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Abstract- The presence of wind generator in interconnected power systems is an important aspect to be considered while 

studying transient faults. A deeper understanding of transient stability study is essential for the qualitative assessment of the 

system which includes wind generator. This understanding can be achieved by calculating transient stability index using 

singular perturbation method. For the calculation of this transient stability index, the state variables are modelled in a realistic 

approach of slow and fast time frames. In this study, the transient stability assessment results obtained using the method of 

singular perturbation are compared with the corresponding results calculated using catastrophe theory and linearized singular 

perturbation methods. In order to understand the implications of presence of a wind generator in the system during transient 

faults, the study also focuses on the effect of circuit breaker clearing time and generator transient reactance.  
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1. Introduction 

Transient stability study is an essential aspect in 

modern power system, because loss of synchronism in an 

interconnected power system may lead to cascading 

failures and blackout of an area in the power grid. It is 

associated with the ability of the system to withstand large 

disturbances like three phase fault and loss of generators.  

The traditional method of transient stability study is to 

perform numerical simulations, based on the step-by-step 

approach [1]. However, this method has certain 

limitations, some of which are as follows:(a) requirement 

of smaller step-size poses computational complexity and 

results in slower convergence,(b) the clearing time is 

predetermined in the beginning of the solution process.  

This process has an inherent limitation which could yield 

inaccurate results due to the ambiguity induced in the 

predetermination of clearing time, therefore, (c) the 

method fails to provide a stability limit or index, which is 

very important to understand how far the disturbance 

could harm the entire system. The process, however, still 

remains a reference for the automatic learning methods, 

since it can be used for training the learning set for pre-

analysis study. 

An alternative approach of transient stability study is 

the direct method using energy function formulation. The 

advantage of energy function formulation over the step-

by-step method is that it avoids the repeated iterations 

which are inevitable in the step-by-step method. The 

mathematical functions and principles using energy based 

approaches began for practical power systems about four 

decades ago. Identification of the appropriate stability 

region is the most important element in this approach. 

Different characterizations of stability region and unstable 

location estimates are widely studied using the energy 

function approaches namely Closest UEP method, 

Controlling UEP approach, MOD method, BCU method, 

PEBS method [2-6].  

However, inclusion of detailed modelling of 

synchronous generator has always remained a challenge in 

the energy function formulation. Some of the works which 

have included detailed modelling are given in reference 

[7]. But the time scaling nature of variables in the power 

system has not been considered in the above methods. 

This leads to certain disadvantages like conservative 

calculation of critical clearing time and computational 

difficulty in solving the differential equations of the power 

system model.  
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To overcome these disadvantages, the problem of 

stability was studied by factoring time-scaling nature of 

power system variables. The time scale approach for 

transient stability was pioneered in a heuristic manner [8]. 

Thereafter, further work in time-scaling was carried out 

with decomposition of a large scale power system into 

slow coherent areas as discussed in references [9]. As far 

as transient stability is concerned, the modelling of the 

state variable  qE   is very important. Some of the time-

scale models have considered  qE    as either a constant, or 

a parameter variation or a non-relevant variable. Typically 

the value of transient time constant of synchronous 

generator is in the range of 4 to 9 seconds [10] which is 

more than the clearing time. Thus, to overcome this 

limitation, it was essential to bring out a mathematical 

model which considers the coexistence of slow varying 

variables in the model.  

Singular perturbation technique is an ideal nonlinear 

ordinary differential equation modelling tool, which is 

capable of modelling the states in different time scales. 

This technique was carried out for mid-term stability and 

long term stability studies of the power system as given in 

reference [11]. In reference [12] transient stability 

assessment of two time scale power system model using 

BCU algorithm was done. However, this assessment was 

based on the requirement of a pseudo fault-on trajectory, 

which is not applicable for large power system models. 

The assessment using slow energy function method on a 

potential energy boundary surface (PEBS) was carried out 

on a three machine system in reference [12]. The 

linearized model of singular perturbation was used which 

is not relevant in a large disturbance scenario. For a single 

machine infinite bus system, Lyapunov energy function of 

singularly perturbation model was developed and 

discussed in [13-22].It has been observed from the 

literature review that there are research gaps like 

consideration of qE  as slow variable, development of 

singular perturbation model without linearization and 

Lyapunov function for multi-machine system using 

singular perturbation method. 

This paper aims to develop a non-linear singular 

perturbation model of synchronous generator for transient 

stability study of the multi-machine system. The results of 

the test system are compared with a similar theory, 

namely, catastrophe theory, which is an efficient technique 

in the bifurcation theory for dynamical system. The 

presence of wind generator in a multi machine system is 

very relevant in a multi machine system, especially during 

occurrence of faults. The critical clearing time estimation 

for a fault is crucial for maintaining the stability of the 

interconnected power system. This study brings out an 

efficient and accurate method to obtain the critical clearing 

time. This is the first time effort to bring singular 

perturbation and catastrophe theory on the same platform 

for the study of transient stability of multi machine 

system. The model also evaluates an index which helps to 

determine the stability limit.  

2. Mathematic Modelling of Multi-machine Power 

System for Transient Stability 

Fig.1 (a) represents a schematic diagram of multi-

machine system having n number of generators, r constant 

impedance loads, having internal voltages of synchronous 

generators as E1, E2….En. The real power    injected to the 

machine is given as 

2

1

cos cos( )
n

i i ii ii i k ik ik ik

k
k i

P E Y E E Y  



                            (1)             

  iP  is the real power, ik is the phase lag between voltage 

and current vector, 
ikY  represents the driving point 

admittances, and if the conductance is neglected, Eq. (1) 

can be written as 
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where, 1,2,...,i n  

In Eq. (2), ikG  is the real part of reduced Y bus matrix of 

the system, i is the internal voltage angle. The occurrence 

of fault in the system results in the change of the Y bus 

matrix elements. 

2.1 Existing model for multi-machine power system [5] 

The swing dynamics of an thi  generator, with 

respect to common reference can be given as 

2

1

2
[ cos( )]

n
i i

i i mi i ii i k ik ik i k

kr
k i

H d
D P E G E E G

dt


   

 


     
     (3) 

i

i r

d

dt


                                                                 (4)     

       iH is the inertia coefficient, miP is the mechanical 

input power, ,i r  are absolute machine angle speed and 

reference speed, iD is the damping coefficient. Before the 

occurrence of a large disturbance, the mechanical output 

and electrical power are balanced and i will have some 

steady state value. Due to the occurrence of a three phase 

fault, the electrical power output of the machine reduces to 

zero and the balance with the mechanical power output is 

lost, causing acceleration. The behaviour of the angle in 

Eq. (4) changes with time and the solution of the swing 

equation determines the stability of the system. Eqs. (3&4) 

represents the most simplified model of the synchronous 

generator, namely the classical model. Here, the voltage 

behind the transient reactance is considered as constant. 

The electrical dynamics of the rotor is given by, 

1
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where, qiE , the internal voltage behind transient reactance, 

is  proportional to field flux linkage, doiT   is the direct axis 

transient time constant, fdE is the excitation voltage and 

diI is the component of field current in the d-axis, dx and 

dx are direct axis transient reactance and direct axis 

reactance respectively. Thus, for an n machine system, 

there would be 3 n  differential equations in the model. 

The variation of qiE in Eq. (5) is expected to be in a slower 

than the variation of i and i  . The dynamics of variables 

involved in Eq. (5) may be carefully modelled, so that the 

stability region evaluated in terms of the state variables 

should be accurate. If all the three state variables are 

considered in the same time frame, the region would fail to 

accommodate the dynamics in the appropriate manner. 

The singular perturbation model incorporates the variation 

of qiE in a different time frame using the modelling 

parameter    which is reciprocal of the time constant doiT  .  

2.2 Modification of the model using singular perturbation 

The non-linear equations of a system in singular 

perturbation model is given by 

( , )
dx

f x y
dt

                                      (6)                     

   

( , )
dy

g x y
dt

                                                          (7)

                        
where x  and y are slow and fast states in the system 

respectively.   is the singular perturbation parameter. The 

above model is represented in singular perturbation 

modification by considering qiE  as slow state variable and 

,i i   as fast state variables. Fig.1 (b) gives the phasor 

diagram to illustrate the modified model. qiE , i and i are 

the stable equilibrium point of non-linear differential 

equations given in Eqs. (6&7). Using coordinate-

transformation,
i qi qix E E   ,

1i i iy    and
2i i iy    , the 

equilibrium points are shifted to origin. By taking the 

singular perturbation parameter 1 doT  , the differential 

equations changes the time frame from t  to dot T  . The set 

of equations can be given as 
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The set obtained by putting 0  in Eqs. (6&7), is termed as 

manifold region, given by 

( )y h x                                                            (11)                                                          

The implicit relation gives the algebraic manifold of state 

variables, geometrically as shown in Fig.1(c). Here, x  is a 

slow variable and two fast variables are 1y  and 2y . The black 

solid line shows the exact integral manifold of x  as a function 

of two variables 1y  and 2y . The incorporation of initial 

conditions of the variable y in the algebraic expression is made 

possible with the singular perturbation method using boundary 
correction factor. Thus, the accuracy remains unaffected by 

conversion of differential equation to algebraic equation. At 

the same time, the number of differential equations for an n 

machine system, is reduced from 3 n in the existing method 

to n. When the value of the parameter  is small, the value of 

y , obtained by the solution of algebraic equation, approaches 

the solution of differential equation.  

Table 1. Comparison of transient stability investigation using 

conventional numerical method and singular perturbation 

method 

Method Conventional 

numerical 

integration 

method 

Singular 

perturbation 

method 

Manifold for stability 

region 

---- 

 

 ( , ) | ( , ) 0M x y g x y 

 
Accuracy in terms of 

order of magnitude 

No Yes 

Time scale features No Yes 

Handling issues 

regarding singularity 

of the manifold 

No              Yes 

Classical modelling 

of synchronous 

generator 

Yes Yes 

 

2.3 Evaluation of critical clearing angle for post- fault 

transiently stable multi machine power system using Lyapunov 

function of the singularly perturbation model   

   
     The decomposition of the states using the singular 

perturbation parameter resulted in decoupling of the system 

into slow and fast states. This separation in time frame is 

utilized in formulating a Lyapunov function candidate. The 

weighted sum of Lyapunov function of the state variables can 

be given as 

(1 ) ( ) ( , )E k V x kW x y                                                   (12)

  ( )V x  represents the Lyapunov function for slow states 

and ( , )W x y  represents the Lyapunov function of fast states 

for a small value k. This function is associated with the energy 

dissipation of the state variables or the stored energy of the 

state variables in a post fault scenario. It is assumed that 1y  
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lies in the region 1

1
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
, then E  would 

be in a decaying mode inside the manifold region defined by 

Eq. (11). The algebraic equation of this manifold represents the 

boundary of stability region of the singular perturbation model. 

The identification of the relevant region of stability is the main 

requirement for the transient stability study. From the 

manifold, the unstable equilibrium point can be obtained where 

the Lyapunov function reaches local minima. The fault on 

trajectory crosses the stability boundary through the exit point 

and the critical fault clearing point depends on this exit point. 

If the exit point matches with the fault clearing point, that fault 

clearing is considered as critical clearing. The asymptotic 

stability for the exit point can be obtained from weighted sum 

of Lyapunov function of slow and fast subsystems. The 

Lyapunov functions, ( )V x   and ( , )W x y   are calculated as 

follows: 
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For any small positive value of k , Lyapunov energy function 

candidates can be obtained for the singular perturbation model. 
At the exit point, the acceleration of the generator changes sign 

from negative to positive. If the trajectory of the rotor angle 

crosses the boundary then the generator would have gained 

sufficient energy to cross the boundary and would not return to 

the prefault stable condition. This energy function formulation 

and identification of critical energy is shown using the well-

established equal-area criteria as shown in Fig. 1(d). Ea 

represents energy function at any location in the manifold. Ea 

can be positive or negative. The time which corresponds to the 

critical energy is called the critical clearing time for a fault. A 

multi-machine system having many machines may be 

represented by an equivalent two machine system. Also, it is 

commonly observed that due to disturbance in the system, few 

generators close to the disturbance swing in unison. Those 

generators will have same angular velocity during the transient 

and can be represented by an equivalent generator then the 

multimachine system becomes a two machine system. The 

swing equation of the two machines are given as 
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The relative angle 
1 2    is used to evaluate the stability of 

two-machine system. 1M and 2M  are moment of inertia of the 

machines. 
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Multiplying either side on Eq. (17) by  1 2 1 2M M M M , 
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Eq. (18) may be written as, 
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(d) 

Fig.1. Multi-machine system modelling(a) Schematic 

diagram, (b) Phasor diagram to illustrate the modification 

using singular perturbation, (c) Algebraic manifold (d) 

Power-angle curve and corresponding energy curve 

according to equal-area criteria 

 

2.4 Evaluation of critical clearing time 

During fault the electrical power output reduces 

to zero and if the fault is cleared within the critical 

clearing time, accelerating area would be less than or 

equal to decelerating area. Identifying the critical 

point/exit point is the important step to determine the 

critical clearing angle. The critical clearing angle (CCA) is 

obtained graphically as shown in Fig. 2(a). Using singular 

perturbation method, the algebraic manifold enables to 

identify the critical clearing angle. Further, critical 

clearing time (CCT) can be calculated. The explicit 

relation of critical clearing angle is given as follows: 

2

2

mPd

Mdt


                                   (20)                     

In Eq. (20), the electrical power 0iP   

Solving Eq. (20) by integrating, we get  

2

0

1

2
mCCA P CCT

M
                                   (21) 

The critical clearing time can be obtained numerically as 

 0

2
( )

m

M
CCT CCA

P
                                                (22) 

2.5 Formulation of stability index  

A quantitative perception of power system 

transient stability can be obtained by introducing a 

stability index from the singular perturbation model. The 

state variables are presented in the two time scales using 

the transient time constant, it is more realistic and accurate 

formulation. The energy of the system Eq. (12) is 

evaluated at a location/point by using energy function. The 

critical location is the point where the Lyapunov function 

based energy reduces to local minima, denoted by cE . The 

energy value at any location in the manifold is denoted 

by aE . The difference between cE and aE  gives the 

stability index given by 

 c aStabilityIndex E E                                   (23)   

The flowchart for evaluation of the stability index is 

shown in Fig. 2(c).  

3. Simulation Results 

The proposed method is investigated by 

considering an example of an IEEE three generator, nine 

bus system, given in Fig.2 (b). The data of the system is 

given in Appendix-I on 100 MVA base value [14]. Three 

cases are considered for simulation studies as follows: 

Case 1 is the classical system with hydro and thermal 

generators. Case 2 is obtained by replacing generator 3 

with wind generator. Case 3 is obtained by replacing 

generator 1 also by thermal and generator 3 with wind 

generator as shown in Fig.2. 

Case 1 represents conventional synchronous 

generators in the system. The critical clearing time of 

catastrophe theory method is taken from [14].The singular 

perturbation method gives a more realistic estimation of 

critical clearing time as compared to catastrophe theory. It 

attains importance in generator buses where flux decay 

modelling gives a more rigorous analysis than classical 

model. The results of case 1 are also compared with 

singular perturbation (linearized model) from reference 

[13 ] as shown in Table 1.It can be observed  that CCT 

values of non-linear singularly perturbation model is less 

as compared to linearized singular perturbation model and 

catastrophe method. It shows that catastrophe method and 

linearized singular perturbation results are indicating more 

margin for clearance as these methods have not 

incorporated rigorous modelling of synchronous 

generator.. Hence, accurate modelling of generator using 

non-linear singular perturbation model is required to 

provide actual critical clearing time. 
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             (b) 

 

 

Start 

Note down the system parameters of the multi-

machine power  system  and obtain the steady state 

load flow results which represents the pre-fault value

Create a large disturbance fault on any of the buses

 Obtain the post -fault manifold using Eqn.(11)

Formulate the ODE model of singular perturbed 

approach using Eqns.(8-10) and integrate the 

equations  

Calculate (i)Ea at any point using Eqn.(12) and Ec 

corresponds to exit point respectively

  (ii) evaluate stability Index using Eqn.(23)

Is the stability 

index>0

Stable system

Unstable system

Obtain the post-disturbance stable equilibrium points 

(θ s, ωs, Eqs ) by solving Eqns.(3-5)

check 

asymptotic 

stability of 

states.

yes

no

 

(c) 

  Fig. 2. Singular Perturbation approach (a) Power system 

algebraic manifold (b) Test system and cases of studies (c) 

flow chart for evaluation of stability index  

Table 2. Comparison of results of proposed method with 

singular perturbation model (linearized)] and catastrophe 

method for case 1 

 

 

One of the synchronous generators, G3 is 

replaced with DFIG, case 2 and generic model of Power 

world is used to model DFIG [13]. The parameters used in 

the study and are given in Appendix II. In case 3, 

generator G1 is replaced by thermal and generator G3 by 

DFIG. A comparative study of critical clearing time of the 

three cases using the proposed methodology is given in 

Table 2. Introduction of wind energy conversion system in 

a multi-machine power system has helped in increasing 

the value of CCT. The larger values of CCT in case2 and 

Cases G1 G2 G3 

Case 1 Hydro Thermal Thermal 

Case 2 Hydro Thermal Wind,DFIG 

Case 3 Thermal Thermal Wind,DFIG  

3-

phase 

Fault 

at 

CCT using the 

proposed non-

linear singular 

perturbation 

model in seconds 

CCT using 

singular 

perturbation 

model(lineariz

ed)in seconds  

CCT using 

catastrophe 

method in 

seconds 

Bus 

6 

0.160 0.180 0.191 

Bus 

7 

0.250 0.295 0.300 

Bus 

8 

0.241 0.251 0.260 

 
 

*SEP

*
Exit point

Fault-on 

trajectory

Post-fault 

trajectory

Controlling 

UEP

*

*

qE





CCA
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case 3 as compared to case1, are due to the controllers 

present in DFIG generators. These controllers in the rotor 

side as well as in the grid side, provides more time for the 

protective devices to initiate the action of clearance.  

   

Table 3 .Comparison of critical clearing time for test 

system cases. 

3-phase 

fault at 
Case 1 

CCT 

(in 

seconds) 

Case 2 

CCT 

(in 

seconds) 

Case 3 

CCT 

(in 

seconds) 

Bus 1 0.370 0.400 0.420 
Bus 2 0.600 0.710 0.730 
Bus 3 0.430 0.460 0.550 
Bus 4 0.260 0.271 0.280 
Bus 5 0.250 0.251 0.270 

Bus 6 0.160 0.180 0.175 
Bus 7 0.250 0.280 0.295 
Bus 8 0.241 0.280 0.279 
Bus 9 0.300 0.330 0.370 

 
3.2 Effect of circuit breaker (CB) clearing time  

 

The effect of CB clearing time is studied using the 

singular perturbation approach. If the three phase fault is 

cleared within the critical clearing time, the system 

remains stable. A three phase fault event at the generator 

bus 2 is taken. When the fault is cleared within the critical 

clearing time, the state variables converge to the stable 

equilibrium point as shown in Fig.3(a-c). It has been 

observed  that case 1 converges faster than case 2 and case 

3. The decaying Lyapunov function for k=0.001 in shown 

in Fig.3(d).The algebraic manifold of singular perturbation 

enables to estimate a boundary of region of convergence 

as shown in Fig.3(e). The initial stable location is marked 

by point a is shown in Fig.3(e).  The  critical point marked 

as point c is btained from the critical point of energy 

function in Eq.(12).  The closest UEP is obtained as the 

difference of  and stable equilibrium point shown as 

point b in the Fig.3(e). The comparison of closest unstable 

equilibrium point(UEP) is given in Table 3.The 

catastrophe theory considers the stable equilibrium point 

where the energy function, in case of  the classical 

modelling of synchronous generator,attains null value. The 

comparison of critical clearing time and critical clearing 

angle of singular perturbation and catastrophe theory 

method is shown in Fig.3(f).The time scale separation of 

the variables of singular perturbation method enables an 

optimistic value of critical clearing time.The stability 

index obtained from Eq. (23) for different clearing times is 

shown in Fig.3(g). Positive value of index represents the 

stable system and negative value shows unstable system. 

When the stability index is zero,it represents critically 

stable system. 

 

Table 4. Comparison of equilibrium points of test system 

cases for three phase fault at G2 

Type Case 1 Case 2 Case 3 

SEP,rad 0.608 0.52 0.577 

Closest 

UEP,rad 
2.53 2.62 2.56 

UEP by 

singular 

perturbation

n method 

,rad 

 

1.5787 1.62 1.73 

Manifold  0.560
sin

qE
 



 

0.570
sin

qE
 



 

0.600
sin

qE
 



 

 

   (a) 

       
(b) 

 

      (c)              

 

                                        (d) 
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qE





0.5 1.5 2.5

1.0

2.0

CASE 2

b

c

a

CASE 1

CASE 3

3.0

 

               (e) 

 

                             (f) 

 

      (g) 

Fig.3.Asymptotic stability to stable equilibrium 

point.(a)x,(b)y1,(c)y2,(d)Lyapunov function,(e) 

algebraic manifold for three test cases, (f)  

comparison of CCT for siingular perturbation and 

catastrophe theory method,(g) comparison of variation 

of stability indices with respect to critical clearing 

time for three cases of test system 

3.3 Effect of system reactance 

The generator transient reactance plays a very 

important role in the transient stability of a system. 

The event of three phase fault at generator bus 2 is 

considered. It has been observed that the state 

variables converge to stable equilibrium point for 

different transient reactance of generator G2 as seen 

from Fig.4(a-c).Lower the value of the reactance, 

faster they converge to the stable equilibrium point. It 

is true for all the test system cases. The comparison of 

the critical clearing time of test system cases for 

different transient reactances with the catastrophe 

theory method is shown in Fig.4(d). The stability 

index comparison of test system cases for different 

transient reactances is shown in Fig.4(e).Therefore,it 

is always advisable to have lower transient reactances 

of the generators. 

 

    (a)       

 

                                          (b) 

 

          (c) 
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                     (d) 

 

(e) 

Fig 4.Asymptotic Stability to the stable equilibrium point, 

(a) y1 for case 1,(b) y1 for case 2, (c) y1 for case 3, (d) CCT 

for different values of reactances, (e) stability index for 

different transient reactances. 

4. Conclusion  

In this paper, transient stability assessment of power 

system has been carried out using stability index based on 

Lyapunov function using singular perturbation method 

without linearization. The methodology involves 

evaluation of critical clearing angle inside an algebraic 

manifold to be used for calculating critical clearing time 

numerically. The stability index obtained using the 

Lyapunov function identifies critically stable, unstable and 

stable system from zero, negative and positive values 

respectively. Singular perturbation model has been 

developed incorporating the slow dynamics of internal 

voltage behind transient reactance of a synchronous 

generator. 

 The simulation study was conducted on a 

standard 3-generator, 9 bus power system example to 

assess the effectiveness and accuracy of the proposed 

method. Different generator sources, hydro, thermal and 

wind (DFIG) have been considered for three test system 

cases to carry out the desired studies. The critical clearing 

time for 3-phase fault at different buses have been 

evaluated for comparison. It has been observed that 

introduction of wind energy conversion system in a multi 

machine power system has helped in increasing critical 

clearing time. The controllers in the rotor side and grid 

side provides more time for the protective devices to 

initiate the action of clearance.  In addition, simulation 

results of 3-phase bus faults have been compared with that 

of catastrophe method and linearized singular perturbation 

method. The modelling of state variables in the singular 

perturbation model of synchronous generator with correct 

dynamics ensures a more realistic evaluation of critical 

clearing time. The effect of circuit breaker clearing time 

and generator transient reactance have been examined. 

When the fault has been cleared within the critical clearing 

time, the system stability has been ensured. The generator 

reactance is an important parameter which influences the 

stability of the power system. Lower the value of the 

reactance, faster the state variables converge to stable 

equilibrium point. Hence it is advisable to have lower 

transient reactances of the generator. The stability index 

developed in this study has been proficient to identify 

stable and unstable systems. Positive index represents 

stable system and negative index shows unstable system 

and when the stability index is zero, it is critically stable 

system.   
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Appendix 

I Test system parameters 

Generator H(s) x'd(p.u.) Transformer reactance(p.u.) T’do(s) Rated MVA 

Hydro 23.64 0.0608 0.0576 8.96 247.5 

Thermal 6.4 0.1198 0.0625 6.00 192.0 

Thermal 3.01 0.1813 0.0586 5.89 128.0 

           

Bus Pg PL QL V 

1 0 0 0 1.04 

2 1.63 0 0 1.025 

3 0.85 0 0 1.025 

4 0 0 0 
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II DFIG modelling and parameters 

The dynamic model of the DFIG is given below. It consists of 

static model of aerodynamics, a two mass model of drive 

train, a third order model of generator,  AC-DC and DC-AC 

convertor, pitch controller and converter controller[5]. The 

rotor of the wind turbine converts the energy from the wind to 

the rotor shaft. The aerodynamic torque applied to the rotor 

by the effective wind speed passing through the rotor is given as 

3( , )
2

w p w

m

T A c v


 


                                                                (24) 

where,  is the air density, 
m is the wind turbine shaft speed,

wA is the swept area, pc is the power coefficient,  is the pitch 

angle and  is the tip speed ratio. The drive train attached to the wind turbine transmit the aerodynamic torque T  to the high 

speed shaft. The dynamics of the shaft is given as 

1
[ ]

2
m s m m

m

T K D
H

    &                                                                            (25) 

1
[ ]

2
G s e G G

G

K T D
H

    &                                                                                    (26) 

1
2 m G

g

f
N

   
 

  
 
 

&                                                                                     (27) 

where mH  is the inertia constant of wind turbine shaft , GH is the inertia constant of generator, m  is the wind turbine shaft 

speed, G is the generator speed, sK is the shaft stiffness,  is the torsion angle, D is the torsion damping, eT is the electrical 

torque, f is the grid frequency and gN is the gear ratio. The induction generator receives power from the gear box through the 

stiff shaft. The transient model of DFIG is given as follows [5]: 

 
1

2
e m

g

s T T
H

 &                                                                                    (28) 

 
0

1
qr qr ds s dr s drE E X X i s E v

T
           

&                                                                                 (29) 

 
0

1
dr dr qs s qr s qrE E X X i s E v

T
           

&                                                                                 (30) 

where s is the rotor slip, s is the synchronous speed, 0T  is the rotor circuit time constant, qrE and drE are the quadrature and 

direct axis components of transient voltage, X is the rotor open circuit reactance, rX  is the transient reactance, dr  and qr  are 

the direct and quadrature axis components of rotor transient voltage. 

Turbine control

Aerodynamics
+

-

- Shaft dynamics Generator

Converter and 

control

Protection

To 

Grid

 
Fig.5.Components of wind generator model 

 
Parameter Value 

From 

Bus 
To Bus 

Half line 

charging  

admittance(p.u.) 

Reactance(p.u.) 

1 4 0 0.0576 

4 6 0.079 0.092 

3 9 0 0.0586 

6 9 0.179 0.17 

5 7 0.153 0.161 

7 8 0.0745 0.072 

2 7 0 0.0625 

8 9 0.1045 0.1008 
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Nominal mechanical output 

power 

0.85 MW 

Nominal electrical output 

power 

0.85x0.9 MW 

Stator resistance 0.007 p.u. 

Leakage inductance  0.17 p.u. 

Base frequency 50 Hz 

Inertia constant 1 s 

Converter control gains 0.3,8 

Pitch angle control gains 100,10 

Damping Coefficient 1.5 N.m.s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


