Recent Developments in AC and DC Microgrids: Systematic Evaluation of Protection Schemes

V. SHANMUGAPRIYA, S. Vidyasagar, K. Vijayakumar

Abstract


A microgrid is a conventional breakthrough for the present power grid. A microgrid generally comprises microsources with diversity such as Solar, Wind, Fuel cells, generators, loads, and storage devices. Microgrid competency has strengthened the grid system by employing green energy to supply excessive load to customers at their premises. This potentiality of the microgrid to the extent has reduced transmission losses and huge investments incurred for the transmission lines. Although microgrid possesses more advantages in the current scenario, the issue arises in the protection and stability when connected with the existing grid. The conventional protection schemes oversight the faults in a microgrid due to varied fault current levels for various operating modes, bidirectional power flow, and renewable energy sources intermittency. The major issues arise in fault detection and identification particularly in an Inverter-based microgrid (IBMG). In this paper, a systematic evaluation of microgrids giving an insight into AC and DC microgrids is presented. Furthermore, the recent developments in AC and DC microgrid protection schemes are comprehensively discussed and classified. Prospective improvements for protection techniques in the future are suggested at the end of this paper.

Keywords


electrical engineering

Full Text:

PDF

References


M. Usama et al., “A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks,” IEEE Access, vol. 9, pp. 35740–35765, 2021, doi: 10.1109/ACCESS.2021.3061919.

N. Rezaei and M. N. Uddin, “An Analytical Review on State-of-the-Art Microgrid Protective Relaying and Coordination Techniques,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2258–2273, 2021, doi: 10.1109/TIA.2021.3057308.

R. Lazzari et al., “Selectivity and security of DC microgrid under line-to-ground fault,” Electr. Power Syst. Res., vol. 165, no. February, pp. 238–249, 2018, doi: 10.1016/j.epsr.2018.09.001.

A. Hooshyar and R. Iravani, “Microgrid Protection,” Proc. IEEE, vol. 105, no. 7, pp. 1332–1353, 2017, doi: 10.1109/JPROC.2017.2669342.

T. Wang et al., “Review of Coordinated Control Strategy for AC/DC Hybrid Microgrid,” 2nd IEEE Conf. Energy Internet Energy Syst. Integr. EI2 2018 - Proc., pp. 1–6, 2018, doi: 10.1109/EI2.2018.8581990.

S. Mirsaeidi, D. Mat Said, M. Wazir Mustafa, M. Hafiz Habibuddin, and K. Ghaffari, “Progress and problems in micro-grid protection schemes,” Renew. Sustain. Energy Rev., vol. 37, pp. 834–839, 2014, doi: 10.1016/j.rser.2014.05.044.

V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE J. Power Energy Syst., vol. 3, no. 4, pp. 365–379, 2017, doi: 10.17775/cseejpes.2017.00030.

H. Al-Nasseri, M. A. Redfern, and F. Li, “A voltage based protection for micro-grids containing power electronic converters,” 2006 IEEE Power Eng. Soc. Gen. Meet. PES, pp. 1–7, 2006, doi: 10.1109/pes.2006.1709423.

T. Loix, T. Wijnhoven, and G. Deconinck, “Protection of microgrids with a high penetration of inverter-coupled energy sources,” 2009 CIGRE / EEE PES Jt. Symp. Integr. Wide-Scale Renew. Resour. into Power Deliv. Syst., pp. 2–7, 2009.

K. A. Saleh, A. Hooshyar, and E. F. El-Saadany, “Hybrid Passive-Overcurrent Relay for Detection of Faults in Low-Voltage DC Grids,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1129–1138, 2017, doi: 10.1109/TSG.2015.2477482.

S. R. B. Vanteddu, A. Mohamed, and O. Mohammed, “Protection design and coordination of DC Distributed Power Systems Architectures,” IEEE Power Energy Soc. Gen. Meet., 2013, doi: 10.1109/PESMG.2013.6673038.

P. Cairoli, I. Kondratiev, and R. A. Dougal, “Coordinated control of the bus tie switches and power supply converters for fault protection in DC microgrids,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2037–2047, 2013, doi: 10.1109/TPEL.2012.2214790.

G. Madingou, M. Zarghami, and M. Vaziri, “Fault detection and isolation in a DC microgrid using a central processing unit,” 2015 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. ISGT 2015, pp. 0–4, 2015, doi: 10.1109/ISGT.2015.7131858.

A. Meghwani, S. C. Srivastava, and S. Chakrabarti, “A Non-unit Protection Scheme for DC Microgrid Based on Local Measurements,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 172–181, 2017, doi: 10.1109/TPWRD.2016.2555844.

B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, “AC microgrid protection – A review: Current and future prospective,” Appl. Energy, vol. 271, no. March, p. 115210, 2020, doi: 10.1016/j.apenergy.2020.115210.

K. S. Rajesh, S. S. Dash, R. Rajagopal, and R. Sridhar, “A review on control of ac microgrid,” Renew. Sustain. Energy Rev., vol. 71, no. December, pp. 814–819, 2017, doi: 10.1016/j.rser.2016.12.106.

X. S. Zhou, L. Q. Cui, and Y. J. Ma, “Research on control of micro grid,” Proc. - 3rd Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2011, vol. 2, pp. 1129–1132, 2011, doi: 10.1109/ICMTMA.2011.565.

A. Chandra, G. K. Singh, and V. Pant, “Protection techniques for DC microgrid- A review,” Electr. Power Syst. Res., vol. 187, no. March, p. 106439, 2020, doi: 10.1016/j.epsr.2020.106439.

J. Kumar, A. Agarwal, and V. Agarwal, “A review on overall control of DC microgrids,” J. Energy Storage, vol. 21, no. April 2018, pp. 113–138, 2019, doi: 10.1016/j.est.2018.11.013.

T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876–4891, 2016, doi: 10.1109/TPEL.2015.2478859.

F. Lin, X. Zhang, and H. Liao, “Interlinking Converter in Hybrid Microgrid,” 2019, pp. 6314–6319, 2019.

J. Wsul, F. R. P. Fq, N. Wsul, and F. R. P. Fq, “5Hvhdufk Dqg 6Lpxodwlrq Ri +Eulg $& ’& 0Lfurjulg,” pp. 1276–1280, 2020.

D. K. J. S. Jayamaha, N. W. A. Lidula, and A. D. Rajapakse, “Wavelet-Multi Resolution Analysis Based ANN Architecture for Fault Detection and Localization in DC Microgrids,” IEEE Access, vol. 7, pp. 145371–145384, 2019, doi: 10.1109/ACCESS.2019.2945397.

S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero, “DC Microgrid Protection: A Comprehensive Review,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6777, no. c, pp. 1–1, 2019, doi: 10.1109/jestpe.2019.2904588.

D. Salomonsson, L. Söder, and A. Sannino, “Protection of low-voltage DC microgrids,” IEEE Trans. Power Deliv., vol. 24, no. 3, pp. 1045–1053, 2009, doi: 10.1109/TPWRD.2009.2016622.

P. V. Dahiwale and N. M. Pindoriya, “Review on Fault Management in Hybrid Microgrid,” Proc. 2019 IEEE Reg. 10 Symp. TENSYMP 2019, vol. 7, pp. 415–422, 2019, doi: 10.1109/TENSYMP46218.2019.8971122.

M. Tsili and S. Papathanassiou, “A review of grid code technical requirements for wind farms,” IET Renew. Power Gener., vol. 3, no. 3, pp. 308–332, 2009, doi: 10.1049/iet-rpg.2008.0070.

O. Veneri, “Technologies and applications for smart charging of electric and plug-in hybrid vehicles,” Technol. Appl. Smart Charg. Electr. Plug-in Hybrid Veh., pp. 1–307, 2016, doi: 10.1007/978-3-319-43651-7.

B. Hussain, S. M. Sharkh, S. Hussain, and M. A. Abusara, “Integration of distributed generation into the grid: Protection challenges and solutions,” IET Conf. Publ., vol. 2010, no. 558 CP, 2010, doi: 10.1049/cp.2010.0347.

P. P. Barker and R. W. De Mello, “Determining the impact of distributed generation on power systems: Part 1 - Radial distribution systems,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., vol. 3, no. c, pp. 1645–1656, 2000, doi: 10.1109/pess.2000.868775.

A. Jalilian, M. T. Hagh, and S. M. Hashemi, “An innovative directional relaying scheme based on postfault current,” IEEE Trans. Power Deliv., vol. 29, no. 6, pp. 2640–2647, 2014, doi: 10.1109/TPWRD.2014.2312019.

H. Zayandehroodi, A. Mohamed, H. Shareef, and M. Mohammadjafari, “A comprehensive review of protection coordination methods in power distribution systems in the presence of DG,” Prz. Elektrotechniczny, vol. 87, no. 8, pp. 142–148, 2011.

M. P. Comech, M. Garcia-Gracia, S. Borroy, and M. T. Ville, “Protection in Distributed Generation,” Distrib. Gener., no. March 2014, 2010, doi: 10.5772/8887.

V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, and N. D. Hatziargyriou, “Hardware-In-the-Loop Design and Optimal Setting of Adaptive Protection Schemes for Distribution Systems with Distributed Generation,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 393–400, 2017, doi: 10.1109/TPWRD.2015.2509784.

S. P. Valsan and K. S. Swarup, “Wavelet transform based digital protection for transmission lines,” Int. J. Electr. Power Energy Syst., vol. 31, no. 7–8, pp. 379–388, 2009, doi: 10.1016/j.ijepes.2009.03.024.

K. I. Jennett, C. D. Booth, F. Coffele, and A. J. Roscoe, “Investigation of the sympathetic tripping problem in power systems with large penetrations of distributed generation,” IET Gener. Transm. Distrib., vol. 9, no. 4, pp. 379–385, 2015, doi: 10.1049/iet-gtd.2014.0169.

P. Pinchukov and S. Makasheva, “The False Tripping of Relay Protection in Parallel Lines: Finding Cause and Solution Methods,” Adv. Intell. Syst. Comput., vol. 692, pp. 154–161, 2018, doi: 10.1007/978-3-319-70987-1_16.

S. K. H. Hamza, “Piloted Protection Solutions For Distribution Networks With Integrated Distributed Energy Resources,” no. August 2017, 2017.

S. Choudhury, “A comprehensive review on issues, investigations, control and protection trends, technical challenges and future directions for Microgrid technology,” Int. Trans. Electr. Energy Syst., vol. 30, no. 9, 2020, doi: 10.1002/2050-7038.12446.

J. Rocabert, G. M. S. Azevedo, A. Luna, J. M. Guerrero, J. I. Candela, and P. Rodrguez, “Intelligent connection agent for three-phase grid-connected microgrids,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2993–3005, 2011, doi: 10.1109/TPEL.2011.2116126.

A. F. Agbetuyi et al., “Investigation of the Impact of Distributed Generation on Power System Protection,” Adv. Sci. Technol. Eng. Syst. J., vol. 6, no. 2, pp. 324–331, 2021, doi: 10.25046/aj060237.

S. Ganesan, S. Padmanaban, R. Varadarajan, U. Subramaniam, and L. Mihet-Popa, “Study and analysis of an intelligent microgrid energy management solution with distributed energy sources,” Energies, vol. 10, no. 9, 2017, doi: 10.3390/en10091419.

M. Yadav and D. Saini, “Review and Compliances of Grid Code with Renewable Energy (RE) Integration,” Mnre, 2017.

N. Bayati, A. Hajizadeh, and M. Soltani, “Protection in DC microgrids: A comparative review,” IET Smart Grid, vol. 1, no. 3, pp. 66–75, 2018, doi: 10.1049/iet-stg.2018.0035.

L. Hallemans et al., “Fault Identification and Interruption Methods in Low Voltage DC Grids-A Review,” 2019 IEEE 3rd Int. Conf. DC Microgrids, ICDCM 2019, 2019, doi: 10.1109/ICDCM45535.2019.9232856.

J. Mohammadi, F. B. Ajaei, and G. Stevens, “Grounding the DC Microgrid,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 4490–4499, 2019, doi: 10.1109/TIA.2019.2928278.

D. Guedon, P. Ladoux, S. Sanchez, and S. Cornet, “Simulation Model to Analyze the Consequences of DC Faults in MMC-Based HVDC Stations,” Electricity, vol. 2, no. 2, pp. 124–142, 2021, doi: 10.3390/electricity2020008.

B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renew. Sustain. Energy Rev., vol. 67, pp. 988–997, 2017, doi: 10.1016/j.rser.2016.09.047.

S. Mirsaeidi, X. Dong, and D. M. Said, “Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies,” Renew. Sustain. Energy Rev., vol. 90, no. February, pp. 97–103, 2018, doi: 10.1016/j.rser.2018.03.046.

H. Sun, M. Rong, Z. Chen, C. Hou, and Y. Sun, “Investigation on the Arc phenomenon of air DC circuit breaker,” IEEE Trans. Plasma Sci., vol. 42, no. 10, pp. 2706–2707, 2014, doi: 10.1109/TPS.2014.2343257.

J. Lee and Y. Choi, “A Stability Improvement Method of DC Microgrid System Using Passive Damping and Proportional-Resonance ( PR ) Control,” 2021.

S. Samanta, S. Barman, J. P. Mishra, P. Roy, and B. K. Roy, “Energy management and damping improvement of a DC microgrid with constant power load using interconnection and damping assignment-passivity based control,” Trans. Inst. Meas. Control, vol. 43, no. 7, pp. 1545–1559, 2021, doi: 10.1177/0142331220960828.

R. Agrawal, D. D. Changan, and A. Bodhe, “Small signal stability analysis of stand-alone microgrid with composite load,” J. Electr. Syst. Inf. Technol., vol. 7, no. 1, 2020, doi: 10.1186/s43067-020-00020-9.

W. Wu et al., “A Virtual Inertia Control Strategy for DC Microgrids Analogized with Virtual Synchronous Machines,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 6005–6016, 2017, doi: 10.1109/TIE.2016.2645898.

J. Alipoor, Y. Miura, and T. Ise, “Power System Stabilization Using Virtual Synchronous Generator with Alternating Moment of Inertia,” vol. 6777, no. c, 2014, doi: 10.1109/JESTPE.2014.2362530.

A. Prasai, Y. Du, A. Paquette, E. Buck, and R. Harley, “Protection of Meshed Microgrids with Communication Overlay,” pp. 64–71, 2010.

C. Chandraratne, T. Logenthiran, R. T. Naayagi, and W. L. Woo, “Overview of Adaptive Protection System for Modern Power Systems,” Int. Conf. Innov. Smart Grid Technol. ISGT Asia 2018, pp. 1239–1244, 2018, doi: 10.1109/ISGT-Asia.2018.8467827.

H. Wan, K. K. Li, and K. P. Wong, “An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system,” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2118–2124, 2010, doi: 10.1109/TIA.2010.2059492.

J. S. Farkhani, M. Zareein, A. Najafi, and R. Melicio, “applied sciences The Power System and Microgrid Protection — A Review,” Appl. Sci., vol. 10, pp. 1–30, 2020, [Online]. Available: doi:10.3390/app10228271.

S. A. Hosseini, S. H. H. Sadeghi, and A. Nasiri, “Decentralized Adaptive Protection Coordination Based on Agents Social Activities for Microgrids with Topological and Operational Uncertainties,” IEEE Trans. Ind. Appl., vol. 57, no. 1, pp. 702–713, Jan. 2021, doi: 10.1109/TIA.2020.3028351.

R. Jain, D. L. Lubkeman, and S. M. Lukic, “Dynamic Adaptive Protection for Distribution Systems in Grid-Connected and Islanded Modes,” IEEE Trans. Power Deliv., vol. 34, no. 1, pp. 281–289, Feb. 2019, doi: 10.1109/TPWRD.2018.2884705.

O. Núñez-Mata, R. Palma-Behnke, F. Valencia, A. Urrutia-Molina, P. Mendoza-Araya, and G. Jiménez-Estévez, “Coupling an adaptive protection system with an energy management system for microgrids,” Electr. J., vol. 32, no. 10, p. 106675, 2019, doi: 10.1016/j.tej.2019.106675.

Deenbandhu Chhotu Ram University of Science and Technology. Department of Electrical Engineering, Institute of Electrical and Electronics Engineers. Delhi Section. PELS/IES Joint Chapter, Institute of Electrical and Electronics Engineers. Delhi Section. PES/IAS Joint Chapter, and Institute of Electrical and Electronics Engineers, PIICON 2020 : 9th IEEE Power India International Conference : conference digest : (28th February - 1st March 2020). .

B. Liao, J. Cheng, and G. Ren, Microgrid Adaptive Current Instantaneous Trip Protection. 2019.

P. P. R. Padamathilaka, E. M. A. G. N. C. Ekanayake, T. S. S. Senarathna, A. G. N. Dulmini, A. P. R. Prabash, and K. T. M. U. Hemapala, Centralized adaptive directional overcurrent protection system for a microgrid with relay coordination. 2020.

A. Ghoor and S. Chowdhury, “Design of Adaptive Overcurrent Protection Scheme for a Grid-Integrated Solar PV Microgrid,” 2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020, pp. 1–5, 2020, doi: 10.1109/PowerAfrica49420.2020.9219816.

S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, and N. Muñoz-Galeano, “Optimal coordination of over-current relays in microgrids considering multiple characteristic curves,” Alexandria Eng. J., vol. 60, no. 2, pp. 2093–2113, 2021, doi: 10.1016/j.aej.2020.12.012.

M. Usama, M. Moghavvemi, H. Mokhlis, N. N. Mansor, H. Farooq, and A. Pourdaryaei, “Optimal Protection Coordination Scheme for Radial Distribution Network Considering ON/OFF-Grid,” IEEE Access, vol. 9, pp. 34921–34937, 2021, doi: 10.1109/ACCESS.2020.3048940.

N. El-Naily, S. M. Saad, and F. A. Mohamed, “Novel approach for optimum coordination of overcurrent relays to enhance microgrid earth fault protection scheme,” Sustain. Cities Soc., vol. 54, no. December 2019, p. 102006, 2020, doi: 10.1016/j.scs.2019.102006.

A. Shabani and K. Mazlumi, “Evaluation of a Communication-Assisted Overcurrent Protection Scheme for Photovoltaic-Based DC Microgrid,” IEEE Trans. Smart Grid, vol. 11, no. 1, pp. 429–439, Jan. 2020, doi: 10.1109/TSG.2019.2923769.

V. Nougain, S. Mishra, and A. K. Pradhan, “MVDC Microgrid Protection Using a Centralized Communication With a Localized Backup Scheme of Adaptive Parameters,” IEEE Trans. Power Deliv., vol. 34, no. 3, pp. 869–878, 2019, doi: 10.1109/TPWRD.2019.2899768.

J. Nsengiyaremye, B. C. Pal, and M. M. Begovic, “Microgrid Protection Using Low-Cost Communication Systems,” IEEE Trans. Power Deliv., vol. 35, no. 4, pp. 2011–2020, 2020, doi: 10.1109/TPWRD.2019.2959247.

P. T. Manditereza and R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis,” Int. J. Electr. Power Energy Syst., vol. 118, no. August 2019, p. 105756, 2020, doi: 10.1016/j.ijepes.2019.105756.

M. R. Kaisar Rachi, M. Akhter Khan, and I. Husain, “Current Derivative Assisted Protection Coordination System for Faster Fault Isolation in A Radial DC Microgrid,” in ECCE 2020 - IEEE Energy Conversion Congress and Exposition, Oct. 2020, pp. 1292–1298, doi: 10.1109/ECCE44975.2020.9236126.

J. Mohammadi and F. B. Ajaei, “Adaptive Time Delay Strategy for Reliable Load Shedding in the Direct-Current Microgrid,” IEEE Access, vol. 8, pp. 114509–114518, 2020, doi: 10.1109/ACCESS.2020.3002935.

H. Lin, K. Sun, Z. H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 770–779, 2019, doi: 10.1049/iet-gtd.2018.6230.

I. Almutairy and M. Alluhaidan, “Fault Diagnosis Based Approach to Protecting DC Microgrid Using Machine Learning Technique,” Procedia Comput. Sci., vol. 114, pp. 449–456, 2017, doi: 10.1016/j.procs.2017.09.019.

H. C. Kilickran, B. Kekezoglu, and G. Nikolaos Paterakis, “Reinforcement learning for optimal protection coordination,” 2018, doi: 10.1109/SEST.2018.8495830.

J. J. Q. Yu, Y. Hou, A. Y. S. Lam, and V. O. K. Li, “Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1694–1703, 2019, doi: 10.1109/TSG.2017.2776310.

W. Li, A. Monti, and F. Ponci, “Fault detection and classification in medium voltage dc shipboard power systems with wavelets and artificial neural networks,” IEEE Trans. Instrum. Meas., vol. 63, no. 11, pp. 2651–2665, 2014, doi: 10.1109/TIM.2014.2313035.

Y. Y. Hong and M. T. A. M. Cabatac, “Fault Detection, Classification, and Location by Static Switch in Microgrids Using Wavelet Transform and Taguchi-Based Artificial Neural Network,” IEEE Syst. J., vol. 14, no. 2, pp. 2725–2735, 2020, doi: 10.1109/JSYST.2019.2925594.

H. Lahiji, F. Badrkhani Ajaei, and R. E. Boudreau, “Non-Pilot Protection of the Inverter- Dominated Microgrid,” IEEE Access, vol. 7, pp. 142190–142202, 2019, doi: 10.1109/ACCESS.2019.2944137.

B. Wang and L. Jing, “A Protection Method for Inverter-based Microgrid Using Current-only Polarity Comparison,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 3, pp. 446–453, 2020, doi: 10.35833/MPCE.2018.000722.

I. I. Microgrids, A. Soleimanisardoo, H. K. Karegar, H. H. Zeineldin, and S. Member, “on Off-Nominal Frequency Injections for,” vol. 10, no. 2, pp. 2107–2114, 2019.

S. F. Zarei, H. Mokhtari, and F. Blaabjerg, “Fault Detection and Protection Strategy for Islanded Inverter-Based Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 1, pp. 472–484, 2021, doi: 10.1109/JESTPE.2019.2962245.

N. Yadav and N. R. Tummuru, “A Real-Time Resistance Based Fault Detection Technique for Zonal Type Low-Voltage DC Microgrid Applications,” IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6815–6824, 2020, doi: 10.1109/TIA.2020.3017564.

R. Mohanty and A. K. Pradhan, “DC ring bus microgrid protection using the oscillation frequency and transient power,” IEEE Syst. J., vol. 13, no. 1, pp. 875–884, 2019, doi: 10.1109/JSYST.2018.2837748.

S. Mohammadi, M. Ojaghi, A. Jalilvand, and Q. Shafiee, “A pilot-based unit protection scheme for meshed microgrids using apparent resistance estimation,” Int. J. Electr. Power Energy Syst., vol. 126, no. PA, p. 106564, 2021, doi: 10.1016/j.ijepes.2020.106564.

W. T. El-Sayed, M. A. Azzouz, H. H. Zeineldin, and E. F. El-Saadany, “A Harmonic Time-Current-Voltage Directional Relay for Optimal Protection Coordination of Inverter-Based Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 1904–1917, 2021, doi: 10.1109/TSG.2020.3044350.

P. Cairoli, R. Rodrigues, and H. Zheng, “Fault current limiting power converters for protection of DC microgrids,” Conf. Proc. - IEEE SOUTHEASTCON, 2017, doi: 10.1109/SECON.2017.7925392.

Y. Shi and H. Li, “A novel modular dual-active-bridge (MDAB) DC-DC converter with dc fault ride-through capability for battery energy storage systems,” ECCE 2016 - IEEE Energy Convers. Congr. Expo. Proc., 2016, doi: 10.1109/ECCE.2016.7854739.

I. A. Gowaid, G. P. Adam, A. M. Massoud, S. Ahmed, D. Holliday, and B. W. Williams, “Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 108–123, 2015, doi: 10.1109/TPEL.2014.2306453.

Y. A. Harrye, K. H. Ahmed, and A. A. Aboushady, “DC fault isolation study of bidirectional dual active bridge DC/DC converter for DC transmission grid application,” IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 3193–3198, 2015, doi: 10.1109/IECON.2015.7392592.

D. Soto, M. Sloderbeck, H. Ravindra, and M. Steurer, “Advances to megawatt scale demonstrations of high speed fault clearing and power restoration in breakerless MVDC shipboard power systems,” 2017 IEEE Electr. Sh. Technol. Symp. ESTS 2017, pp. 312–315, 2017, doi: 10.1109/ESTS.2017.8069299.

K. A. Saleh, A. Hooshyar, and E. F. El-Saadany, “Ultra-high-speed traveling-wave-based protection scheme for medium-voltage DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1440–1451, 2019, doi: 10.1109/TSG.2017.2767552.

L. Chen et al., “Application and design of a resistive-type superconducting fault current limiter for efficient protection of a DC microgrid,” IEEE Trans. Appl. Supercond., vol. 29, no. 2, 2019, doi: 10.1109/TASC.2018.2882228.

R. L. D. C. Microgrids, “A Poverty Severity Index – Based Protection Strategy,” IEEE Trans. Smart Grid, vol. PP, no. c, p. 1, 2019.

N. K. Sharma and S. R. Samantaray, “PMU Assisted Integrated Impedance Angle-Based Microgrid Protection Scheme,” IEEE Trans. Power Deliv., vol. 35, no. 1, pp. 183–193, 2020, doi: 10.1109/TPWRD.2019.2925887.

A. Meghwani, R. Gokaraju, S. C. Srivastava, and S. Chakrabarti, “Local Measurements-Based Backup Protection for DC Microgrids Using Sequential Analyzing Technique,” IEEE Syst. J., vol. 14, no. 1, pp. 1159–1170, 2020, doi: 10.1109/JSYST.2019.2919144.

A. Meghwani, S. Chakrabarti, and S. C. Srivastava, “A fast scheme for fault detection in DC microgrid based on voltage prediction,” 2016 Natl. Power Syst. Conf. NPSC 2016, 2017, doi: 10.1109/NPSC.2016.7858867.

A. A. Sheikh, S. A. Wakode, R. R. Deshmukh, and M. S. Ballal, “A Protection Scheme for Fault Detection, Location and Isolation in DC Ring Microgrid,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 2109–2114, 2019, doi: 10.1109/IECON.2019.8927515.

M. Dewadasa, A. Ghosh, and G. Ledwich, “An inverse time admittance relay for fault detection in distribution networks containing DGs,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, pp. 1–6, 2009, doi: 10.1109/TENCON.2009.5396204.

T. S. Ustun, R. H. Khan, A. Hadbah, and A. Kalam, “An adaptive microgrid protection scheme based on a wide-area smart grid communications network,” 2013 IEEE Latin-America Conf. Commun. LATINCOM 2013 - Conf. Proc., 2013, doi: 10.1109/LatinCom.2013.6759822.

S. Dhar, R. K. Patnaik, and P. K. Dash, “Fault Detection and Location of Photovoltaic Based DC Microgrid Using Differential Protection Strategy,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4303–4312, 2018, doi: 10.1109/TSG.2017.2654267.

H. Lin, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Distance protection for microgrids in distribution system,” IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 731–736, 2015, doi: 10.1109/IECON.2015.7392186.




DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12377.g8338

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4