybrid random parameters modification to MPPT algorithm to mitigate interharmonics from single-phase grid-connected PV systems,” Energy Reports, pp. 6234–6244, 2022.

N. Gira, and A. Dahiya, “Solar PV-BES in distribution system with novel technique for DC voltage regulation,” Engineering Science and Technology, an International Journal, pp. 1058–1067, 2020.

D. Gueye, A. Ndiaye, and A. Diao, “Novel Approach Based on Artificial Neural Networks (ANN) for Controlling the Three-phase Inverter of a Photovoltaic System Connected to the Grid,” J. P. Soaphys, doi.org/10.46411/jpsoaphys.2021.01.09, Vol 3, N°1, C21A09.

Q. Hu, Y. Xiong, C. Liu, G. Wang, and Y. Ma, “Transient Stability Analysis of Direct Drive Wind Turbine in DC-Link Voltage Control Timescale during Grid Fault,” Processes, 2022, doi.org/10.3390/pr10040774.

M. Merai, M. Naouar, I. Slama-Belkhodja, and E. Monmasson, “A systematic design methodology for DC-link voltage control of single phase grid-tied PV systems,” Mathematics and Computers in Simulation, 2020, doi.org/10.1016/j.matcom.2020.05.007.

D. Gueye, A. Ndiaye, M. Tankari, M. Faye, A. Thiam, L. Thiaw, and G. Lefebvre, “Design Methodology of Novel PID for Efficient Integration of PV Power to Electrical Distributed Network, International Journal of Smart Grid, Vol.2, No.1, pp. 78-86, March 2018.

X. Zhou, Q. Liu, Y. Ma, W. Li, and B. Xie, “A Modified LADRC-Based DC-Link Voltage Controller for Photovoltaic Grid-Connected Inverters,” Electronics, 2021, doi.org/10.3390/electronics10080877

M. Lakshmi, and M. Hemamalini, “Coordinated control of MPPT and voltage regulation using single stage high gain DC/ DC converter in a grid connected PV system,” Electric Power Systems Research, doi.org/10.1016/j.epsr.2018.12.011, 2019.

T. Benmiloud, and A. Omari, “Regulation of the supply voltage of the parallel active filter by an adaptive PI,” 4th International Conference on Computer Integrated Manufacturing CIP, 2007.

B. Malakondareddy, S. Kumar, N. Gounden, and I. Anand, “An adaptive PI control scheme to balance the neutral-point voltage in a solar PV fed grid connected neutral point clamped inverter,” Electrical Power and Energy Systems, 2019, doi.org/10.1016/j.ijepes.2019.03.012.

N. Aouchiche, "Meta-heuristic optimization algorithms based direct current and DC link voltage controllers for three-phase grid connected photovoltaic inverter, " Solar Energy, 2020, doi.org/10.1016/j.solener.2020.06.086.

B. Boukezata, A. Choui, J. Gaubert, and M. Hachemi, “Photovoltaic solar system connected to the grid and associated a parallel active filter," Symposium of Electrical Engineering, Cachan, France, 2014.

R. Latha, C. Bharatiraja, R. Palanisamy, and D. Subhransu, “Hysteresis Current Controller based Transformer-less Split Inductor NPC MLI for Grid Connected PV- System,” Procedia Engineering, 2013, doi: 10.1016/j.proeng.2013.09.094.

N. Altin, and I. Sefa, “dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter”, Energy Conversion and Management, 2012, doi:10.1016/j.enconman.2011.11.017, 2012.

B. Sahoo, S. Routray, and P. Rout, “Artificial Neural Network Based PI Controlled Reduced Switch Cascaded Multilevel Inverter Operation in Wind Energy Conversion System with Solid State Transformer”, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, doi.org/10.1007/s40998-019-00215-5, pp. 1053–1073.

B. Sujatha, and G. Anitha, “Enhancement of PQ in grid connected PV system using hybrid technique”, Ain Shams Engineering Journal, 2016, doi.org/10.1016/j.asej.2016.04.007.

A. Mohamed, H. Metwally, A. El-sayed, and S. Selem, “Predictive neural network based adaptive controller for grid-connected PV systems supplying pulse-load”, Solar Energy, 2019, doi.org/10.1016/j.solener.2019.09.018.

S. Meddour, D. Rahem, A. Yahia, W. Hachelfi, and L. Hichem, “A novel novel approach for PV system based on metaheuristic algorithm connected to grid using FS-MPC controller”, Energy Procedia, 2019, doi.org/10.1016/j.egypro.04.007.

S. Sathiya, and K. Punitha, “Artificial Neural Network for Control and Grid Integration of Floating Solar Photovoltaic System”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2018, doi:10.15662/IJAREEIE.2018.0711009

B. Binh, M. Hoan, T. Minh, and P. Vu, “An Artificial Neural Network-Based Model Predictive Control Of Cascaded H-Bridge Multilevel Inverter”, International Journal of Renewable Energy Research, Vol.12, No.3, September 2022.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i4.13391.g8562

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4