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Abstract- Direct Normal Irradiation (DNI) is the main component of solar thermal (ST) systems and concentrated solar power 
systems (CSP and CPV). The volatility of this component due its renewable resource nature can cause fluctuations that affect 
the electrical grid, hence the importance of forecasting it. In this work, the forecasting of monthly average Direct Normal 
Irradiation (DNI) is explored. A benchmark of statistical forecasting models is used to select the best statistical forecasting 
model. Seventeen models are evaluated and compared, namely Trend models, Box Jenks models and Exponential Smoothing 
models. The satellite data used are of the period extended from 1994 to 2012 for the region of Ouarzazate in Morocco. The 
daytime period is from 07h30 till 17h30. The design region of the models is from 1994 to 2009 divided into an estimation 
period and a validation period. Data from 2010 to 2012 are used as forecasting years. Several error metrics are used for 
performance evaluation and comparison. The results indicate that a seasonal ARIMA model outperforms the other statistical 
models with a MPE=-0.490442% in the validation period and MPE=-5.1907% in the forecasting region. 

Keywords Forecasting, Time Series, Direct Normal Irradiation (DNI), Smoothing, Solar radiation, Concentrated Solar Power 
(CSP), Ouarzazate. 

 

1. Introduction 

Solar radiation has received much attention in recent 
years due to its use in harvesting different forms of energy 
such as electricity and heat. Forecasting Direct Normal 
Irradiation (DNI) has become very important recently as the 
DNI is the main component of concentrated solar power 
(CSP) and concentrated photovoltaic (CPV) systems. The 
uncertain nature of renewable energy resources such as solar 
energy produces fluctuations that affect the electrical grid 
which lead in some cases to blackouts hence the necessity to 
reduce the cost of imbalance in the grid using forecasting [1-
4], which proved to be a better way to increase flexibility in 
the grid compared to other solutions such as increasing 
storage capabilities [5], forecasting the energy demand [6, 7] 
and prediction of electricity energy consumption [8]. 

Numerous studies were conducted on intra-hourly and hourly 
DNI forecasting [9-15] useful for operations and load-
following , however not many researches were conducted on 
to benchmark studies of monthly average solar radiation 
forecasting especially the component of DNI which is 
important for the task of planning in CSP solar sites. This 
gap in this particular forecasting time horizon for DNI and its 
use in the industry make it an interesting subject to tackle. 

There is a growing concern on long term solar 
forecasting in the latest years. A recent research involved 
long-term GHI forecasting (monthly and seasonal) for 
regional sites in Queensland, Australia where 3 methods 
were compared, namely artificial neural networks (ANN), 
multiple linear regression (MLR) and ARIMA [16]. The 
results showed that the ANN outperformed the other 
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methods in monthly and seasonal forecasting with an overall 
average RMSE=1.23MJ m-2 day-1.  Another study revealed 
the results of the investigation on models for forecasting 
monthly mean daily global solar radiation from in-situ 
measurements in the tropical climate of India [17]. The 
results showed that Hargreaves and Samani model (HSM) 
performed satisfactory both on Hyderabad and 
Vishakhapatnam regions with a mean percentage error 
MPE=-5.39% and -20.24% respectively. Long term DNI 
forecasting, in this case using monthly average  data,  is very 
important in planning, management and decision making for 
engineers, policy makers and energy experts for cases such 
as load pricing and energy management in areas where solar 
thermal plants are installed or intended for implantation. That 
being said, the choice of a reliable predictive model is crucial 
for making the best forecasts hence the importance of 
conducting a study of benchmarking forecasting models for 
electricity balancing market prices [18] or the renewable 
resource itself, in this case DNI, which is subject of this 
manuscript. 

The purpose of the present work is to investigate a time 
series based benchmark of forecasting methods on monthly 
average DNI using satellite data. The Moroccan region of 
Ouarzazate in the South West Mediterranean basin area is the 
case study due to the availability of data and the importance 
of this region in the Moroccan Solar Plan (MSP), Africa and 
the Mediterranean region as it shelters Africa’s biggest solar 
plant “NOOR” and the closest one to Spain which can be 
later considered for energy exportation. Data considered lay 
from the period 1994 to 2012 using 07h30 to 17h30 daytime 
hours. Several metric measures were performed, such as the 
Akaike Information Criterion (AIC) and root mean squared 
error (RMSE), to assess the forecasting skills and select the 
best predictive model among the seventeen models being 
tested. The rest of the paper is organized as follows: section 
2 presents the data pre-processing procedures; Section 
3describes the proposed methods tested for forecasting while 
section 4 reveals the findings in details. Finally, section 5 
reports the conclusions made and discusses the results with 
an insight of the next future coming works. 

Nomenclature 

Acronyms 

AIC  Akaike Information Criterion 

AR  Autoregressive  

ARMA  Autoregressive moving average 

ARIMA Autoregressive integrated moving average 

MA  Moving average 

MAE   Mean Absolute error 

MAPE  Mean absolute percentage error 

ME  Mean error 

MPE  Mean percentage error 

MSE  Mean square error 

RMSE  Root mean squared error 

SARIMA Seasonal autoregressive integrated moving 
average  

Greek symbols  

α   A smoothing constant used to estimate the 
level 

β    A smoothing constant used to estimate the 
slope 

γ   A smoothing constant used to estimate the 
seasonality 

tε   White noise  

t jε −   Lagged errors used as predictors in the 

( )MA q and ( , )ARMA p q models 

iϕ   Coefficients of the lagged observations in 

the ( )AR p and ( , )ARMA p q models 

jθ   Coefficients of the lagged errors in the 

( )MA q and ( , )ARMA p q models 

 

Roman symbols 

B    Lag operator also called the “Backshift” 

C   Constant 

ˆˆ,a bAnd ĉ  Estimates of the parameters , ,a b cof the 
trend models using the OLS method 

d   Order of the non-seasonal differencing  

D   Order of the seasonal differencing  

( )tF k   The forecast for the horizon t k+ at time 
t  

tI   The seasonal estimate of tY  

k   The forecast horizon or the number of steps 
in the future 

L   Likelihood of the data 
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p   Order of the non-seasonal AR term 

P   Order of the seasonal autoregressive term 
(SAR) 

q   Order of the non-seasonal moving MA 
term 

Q   Order of the seasonal moving average term 
(SMA) 

s   The number of seasons 

tS   The estimate of the local Level 

'
tS   The singly-smoothed series obtained by 

applying simple exponential smoothing to 

  series Y at time t  

"
tS   The doubly-smoothed series obtained by 

applying simple exponential smoothing  

"'
tS   The triple smoothed series obtained by 

applying simple exponential smoothing  

tT   The estimate of the local Trend  

/t tY y   A given time series 

Y   The average of the data up to and including 
time t  

t iy −   Lagged observations used as predictors in 

the ( )AR p and ( , )ARMA p q models 

 

2. Pre-processing Data 

The region of Ouarzazate located in the latitude 
31°.00’83” and longitude -06°.86’27” in south Morocco is a 
strategic region for the Moroccan Solar Plan (MSP) that aims 
to produce 2000 MW of electricity from renewable energy 
resources by 2020 to reduce Morocco’s energy dependency 
with a goal of 42% of electricity from renewable resources 
by 2020 and 52% by 2030 not to mention the reduction of 
CO2. The Direct Normal Irradiation (DNI) used is the hourly 
data accumulated from METEOSAT MSG and MFG satellite 
data (EUMETSAT) and from atmospheric data (ECMWF 
and NOAA) by SOLARGIS method for the region of 
Ouarzazate. The spatial resolution for solar radiation data is 
250m�250m and for meteorological data is 
1000m�1000m. The entire hourly database used represents 
19 years of data starting from 1st January 1994 to 31st 
December 2012. The period between 07:30 to 17:30 is 
considered as it represents the daytime solar duration. The 

data were pre-processed by excluding the 29th February day 
from each year to avoid the leap years and homogenize the 
data. The monthly average DNI data were then computed and 
divided into two regions (partitions): The design region 
where the model is trained, tested and validate; in this case 
the design period is from 1994 to 2009 divided into an 
estimation period from January 1994 to February 2005 which 
constitutes 70% of the data used in the design period, and a 
validation period from March 2005 to December 2009 which 
constitutes 30% of the data; and the forecast region where the 
model is used to generate forecasts blindly, which is chosen 
to be three years from January 2010 to December 2012. 

3. Methods 

The present work focuses on bencharking several 
statistical forecasting models using monthly average DNI 
time series. In this section, three meain branches of models 
are introduced, namely Trend models, Box-Jenkins models 
(ARMA and ARIMA models) and exponential smoothing 
models. 

3.1. Trend Models 

Trend models assume that future forecasts are fitting 
various types of regression models based only on time as an 
independent variable with random fluctuations. Trend odels 
weight all data equally and are fit by least squares, resulting 
in estimates of up to 3 coefficients a, b and c denoted â, 
b̂ and ĉ respectively. In this work, The Mean, Linear Trend, 
Quadratic Trend, Exponential Trend, and S-Curve models 
are explored. 

Mean Model: ( )tF k Y=   (1) 

Here is the average of the data up to and including time t 

Linear Trend: 
ˆˆ( ) ( ))tF k a b t k= + +   (2) 

Quadratic Trend: 
2ˆˆ ˆ( ) ( ) ( )tF k a b t k c t k= + + + + (3) 

Exponential Trend: 
ˆˆ( ) exp( ( ))tF k a b t k= + +  (4) 

S-Curve: 
ˆˆ( ) exp( / ( ))tF k a b t k= + +   (5) 

In the five models, Ft(k) denotes the forecast for time t+k 
at time t. 

3.2. ARMA Models 

 (ARMA) is a group of models that handle stationary 
time series. The ARMA models are namely: 

• The Autoregressive model (AR) 

• The Moving Average model (MA) 

• The Autoregressive Moving Average model 
(ARMA) 
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The AR(p) model:  

The (AR) model is a multiple regression model with 
lagged observations as yt-i predictors: 

1 1 2 2
1

...
p

t i t i t t t p t p t
i

y C y C y y yϕ ε ϕ ϕ ϕ ε− − − −
=

= + + = + + + + +∑
 (6) 

εt is a white noise, φi are the coefficients of the lagged 
observations, C is a constant and p is the autoregressive 
order. 

The MA(q) model: 

The (MA) model is a multiple regression model with 
lagged errors εt-q as predictors: 

1 1 2 2
1

...
q

t j t j t t t q t q t
j

y C Cθ ε ε θ ε θ ε θ ε ε− − − −
=

= + + = + + + + +∑
 (7) 

εt is a white noise, θj are the coefficients of the lagged 
errors εt-j, C is a constant and q is the moving average order. 

The ARMA(p,q) model: 

The (ARMA) model is a multiple regression model that 
combines both lagged observations with lagged errors as 
predictors: 

1 1 2 2 1 1 2 2
1 1

... ...
p q

t i t i j t j t t t p t p t t q t q t
i j

y C y C y y yϕ θ ε ε ϕ ϕ ϕ θ ε θ ε θ ε ε− − − − − − − −
= =

= + + + = + + + + + + + + +∑ ∑
(8) 

3.3. ARIMA models 

In general, two types of ARIMA models can be 
distinguished:  

• Nonseasonal ARIMA models 

• Seasonal ARIMA models 

3.3.1. Nonseasonal ARIMA models 

The (ARIMA) models, also known as Box-Jenkins 
models are time series models. They are the generalized form 
of ARMA models that take into consideration stationary and 
non stationary by adding a differencing parameter. The 
ARIMA models can be written as ARIMA(p,d,q) where p is 
the autoregressive (AR) order which is the number of lags, d 
the degree of first differencing involved and q the oving 
average (MA) order. 

The general equation of an ARIMA model is given by:  

1 1
1 (1 ) 1

p q
i d i

i t i t
i i

B B y Bϕ θ ε
= =

⎛ ⎞ ⎛ ⎞
− − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

(9) 

B is the lag operator called the “backshift” operator such 
that Bkyt=yt-k . In special situations, where p, d or q is equal to 
zero the following cases arise: 

Case 1: when d=0 the ARIMA model turns into an 
ARMA(p,q) model   

Case 2: when d=0 and q=0 the ARIMA model is 
reduced to AR(p) model 

Case 3: when d=0 and p=0 the ARIMA model is 
reduced to MA(q) model 

For further readings about the ARIMA models, the 
references [19-22] are suggested. 

3.3.2. Seasonal ARIMA models (SARIMA) 

The seasonal ARIMA models, also called Multiplicative 
ARIMA models are ARIMA models with components of 
seasonality variables (SAR, SMA and the differencing of 
seasonality). The multiplicative Seasonal ARIMA 
(SARIMA) model is denoted by ARIMA(p,d,q)�(P,D,Q)s, 
where s is the number of seasons, p is the order of the non-
seasonal autoregressive term, d is the order of non-seasonal 
differencing term, q is the order of the non-seasonal moving 
average term, P is the order of the seasonal autoregressive 
term (SAR), D is the order of seasonal differencing and Q is 
the order of the seasonal moving average term (SMA). The 
SARIMA model is described with following equation [23]: 

( ) ( )(1 ) (1 ) ( ) ( )s d s D s
p P t q Q tB B B B x B Bφ θ εΦ − − = Θ (10) 

B is the lag operator, εt are the residuals, 1
( ) 1

p
i

p i
i

B Bφ φ
=

= −∑
 

is a polynomial in B of degree p, 1
( ) 1

q
i

q i
i

B Bθ θ
=

= +∑
is a 

polynomial in B of degree q, 1
( ) 1

P
s is

P i
i

B B
=

Φ = − Φ∑
is a 

polynomial in Bs of degree P, and 1
( ) 1

Q
s is

Q i
i

B B
=

Θ = + Θ∑
is a 

polynomial in Bs of degree Q. It is worth mentioning that 

seasonal differencing (1 )ss t t t t sy B y y y −Δ = − = −  removes 
seasonality in the same way that ordinary differencing 

1t t ty y y −Δ = − removes a polynomial trend. 

3.4. Exponential Smoothing models 

Smoothing is a technique based on averaging over 
multiple periods in order to minimize the noise using an 
exponential function [24-25]. The use of the exponential 
functions is intended to assign weight exponentially to the 
corresponding observations in a decreasing order. The 
different smoothing models are called “smoothers”. To 
generate the forecasts, up to three passes of an exponential 
smoother are made:  

Pass 1 
' '

1(1 )t t tS Y Sα α −= + − (11) 

α is the smoothing constant such that 0<α<1 and 
'
tS is the 

singly smoothed series obtained by applying simple 
exponential smoothing to series Y at time t. 

Pass 2: 
'' ' ''

1(1 )t t tS S Sα α −= + − (12) 
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''
tS  is the doubly-smoothed series obtained by applying 

simple exponential smoothing using the same α to series 
'
tS at time t 

Pass 3 
''' '' '''

1(1 )t t tS S Sα −= + − (13) 

'''
tS is the triple smoothed series obtained by applying simple 

exponential smoothing using the same α to series 
''
tS at time 

t. The initial values at time t=0 are determined by back-
forecasting by smoothing first the time series backwards and 
then using the back-forecasts to initialize the forward 
smoothing. 

3.4.1. Simple exponential smoothing 

The simple exponential smoothing estimates trend 
similar to the Mean Trend model [26]: 

'( )t tF k S= (14) 

3.4.2. Brown’s linear exponential smoothing 

Brown’s linear exponential smoothing estimates trend 
similar to the linear trend model [27]: 

' '' ' ''( ) 2 ( )
1t t t t tF k S S k S Sα
α

= − + −
− (15) 

3.4.3. Quadratic exponential smoothing 

The Quadratic exponential smoothing is described by the 
following formula [28]: 

2
' '' '' ' '' ''' 2 ' '' '''

2 2( ) 3 3 ((6 5 ) (10 8 ) (4 3 ) ) ( 2 )
2(1 ) 2(1 )t t t t t t t t t tF k S S S k S S S k S S Sα α

α α α
α α

= − + + − − − + − + − +
− −

(16) 

k are the steps ahead in the future. 

3.4.4. Holt’s linear exponential smoothing 

Holt’s Linear Exponential smoothing is similar to 
Brown’s Linear Exponential Smoothing in that it generates 
forecasts that follow a linear trend. However, Holt’s 
procedure uses smoothing constants α (alpha) and β (beta), 
one to estimate the level of the series at time t and a second 
to estimate the slope [29]. The procedure is as follows: 

Smooth the data to estimate the level using  

1 1(1 )( )t t t tS Y S Tα α − −= + − + (17) 

Smooth the first smooth to estimate the slope using  

1 1( ) (1 )t t t tT S S Tβ β− −= − + − (18) 

Calculate the forecasts using  

( )t t tF k S kT= + (19) 

tS is the estimate of the local level and tT  is the estimate of 
the local trend. 

3.4.5. Winter’s exponential smoothing 

All of the forecasting methods described above handle 
the seasonality by first seasonally adjusting the data, then 
applying the forecasting model, and then putting back the 
seasonality. Winter’s exponential Smoothing procedure 
handles the seasonality directly by estimating seasonality at 
the same time that it estimates the level and trend. In extends 
Holt’s procedure by adding an additional parameter gamma γ 
to use in a third smoother [30]. The procedure is as follows: 

Estimate the seasonality by smoothing the ratio of the 
data to the estimated level at time t using: 

(1 )t
t t s

t

YI I
S

γ γ −= + −
(20) 

tI is the seasonal estimate of Yt 

Estimate the level of the series by smoothing the data 
divide by the estimated seasonality using 

1 1(1 )( )t
t t t

t s

YS S T
I

α α − −
−

= + − +
(21) 

Estimate the slope of the series using 

1 1 1( ) (1 )t t t tT S T Tβ β− − −= + + − (22) 

Calculate the forecasts using  

( ) ( )t t t t s kF k S kT I − += + (23) 

Here t tS kT+ is the extrapolation of level and trend from 

period t and t s kI − + is the most recent estimate of the seasonal 
index for kth period in the future. It is worth mentionning that 
in all the exponential smoothing techniques used, the 
parameters α, β and γ are heuristic parameters between 0 and 
1 both excluded. 

The metrics used to assess the accuracy of the 
forecasting methods are the (RMSE), (ME), (MPE), (MAE), 
(MAPE) and (AIC).  

The Root Mean Squared Error (RMSE) 

2

1

1 n

t
t

RMSE e
n =

= ∑
(24) 

The RMSE is a measure of average squared deviation of 
forecasted values which penalizes large individual errors 
occurred during the forecasting. Here, et is the error at a time 
t compute by subtracting the forecasted values from the 
actual data and n is the number of samples. 

The Mean Error (ME) 
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1

1 n

t
t

ME e
n =

= ∑
(25) 

The Mean Percentage Error (MPE) 

1

1 100
n

t

t t

eMPE
n y=

= ×∑
(26) 

The MPE is a measure of overall bias error or systematic 
error. It is used as a percentage error. 

The Mean Absolute Error (MAE) 

1

1 n

t
t

MAE e
n =

= ∑
(27) 

The MAE shows the magnitude of overall error, 
occurred due to forecasting. It does not penalize extreme 
forecast errors. 

The Mean Absolute Percentage Error (MAPE) 

1

1 100
n

t

t t

eMAPE
n y=

= ×∑
(28) 

The MAPE represents the percentage of average 
absolute error occurred. Here, n is the number of 
observations, et is the error at a time t compute by subtracting 
the forecasted values from the actual data and yt are the 
actual data at time t. Each of the RMSE, MAE, MAPE, ME 
and MPE, is based on the one-ahead forecast errors, which 
are the differences between the data value at time t and the 
forecast of that value made at time t-1. The first three 
statistics measure magnitude of the errors while the last two 
statistics measure bias. A better model will give a small 
value. Details about the importance of use of these metrics 
can be found in [31]. 

The Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is a criterion 
formulated by the Japanese Statistician Hirotugu Akaike in 
the early 1970s [32]. AIC is an information criterion used for 
model selection described by the following equation: 

AIC 2log( ) 2( )L p q k= − + + + (29) 

L is the likelihood of the data, p is the autoregressive 
order and q is moving average order and k represents the 
intercept of the ARIMA model. For a model to be selected, it 
has to be the one with the lowest AIC. AIC discourages over-
fitting and rewards goodness of fit using the likelihood 
function L. 

4. Results and Discussion 

In this section, the results are presented and discussed. In 
the present work, the MSE is used as a minimization function 
to select the forecasting model. Models with and without 
constant were tested. Table 1 presents the optimized best 
models found after test. 

Table 1. The different 17 predictive models found after test 

N° of  
Models 

Models found after test 

(M1) Random walk 

(M2) Random walk with drift = 0,0226256 

(M3) Constant mean = 605,114 

(M4) Linear trend = 602,979+ 0,03164 t  

(M5) Quadratic trend = 585,098 + 0,820477 t  + -
0,00584323 t2 

(M6) Exponential trend = exp(6,39709 + 0,0000495657 t) 

(M7) S-curve trend = exp(6,40309 + -0,0648205 /t) 

(M8) Simple moving average of 2 terms 

(M9) Simple exponential smoothing with alpha = 0,0083 

(M10) Brown's linear exp. smoothing with alpha = 0,0031 

(M11) Holt's linear exp. smoothing with alpha = 0,2372 and 
beta = 0,0188 

(M12) Brown's quadratic exp. smoothing with alpha = 
0,0065 

(M13) Winter's exp. smoothing with alpha = 0,2222, beta = 
0,0219, gamma = 0,1083 

(M14) ARIMA(1,0,0)x(2,0,1)12 with constant 

(M15) ARIMA(0,0,1)x(2,0,2)12 with constant 

(M16) ARIMA(2,1,1)x(2,0,2)12 

(M17) ARIMA(2,0,0)x(2,0,1)12 with constant 

 

 
Fig. 1. Results of the 17 models’ performance in the 

estimation period. 
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In this case, the models were estimated from the first 134 
data values and the last 58 data values were withheld for 
validation. Figure 1 and Figure 2 reveals the results of the 
models found based on their performance at the estimation 
and validation periods respectively. 

 
Fig. 2. Results of the 17 models’ performance in the 

validation period. 

The selection of the best model is based on all the 
performance metrics with a focus on the RMSE and MPE to 
measure the magnitude of the errors and the error bias 
respectively. AIC is also used to rank the models based on 
their quality. In the estimation period, the model with the 
lowest value of the RMSE, MPE and AIC (with RMSE= 
58.4456, MPE=-0.945163 and AIC=8.2082) is model M14 
which is a mixed seasonal autoregressive integrated moving 
average model ARIMA(1,0,0)�(2,0,1)12 with constant. This 
model assumes that the best forecast for future data is given 
by a parametric model relating the most recent data value to 
previous noise. 

While comparing the out-of-sample error statistics 
(validation period) to the in-sample statistics (estimation 
period), the noticeable rise of error and the change of 
performance of some models suggests the presence of non-
randomness in the residuals. For this reason, five diagnostic 
tests for residual randomness and stationarity were 
performed namely, the test for excessive runs up and down 
(RUNS), the test for excessive runs above and below median 
(RUNM), Box-Pierce test for excessive autocorrelation 
(AUTO), the test for difference in mean 1st half to 2nd half 
(MEAN) and the test for difference in variance 1st half to 2nd 
half (VAR). Table 2 represents the results of the five tests. 

Table 2. Table of the five diagnostic tests 

Model RMSE RUNS RUNM AUTO MEAN VAR 
(M1) 75,5007 OK * *** OK OK 
(M2) 75,8121 OK * *** OK OK 
(M3) 62,4089 OK OK *** OK OK 
(M4) 62,5942 OK OK *** OK OK 
(M5) 62,4422 OK OK *** OK OK 
(M6) 62,6673 OK OK *** OK OK 
(M7) 62,5437 OK OK *** OK OK 

(M8) 72,8012 OK OK *** OK OK 
(M9) 62,5533 OK OK *** OK OK 

(M10) 62,4598 OK OK *** OK OK 
(M11) 65,4576 OK OK *** OK OK 
(M12) 62,8633 OK * *** OK OK 
(M13) 66,7386 OK OK * OK OK 
(M14) 58,4456 OK OK OK OK OK 
(M15) 59,363 OK OK OK OK OK 
(M16) 59,4894 OK OK OK OK OK 
(M17) 59,6277 OK OK OK OK OK 

 

In the diagnostic tests for residual randomness and 
stationarity tests, ideally an OK or * symbol, indicate none 
statistically significant violations of model assumptions. If 
many flags appear (** or *** symbols) meaning significant 
(p-value between 0,001 and 0,01) or highly significant (with 
a p-value less or equal to 0,001) probability of non-
randomness in the residual plots. The p-value is the 
probability used in testing a null hypothesis to either reject it 
or failing doing that (the term “accepting” a hypothesis does 
not exist in statistics as the logic is that not enough evidence 
is found to reject that hypothesis) In general, the smaller and 
more random are the errors, the better. From Table 2, the 
model that passed all the tests and respected the models 
assumptions with the lowest error is the model M14, which is 
ARIMA(1,0,0)�(2,0,1)12 with constant. 

Figure 3 shows the time sequence of the data used which 
cover 192 time periods with a monthly seasonality (s=12) 
and how it is explained by the fitting model. It can be clearly 
seen that the fitting model passes through most of the points 
of the actual data with some exceptions in the first four 
years. 

Time Sequence Plot for DNI
ARIMA(1,0,0)x(2,0,1)12 with constant
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Fig. 3. Time sequence plot for DNI (Wh/m²) using the fitting 

model ARIMA(1,0,0)�(2,0,1)12 with constant. 

Figure 4 presents the forecasts generated for the years 
2010, 2011 and 2012 with their 95% confidence interval. 

 

It shows the plot of the forecasted values generated from 
the selected model versus the actual DNI data. The plot 
shows a very good following seasonal behaviour from the 
model and describes in a very good manner the dynamic 
within the data with differences in the peaks representing the 
errors. 
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Fig. 4. Plot Forecasted versus Actual DNI in (Wh/m²) in the 

period (estimation and validation) and the forecast period 
(2010-2012). 

 

Table 3 presents the summary of the model found. It is 
worth mentioning that each value of DNI was adjusted using 
a multiplicative seasonal adjustment before the model was 
fit. Terms with p-values less 0,05 are statistically 
significantly different from zero at the 95,0% confidence 
level. The p-value for the constant term, AR(1), MA(2), and 
SMA(1) terms is less than 0,05, so they are significantly 
different from 0. The estimated standard deviation of the 
input white noise equals 59,294. For more details about the 
time series analysis, see Box, Jenkins and Reinsel (1994) 
[33]. 

Table 3. SARIMA Model Summary 

Parameter Estimate Stnd. Error T P-value 
AR(1) 0,278525 0,0860106 3,23826 0,001529 
SAR(1) 0,898977 0,107209 8,38529 0,000000 
SAR(2) 0,189864 0,09973 1,90378 0,059166 
SMA(1) 0,985683 0,0720349 13,6834 0,000000 
Mean 603,211 18,1462 33,2417 0,000000 
Constant -38,6639    

Residual Autocorrelations for adjusted DNI
ARIMA(1,0,0)x(2,0,1)12 with constant
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Fig. 5. Residual Autocorrelations for adjusted 

ARIMA(1,0,0)�(2,0,1)12 with constant. 

It is also useful to examine the autocorrelations of the 
residuals. The residual autocorrelation at lag k measures the 
strength of the correlation between residuals k time periods 
apart. The residual lag k autocorrelation is calculated from 
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Where n is the sample size and et is one period ahead 
forecasting errors calculated from subtracting the forecast 
from the observed data value (i.e. et=Yt -Ft-1(1)). If a model 
describes all of the dynamic structure in a time series, then 
the residuals should be random and all of their 
autocorrelations should be insignificant. Bars extending 
beyond the upper or lower limit correspond to statistically 
significant autocorrelations. From Figure 5 it can be seen that 
almost no bars appear to be extending from the confidence 
interval which suggests that the model explains well the 
dynamic structure in the data. Table 4 presents the results of 
the model performance in the forecast period where it can be 
noticed that an increase in all the error metrics has occurred 
which is normal since most of the times the forecasting 
models do not perform well in the forecast period yet a MPE 
of -5,1907% and a RMSE equal to 115,8791Wh/m² still 
represent an acceptable forecasting accuracy of DNI monthly 
average data. 

Table 4. Table of error metrics for the forecast period 

 

Residual Normal Probability Plot
ARIMA(1,0,0)x(2,0,1)12 with constant
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Fig. 6. Residual Normal Probability plot 
ARIMA(1,0,0)�(2,0,1)12 with constant. 

 

5. Conclusion  

The aimof this study is to forecast monthly average DNI 
using the different statistical methods to assess their 
forecasting accuracy The results show the performance 
evaluation of different models for long term forecasting 
horizon of (DNI) in the region of Ouarzazate. The 
ARIMA(1,0,0)x(2,0,1)12 with constant was selected after 
assessment, evaluation and comparison with seventeen other 
models. The selected seasonal model was used to generate 36 
time period forecasts representing the three years (2010, 
2011 and 2012)use for forecasting. The model proved to 

Model RMSE MAE MAPE ME MPE 
ARIMA(1,0,0
)x(2,0,1)12 

115,8791 95,7763 16,9438 -22,2736 -5,1907 
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generate forecasts with a good accuracy represented by 
MPE= -0.9452% in the estimation period, MPE= -
0.490442% in the validation period and MPE= -5.1907% in 
the forecast region. Although the model reveals a difficulty 
in including most of the outliers which is penalized by the 
marginalization of the RMSE, it captures very well the 
seasonality present in the data. Future works will involve 
using artificial intelligence methods such as neural networks 
[34-38] and classification techniques to test their data driven 
concept for better forecasting skills. 
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