Extraction of Maximum Power of Grid Connected PV Systems Using Advanced FLC

Md. Naiem-Ur-Rahman Joy, Dr. Md. Masud Rana, Dr. Md. Fayzur Rahman

Abstract


In this paper, an advanced fuzzy controller is proposed for extracting maximum power from the PV panel both in fixed and changing conditions; changing conditions mean altering of temperature and irradiation level. This controller functions of extracting maximum power by finding the optimal point of the corresponding condition of the PV panel; known as maximum power point tracker (MPPT). The proposed controller is compared with some conventional along with some intelligence controllers such as P&O, INC, existing fuzzy and fuzzy optimized by a combination of PSO (particle swarm optimization). In each case it shows better performance in tracking the magnitude of the power from the PV panel which is up to 99%. Then the power is fed to the grid after extracting power from PV panel and when additionally, power is transferred to the grid, some losses occur as approximately 1.5% of the extracted power from the panel. From the investigation, it has been seen that there’s no undesired spike while tracking power in case of changing conditions. Tracking time is also the fastest when compared with the controllers which is 0.01 second. As the power is transmitted to the grid, THD analysis is also an important consideration and after analysing it, THD level of the grid voltage shows 0.04% after filtering which is very much satisfactory according to the IEEE standard.


Full Text:

PDF

References


N. K. Kasim, H. H. Hussain, and A. N. Abed, “Performance Analysis of Grid-Connected CIGS PV Solar System and Comparison with PVsyst Simulation Program,” Int. J. Smart Grid - ijSmartGrid, vol. 3, no. 4, pp. 172–179, 2019.

E. Demirkutlu and I. Iskender, “Grid Connected Three-Phase Boost-Inverter for Solar PV Systems,” Int. J. Renew. Energy Res., vol. 11, no.2, pp. 776-784,2021.

S. F. Jaber and A. M. Shakir, “Design and Simulation of a boost-Microinverter for Optimized Photovoltaic System Performance,” Int. J. Smart Grid, vol. 5, no. 2, pp. 94–102, 2021.

K. E. Okedu, H. A. L. Nadabi, and A. Aziz, “Prospects of Solar Energy in Oman : Case of Oil and Gas Industries,” Int. J. SMART GRID, vol. 3, no. 3, pp. 138–151, 2019, [Online]. Available: https://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/68.

B. Parida, S. Iniyan, and R. Goic, “A review of solar photovoltaic technologies,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1625–1636, 2011, doi: 10.1016/j.rser.2010.11.032.

B. Zafar, “Design of a renewable hybrid photovoltaic-electrolyze-PEM/fuel cell system using hydrogen gas,” Int. J. Smart Grid-ijSmartGrid, vol. 3, no. 4, 2019, [Online]. Available: https://ijsmartgrid.com/index.php/ijsmartgridnew/article/view/83.

A. Mellit, S. A. Kalogirou, L. Hontoria, and S. Shaari, “Artificial intelligence techniques for sizing photovoltaic systems: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 2, pp. 406–419, 2009, doi: 10.1016/j.rser.2008.01.006.

A. Loukriz, M. Haddadi, and S. Messalti, “Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems,” ISA Trans., vol. 62, pp. 30–38, 2016, doi: 10.1016/j.isatra.2015.08.006.

S. P. Durrani, S. Balluff, L. Wurzer, and S. Krauter, “Photovoltaic yield prediction using an irradiance forecast model based on multiple neural networks,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 2, pp. 255–267, 2018, doi: 10.1007/s40565-018-0393-5.

C. Ramulu, P. Sanjeevikumar, R. Karampuri, S. Jain, A. H. Ertas, and V. Fedak, “A solar PV water pumping solution using a three-level cascaded inverter connected induction motor drive,” Eng. Sci. Technol. an Int. J., vol. 19, no. 4, pp. 1731–1741, 2016, doi: 10.1016/j.jestch.2016.08.019.

S. Messalti, A. Harrag, and A. Loukriz, “A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation,” Renew. Sustain. Energy Rev., vol. 68, no. August 2015, pp. 221–233, 2017, doi: 10.1016/j.rser.2016.09.131.

T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, “New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 793–803, 2006, doi: 10.1109/TEC.2006.875430.

A. Achour, D. Rekioua, A. Mohammedi, Z. Mokrani, T. Rekioua, and S. Bacha, “Application of direct torque control to a photovoltaic pumping system with sliding-mode control optimization,” Electr. Power Components Syst., vol. 44, no. 2, pp. 172–184, 2016, doi: 10.1080/15325008.2015.1102182.

J. P. Dunlop, “Batteries and Charge Control in Stand-Alone Photovoltaic Systems Batteries and Charge Control in Stand-Alone Photovoltaic Systems Fundamentals and Application.”

A. N. A. Ali, M. H. Saied, M. Z. Mostafa, and T. M. Abdel- Moneim, “A survey of maximum PPT techniques of PV systems,” 2012 IEEE Energytech, Energytech 2012, 2012, doi: 10.1109/EnergyTech.2012.6304652.

N. Karami, N. Moubayed, and R. Outbib, “General review and classification of different MPPT Techniques,” Renew. Sustain. Energy Rev., vol. 68, no. July 2015, pp. 1–18, 2017, doi: 10.1016/j.rser.2016.09.132.

C. Liu, K. T. Chau, and X. Zhang, “An efficient wind-photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 831–839, 2010, doi: 10.1109/TIE.2009.2022511.

N. Moubayed, A. El-ali, and R. Outbib, “Control of an hybrid solar-wind system with acid battery for storage,” WSEAS Trans. POWER Syst., vol. 4, no. 9, pp. 307–318, 2009.

M. A. Sahnoun, H. M. R. Ugalde, J. C. Carmona, and J. Gomand, “Maximum power point tracking using P&O control optimized by a neural network approach: A good compromise between accuracy and complexity,” Energy Procedia, vol. 42, pp. 650–659, 2013, doi: 10.1016/j.egypro.2013.11.067.

T. H. Kwan and X. Wu, “High performance P&O based lock-on mechanism MPPT algorithm with smooth tracking,” Sol. Energy, vol. 155, pp. 816–828, 2017, doi: 10.1016/j.solener.2017.07.026.

N. S. D’Souza, L. A. C. Lopes, and X. J. Liu, “Comparative study of variable size perturbation and observation maximum power point trackers for PV systems,” Electr. Power Syst. Res., vol. 80, no. 3, pp. 296–305, 2010, doi: 10.1016/j.epsr.2009.09.012.

Y. Yang and H. Wen, “Adaptive perturb and observe maximum power point tracking with current predictive and decoupled power control for grid-connected photovoltaic inverters,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 2, pp. 422–432, 2019, doi: 10.1007/s40565-018-0437-x.

O. Guenounou, B. Dahhou, and F. Chabour, “Adaptive fuzzy controller based MPPT for photovoltaic systems,” Energy Convers. Manag., vol. 78, pp. 843–850, 2014, doi: 10.1016/j.enconman.2013.07.093.

Ö. Çelik and A. Teke, “A Hybrid MPPT method for grid connected photovoltaic systems under rapidly changing atmospheric conditions,” Electr. Power Syst. Res., vol. 152, pp. 194–210, 2017, doi: 10.1016/j.epsr.2017.07.011.

S. Belhimer, M. Haddadi, and A. Mellit, “A novel hybrid boost converter with extended duty cycles range for tracking the maximum power point in photovoltaic system applications,” Int. J. Hydrogen Energy, vol. 43, no. 14, pp. 6887–6898, 2018, doi: 10.1016/j.ijhydene.2018.02.136.

A. F. Murtaza, M. Chiaberge, F. Spertino, U. T. Shami, D. Boero, and M. De Giuseppe, “MPPT technique based on improved evaluation of photovoltaic parameters for uniformly irradiated photovoltaic array,” Electr. Power Syst. Res., vol. 145, pp. 248–263, 2017, doi: 10.1016/j.epsr.2016.12.030.

J. Ramos-Hernanz, J. M. Lopez-Guede, O. Barambones, E. Zulueta, and U. Fernandez-Gamiz, “Novel control algorithm for MPPT with Boost converters in photovoltaic systems,” Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 17831–17855, 2017, doi: 10.1016/j.ijhydene.2017.02.028.

A. I. Nusaif and A. L. Mahmood, “MPPT Algorithms (PSO, FA, and MFA) for PV System Under Partial Shading Condition, Case Study: BTS in Algazalia, Baghdad,” Int. J. Smart Grid-ijSmartGrid, vol. 4, no. 3, pp. 100–110, 2020.

L. Zhang, S. S. Yu, T. Fernando, H. H. C. Iu, and K. P. Wong, “An online maximum power point capturing technique for high-efficiency power generation of solar photovoltaic systems,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 2, pp. 357–368, Mar. 2019, doi: 10.1007/s40565-018-0440-2.

M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustain. Energy, vol. 3, no. 1, pp. 21–33, Jan. 2012, doi: 10.1109/TSTE.2011.2168245.

F. Bouchafaa, I. Hamzaoui, and A. Hadjammar, “Fuzzy logic control for the tracking of maximum power point of a PV system,” in Energy Procedia, Jan. 2011, vol. 6, pp. 633–642, doi: 10.1016/j.egypro.2011.05.073.

C. Ben Salah and M. Ouali, “Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems,” Electr. Power Syst. Res., vol. 81, no. 1, pp. 43–50, 2011, doi: 10.1016/j.epsr.2010.07.005.

C. H. Lin, C. H. Huang, Y. C. Du, and J. L. Chen, “Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method,” Appl. Energy, vol. 88, no. 12, pp. 4840–4847, 2011, doi: 10.1016/j.apenergy.2011.06.024.

M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, “Maximum power point tracking of multiple photovoltaic arrays: A PSO approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 367–380, 2011, doi: 10.1109/TAES.2011.5705681.

A. B. G. Bahgat, N. H. Helwa, G. E. Ahmad, and E. T. El Shenawy, “Maximum power point traking controller for PV systems using neural networks,” Renew. Energy, vol. 30, no. 8, pp. 1257–1268, 2005, doi: 10.1016/j.renene.2004.09.011.

R. Arulmurugan and N. Suthanthiravanitha, “Model and design of a fuzzy-based Hopfield NN tracking controller for standalone PV applications,” Electr. Power Syst. Res., vol. 120, pp. 184–193, 2015, doi: 10.1016/j.epsr.2014.05.007.

R. Boukenoui, H. Salhi, R. Bradai, and A. Mellit, “A new intelligent MPPT method for stand-alone photovoltaic systems operating under fast transient variations of shading patterns,” Sol. Energy, vol. 124, pp. 124–142, 2016, doi: 10.1016/j.solener.2015.11.023.

Y. Mahmoud, M. Abdelwahed, and E. F. El-Saadany, “An Enhanced MPPT Method Combining Model-Based and Heuristic Techniques,” IEEE Trans. Sustain. Energy, vol. 7, no. 2, pp. 576–585, 2016, doi: 10.1109/TSTE.2015.2504504.

A. Vinayagam, A. A. Alqumsan, K. S. V. Swarna, S. Y. Khoo, and A. Stojcevski, “Intelligent control strategy in the islanded network of a solar PV microgrid,” Electr. Power Syst. Res., vol. 155, pp. 93–103, 2018, doi: 10.1016/j.epsr.2017.10.006.

Y. T. Chen, Y. C. Jhang, and R. H. Liang, “A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems,” Sol. Energy, vol. 126, pp. 53–63, 2016, doi: 10.1016/j.solener.2016.01.007.

U. Yilmaz, A. Kircay, and S. Borekci, “PV system fuzzy logic MPPT method and PI control as a charge controller,” Renew. Sustain. Energy Rev., vol. 81, no. February 2017, pp. 994–1001, 2018, doi: 10.1016/j.rser.2017.08.048.

A. D. Karlis, T. L. Kottas, and Y. S. Boutalis, “A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN),” Electr. Power Syst. Res., vol. 77, no. 3–4, pp. 315–327, 2007, doi: 10.1016/j.epsr.2006.03.008.

O. Z. Bakhoda, M. B. Menhaj, and G. B. Gharehpetian, “Fuzzy logic controller vs. PI controller for MPPT of three-phase grid-connected PV system considering different irradiation conditions,” J. Intell. Fuzzy Syst., vol. 30, no. 3, pp. 1353–1366, 2016, doi: 10.3233/IFS-152049.

S. Daraban, D. Petreus, and C. Morel, “A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading,” Energy, vol. 74, no. C, pp. 374–388, 2014, doi: 10.1016/j.energy.2014.07.001.

Y. Soufi, M. Bechouat, and S. Kahla, “Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system,” Int. J. Hydrogen Energy, vol. 42, no. 13, pp. 8680–8688, 2017, doi: 10.1016/j.ijhydene.2016.07.212.

R. K. Kharb, S. L. Shimi, S. Chatterji, and M. F. Ansari, “Modeling of solar PV module and maximum power point tracking using ANFIS,” Renew. Sustain. Energy Rev., vol. 33, pp. 602–612, 2014, doi: 10.1016/j.rser.2014.02.014.

M. Naiem-Ur-Rahman, S. Newaz, and M. M. Rana, “A fuzzy based MPPT controller for PV system,” in 2020 IEEE International Conference on Computing, Power and Communication Technologies, GUCON 2020, Oct. 2020, pp. 635–638, doi: 10.1109/GUCON48875.2020.9231093.

M. Zolfaghari, S. H. Hosseinian, S. H. Fathi, M. Abedi, and G. B. Gharehpetian, “A New Power Management Scheme for Parallel-Connected PV Systems in Microgrids,” IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1605–1617, 2018, doi: 10.1109/TSTE.2018.2799972.

A. Khalilnejad, A. Sundararajan, and A. I. Sarwat, “Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 1, pp. 40–49, 2018, doi: 10.1007/s40565-017-0293-0.

M. Godoy Sirnoes, “Fuzzy optimisation based control of a solar array system,” IEE Proc. Electr. Power Appl., vol. 146, no. 5, pp. 552–558, 1999, doi: 10. 1049/ip-epa:19990341.

M. Veerachary, T. Senjyu, and K. Uezato, “Feedforward maximum power point tracking of PV systems using fuzzy controller,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 969–981, 2002, doi: 10.1109/TAES.2002.1039412.

C. Y. Won, D. H. Kim, S. C. Kim, W. S. Kim, and H. S. Kim, “New maximum power point tracker of photovoltaic arrays using fuzzy controller,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 1994, vol. 1, pp. 396–403, doi: 10.1109/pesc.1994.349703.

M. G. Simoes, N. N. Franceschetti, and M. Friedhofer, “Fuzzy logic based photovoltaic peak power tracking controller,” in IEEE International Symposium on Industrial Electronics, 1998, vol. 1, pp. 300–305, doi: 10.1109/isie.1998.707796.

A. M. A. Mahmoud, H. M. Mashaly, S. A. Kandil, H. El Khashab, and M. N. F. Nashed, “Fuzzy logic implementation for photovoltaic maximum power tracking,” in IECON Proceedings (Industrial Electronics Conference), 2000, vol. 1, pp. 735–740, doi: 10.1109/IECON.2000.973240.

N. Patcharaprakiti, S. Premrudeepreechacharn, and Y. Sriuthaisiriwong, “Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system,” Renew. Energy, vol. 30, no. 11, pp. 1771–1788, Sep. 2005, doi: 10.1016/j.renene.2004.11.018.

M. Veerachary, T. Senjyu, and K. Uezato, “Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller,” in IEEE Transactions on Industrial Electronics, Aug. 2003, vol. 50, no. 4, pp. 749–758, doi: 10.1109/TIE.2003.814762.

N. Khaehintung, K. Pramotung, B. Tuvirat, and P. Sirisuk, “RISC-microcontroller built-in fuzzy logic controller of maximum power point tracking for solar-powered light-flasher applications,” in IECON Proceedings (Industrial Electronics Conference), 2004, vol. 3, pp. 2673–2678, doi: 10.1109/IECON.2004.1432228.

N. Karami, N. Moubayed, and R. Outbib, “General review and classification of different MPPT Techniques,” Renew. Sustain. Energy Rev., vol. 68, no. September 2016, pp. 1–18, 2017, doi: 10.1016/j.rser.2016.09.132.

F. Bouchafaa, D. Beriber, and M. S. Boucherit, “Modeling and simulation of a gird connected PV generation system with MPPT fuzzy logic control,” 2010, doi: 10.1109/SSD.2010.5585530.

Subiyanto, A. Mohamed, and M. A. Hannan, “Maximum power point tracking in grid connected PV system using a novel fuzzy logic controller,” in SCOReD2009 - Proceedings of 2009 IEEE Student Conference on Research and Development, 2009, pp. 349–352, doi: 10.1109/SCORED.2009.5443002.

B. Bendib, H. Belmili, and F. Krim, “A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems,” Renew. Sustain. Energy Rev., vol. 45, pp. 637–648, 2015, doi: 10.1016/j.rser.2015.02.009.

M. A. Eltawil and Z. Zhao, “MPPT techniques for photovoltaic applications,” Renew. Sustain. Energy Rev., vol. 25, pp. 793–813, 2013, doi: 10.1016/j.rser.2013.05.022.

A. Messai, A. Mellit, A. Guessoum, and S. A. Kalogirou, “Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation,” Sol. Energy, vol. 85, no. 2, pp. 265–277, Feb. 2011, doi: 10.1016/j.solener.2010.12.004.

E. H. Mamdani and S. Assilian, “Experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Hum. Comput. Stud., vol. 51, no. 2, pp. 135–147, Aug. 1999, doi: 10.1006/ijhc.1973.0303.

M. Dehghani, M. Taghipour, G. B. Gharehpetian, and M. Abedi, “Optimized Fuzzy Controller for MPPT of Grid-connected PV Systems in Rapidly Changing Atmospheric Conditions,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 2, pp. 376–383, 2021, doi: 10.35833/MPCE.2019.000086.

“Average Model of a 100-kW Grid-Connected PV Array - MATLAB & Simulink.” https://www.mathworks.com/help/physmod/sps/ug/average-model-of-a-100-kw-grid-connected-pv-array.html?searchHighlight=Average model of a 100-kw grid-connected pv array&s_tid=srchtitle (accessed May 06, 2021).

“Detailed Model of a 100-kW Grid-Connected PV Array - MATLAB & Simulink.” https://www.mathworks.com/help/physmod/sps/ug/detailed-model-of-a-100-kw-grid-connected-pv-array.html;jsessionid=ebcc6cd1758ebec909f055b72aed (accessed May 06, 2021).

K. H. Kapumpa and D. Chouhan, “A fuzzy logic based MPPT for 1MW standalone solar power plant,” 2017 Recent Dev. Control. Autom. Power Eng. RDCAPE 2017, vol. 3, pp. 153–159, 2018, doi: 10.1109/RDCAPE.2017.8358258.

“Bangladesh - Banglapedia.” https://en.banglapedia.org/index.php/Bangladesh (accessed Jul. 17, 2021).

D. B. Mridul, A. K. Azad, M. K. Biswas, A. Datta, K. Mohammad, and R. Ul, “Current Scenario of Solar Energy Production in Bangladesh and Future Potentiality,” no. May, 2021.

S. K. Nandi, M. N. Hoque, H. R. Ghosh, and S. K. Roy, “Potential of Wind and Solar Electricity Generation in Bangladesh,” ISRN Renew. Energy, vol. 2012, pp. 1–10, 2012, doi: 10.5402/2012/401761.

“IEEE Xplore Full-Text PDF:” https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8975552 (accessed Jul. 18, 2021).




DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12289.g8365

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4