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Abstract- Artificial neural network (ANN) needs to be applied to the complex, multivariate, and highly variable biomass and 

pyrolysis data to define optimum input variables and develop effective models.  In this study, two different ANN methods, the 

feed-forward network (FFN) and the cascade-forward network (CFN), were applied to model pyrolysis product yields (biochar-BC, 

bio-oil-BO, and gas mixture-G) from 11 biomass and pyrolysis variables through hierarchical modeling approach.  Both 

methods were supplied with two subsets of data, with two-thirds being used for training and one-third for testing the performances 

of the methods, after normalizing all data (72 samples).  The performances of both ANN methods were evaluated by using 

three statistical parameters.  In general, FFN and CFN methods had very similar performances in training and testing.  Both 

methods had mean R2 of 0.91, 0.96, and 0.95 for training BC, BO, and G, respectively. For testing of all FFN and CFN models, the 

R2 values of BC and G were less than 0.50, but the R2 values of BO were over 0.50 (up to 0.81) for only the last 5 models of 

FFN and CFN.  Both types of ANNs are promising tools in predicting pyrolysis product yields.  

Keywords Biomass, pyrolysis, modelling, feed-forward network, cascade-forward network. 

 

1. Introduction 

Nowadays, a significant part of energy is obtained from 

the fossil energy sources (coal, petroleum, and natural gas).  

However, the depletion of fossil energy sources and the 

emissions of harmful and greenhouse gases when they are 

combusted cause global environmental problems such as acid 

rains and global warming or climate change.  Therefore, 

nowadays, different studies have been focusing on producing 

bioenergy/biofuels from biomass by using modern 

technologies.  Biomass is a plentiful, a renewable, and an 

environmental-friendly energy source.  Biomass can be 

defined as all organic materials originated from plant and 

animal sources [1].  Elemental composition of biomass (as 

dry wt.%) is carbon-C (51%), oxygen-O (42%), hydrogen-H 

(5%), nitrogen-N (0.9%), and chloride-Cl (0.01-2%) [2].  

Several other properties of biomass, such as moisture (M), 

volatile organic carbon (V), fixed carbon (F), ash (A), and 

higher heating value (HHV), are used in modeling studies.  

Since the direct use of biomass has some disadvantages [3], 

biomass should be converted to more usable materials.  

Biomass can be converted to 3 main products 

(power/heat, biofuel, useful chemicals) by two main 

methods: a) thermal/thermochemical (combustion, pyrolysis, 

gasification, liquefaction) and b) biological/biochemical 

(anaerobic digestion, fermentation) [4].  Pyrolysis is the 

thermal decomposition of biomass in the absence of oxygen 

to produce solid biochar (BC), liquid bio-oil (BO), and gas 

mixture (G) products [5].  While BO and G products are 

generally used as biofuel, BC is used in the water treatment 

and agricultural applications.  The portion of the pyrolysis 

product yields depend on the pyrolysis process parameters 

such as pyrolysis temperature (T), heating rate (HR), 

residence time, carrier gas type and flow rate, catalyst type 

and amount, and reactor type [6].     

Biomass pyrolysis is affected by many parameters of 

biomass and pyrolysis process as explained above.  Modeling 

of biomass pyrolysis product yields is a great degree of 

complexity due to the multivariable parameters, nonlinearity 

of the processes involved, and the lack of data.  Numerical 

models have recently been employed to simulate pyrolysis 

product yields due to the fast development of computing 
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technology.  Artificial neural network (ANN) has some 

advantages over statistically based models, where they have 

capability to model complex and multivariable data, and 

nonlinear processes without requiring a priori relationship 

between input and output variables [7].  These advantages of 

ANN suggest that they can be utilized in the prediction of the 

pyrolysis product yields from biomass and pyrolysis process 

parameters. 

Numerous experimental studies ([8-20, 58-65]) have 

been conducted to optimize the pyrolysis product yields by 

using biomass and pyrolysis process parameters.  The 

optimization of the pyrolysis product yields through the 

experiments may be difficult due to the large variations in 

multivariable biomass and pyrolysis process parameters.  On 

the other hand, the application of a model like ANN to 

especially complex data set is relatively easy and cheap, and 

offers the trial of many alternatives at shorter time in the 

optimization of the parameters compared to an experimental 

study.  ANN models like the feed-forward network (FFN) 

and the cascade-forward network (CFN) can be applied to 

find the relationships among complex, multivariable, and 

nonlinear biomass and pyrolysis data.  However, modeling 

studies with ANN ([21-24]) are limited in the literature.  The 

most commonly used ANN among many types is the 

multilayer FFN trained by the back-propagation algorithm as 

in these studies.  However, the application of the multilayer 

CFN is absent or limited (if available).  In addition, the 

comparison of these two methods for evaluation of their 

performances in the prediction of the pyrolysis product 

yields (BC, BO, and G) is not observed in the literature.  

Such a comparison may offer to apply better technique in the 

modeling of pyrolysis product yields.  Besides, the limited 

number of parameters are used in these modeling studies 

without hierarchical model development approach.  

Developing hierarchical models through alternative ANN 

methods by using significant number of biomass and 

pyrolysis parameters may allow to better define the 

individual effects of each input parameter on pyrolysis 

product yields, resulting in improving the predictive 

capacities of the models.  In addition, the determination of 

significant input variables in the modeling of the pyrolysis 

product yields by hierarchical modeling approach may 

prevent unnecessary parameter measurements if further 

addition of a variable does not improve the model 

performance.  

Therefore, in this study, 3 pyrolysis products (BC, BO, 

and G) yields are simulated by 2 ANN methods (FFN and 

CFN) using 9 biomass parameters (M, V, F, A, C, H, O, N, 

and HHV) and 2 pyrolysis process parameters (T and HR) as 

input variables to models.  Systematic or hierarchical models 

of ANN methods are developed in order to investigate the 

significant input variables and their contribution order.  After 

preprocessing of the data set (72 samples) by applying 

normalization, the networks were then trained and tested by 

using the two-thirds and the one-thirds of the data set, 

respectively.  Finally, the performances of both ANN 

methods were evaluated visually by plotting and 

quantitatively by using 3 statistical parameters; coefficient of 

determination (R2), root mean square error (RMSE), and 

mean error (ME).  

2. Materials and Methods 

2.1. Biomass and Pyrolysis Data 

All biomass pyrolysis studies conducted in Turkey 

between the years 2001 and 2015 and published in the 

literature (Table 1) were used to gather the data for this 

modeling study.  The database originally had several biomass 

and pyrolysis process variables such as biomass particle size, 

cellulose, hemicellulose, lignin, extractives, biomass sample 

weight, residence time, condenser temperature, carrier gas 

flow rate in addition to the variables used in this study.  After 

removing the variables with the missing data a total of 14 

input and output biomass and pyrolysis process variables (M, 

V, F, A, C, H, O, N, HHV, HR, T, BC, BO, and G) with a 

number of 72 samples were used in this study.  

2.2. ANN Model Development 

A typical ANN consists of many interconnected 

elements called neurons, nodes, or units which are organized 

based on a particular architecture.  A neuron produces a 

single output from multiple inputs.  The most commonly 

used connection pattern in ANN is the three-layer or 

multilayer neural network with input, hidden, and output 

layers.  The data flow starts from the input layer, proceeds 

through the hidden layer, and ends with the output layer, 

therefore, the network is called feedforward, where it does 

not have any feedbacks or parallel connections within a layer 

of neurons (Haykin, 1994).    

The network must be trained or learned first before the 

application of it to any case to investigate the relationships 

between input and output data sets.  The least squares 

regression can be used to train output weights by means of 

error backpropagation method in multilayered neural 

network architectures.  Two different ANN methods (FFN 

and CFN) were used to train the network in this study.   

The general form of the selected FFN architecture and 

the input and output variables are illustrated in Figure 1.  

 
Fig. 1. The architecture of a three-layered FFN.  

The total number of neurons in the input and output 

layers corresponds to the number of input and output 

variables, respectively.  The number of hidden layers and the 
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number of neurons in each hidden layer are usually 

determined by trial and error procedure until a satisfactory 

architecture is achieved [56] and MSE (mean square error) 

values are minimized.  Each input neuron of FFN receives 

one or more inputs, calculates a weighted sum of inputs, and 

then applies a sigmoid transfer function to produce a unique 

output [56]. A hidden layer neuron sums up the weighted 

input received from each input neuron and then passes the 

result through a nonlinear transfer function.  The output layer 

neurons have the same operation as that of the hidden 

neurons, resulting in output values predicted by the network.  

Each input is weighted and combined to produce a unique 

neuron value, p as: 

 

 

Table 1. Literature of the data collected from. 

Biomass Biomass 

Particle Size (mm) 

Biomass Sample 

(g) 

Reference 

Safflower seed (Carthamus tinctorius L.) 0.425-1.25 20 [25] 

Sunflower-oil cake 0.425-0.85 5 [8] 

Sunflower-pressed bagasse 0.224-0.425 5 [9] 

Linseed (L. Usitatissimum L.) seed 0.6-1.8 2 [10] 

Sesame stalk 0.425-0.85  [26] 

Rapeseed (Brassica napus L.)  0.425-0.85 10 [27] 

Cotton stalk 1.2 40 [28] 

Olive residue 1.29 10 [29] 

Cottonseed cake  3 [30] 

Cottonseed cake  10 [11] 

Olive bagasse (Olea europea L.) 0.425-0.6  [31] 

Soybean cake 0.425-0.85 3 [32] 

Safflower seed (Carthamus tinctorius L.)  0.85-1.25 3 [12] 

Pistacia khinjuk seed (Carthamus tinctorius L.) 0.6-0.85 5 [13] 

Pistachio shell 1.75 10 [33] 

Tobacco residues 0.425-0.85  [34] 

Wheat straw 0.5 10 [14] 

Apricot pulp 0.85-1.25 10 [35] 

Safflower seed press cake    1.8 20 [36] 

Rapeseed (Brassica napus L.) oil cake 2 116 [37] 

Corncob 0.65 10 [38] 

Pomegranate (Punica granatum L.) seeds 3.2 125 [39] 

Corn stalks 0.85-1.25 5 [40] 

Laurel (Laurus nobilis L.) extraction residues 0.42-0.85 50 [41] 

Cotton seed  5 [15] 

Tea waste  5 [42] 

Tobacco residues  25 [43] 

Grape bagasse  0.425-0.600 15 [44] 

Cherry seed shell < 2 100 [16] 

Onopordum acanthium L. 0.6-0.85 30 [45] 

Walnut shell 1-2 20 [46] 

Potato skin 0.8 10 [47] 

Black cumin seed cake > 0.85 10 [48] 

Pistachio nut shell  10 [49] 

Corncob (Zea mays L.) 0.425-0.600 10 [50] 

Pine bark (P. nigra)   < 2 100 [17] 

Pistacia terebinthus L. 0.5-4 10 [51] 

Melamine coated chipboard  50 [18] 

Pine sawdust 0.752 3 [52] 

Apricot  kernel  shell   0.425-0.600 20 [19] 

Cottonseed   0.92 5 [53] 

Grape Seeds < 0.45 25 [54] 

Hornbeam shell (Carpinus betulus L.) 0.5-1.0 15 [20] 

Paulownia wood 0.425-1.0 20 [55] 
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where n is the number of inputs, the xi denotes the input 

values, and wi and b refer to the weights and the bias 

associated with the neuron.  The weighted input p is then 

used to calculate the output value of a neuron, y, in a 

sigmoidal transfer function, f as: 

 
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The architecture of a three-layered CFN with an input, 

output, and hidden layers is displayed in Figure 2. Squares 

and x’s indicate frozen and trained connections, respectively, 

between the input and output layers.  When a new hidden 

neuron is added to the network, its weights in the input side 

are frozen. 

 

Fig. 2. The architecture of a three-layered CFN.  

A new neuron is added and connected to every output 

and all previous hidden neurons after the output neurons are 

trained to minimize the total output error.  New hidden 

neurons are continuously added until the maximum 

correlation between the hidden neurons and error is obtained 

[57]. CFN has some advantages over FFN: i) CFN begins 

with only the input and output layer neurons with no hidden 

layer neuron, then automatically trains and adds new hidden 

neurons one by one until the optimum network results are 

obtained in the CFN, whereas FFN has a fixed topology,  ii) 

CFN has a very fast training time, making CFN suitable for 

large training sets, iii) CFN has less neurons than a dozen in 

the hidden layer, iv) CFN training produces good results with 

little or no parameter adjustments, v) The neurons of each 

subsequent layer have inputs from not only the previous 

layers but also input layer, leading to more interconnections 

than FFN [57].   

Both ANN methods (FFN and CFN) are multilayer and 

feed-forward and use the Levenberg-Marquardt (LM) back-

propagation (BP) algorithm for learning or training.  In both 

ANN methods, hierarchical modeling approach was utilized 

by adding variables one by one to the model to determine 

how variance in the dependent or output variable can be 

explained by adding one or more independent or input 

variables.  The number of neurons in the input and output 

layers of both methods corresponds to the number of input 

and output variables, respectively, whereas the number of 

hidden layers and the number of neurons in each layer were 

determined by trial and error.  Initially, the input and output 
data was normalized as a preprocessing procedure with the 
mean of zero and the standard deviation of 1 before being 

evaluated by ANN methods.  Then the two-third and the one-

third of the samples were used in training and testing of both 

ANN methods, respectively.  The training data was formed 

by the MATLAB program by skipping every third sample of 

the data.  Neural network toolbox of the MATLABTM 

package (version 7.10, MathWorks, Inc., USA) were used in 

training and testing of all ANN models.  

2.3. Evaluation of ANN Model Performance 

The performances of ANN models in predicting 

pyrolysis product yields from different biomass and pyrolysis 

process parameters were evaluated using the following 

statistical parameters: coefficient of determination (R2), the 

root mean square error (RMSE), and mean error (ME), where 

each of these statistical parameters uses the differences 

between the measured and predicted values, and defined as: 
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where Mi indicates the measured value, Pi refers to the 

predicted value, i = 1, 2, 3,….., N,  M  represents the 

average of the measured values, and N is the total number of 

observations.  The values of R2 change between 0 and 1 with 

the ideal value of 1, whereas the range of RMSE values is 0-

(+∞) with the ideal value of 0, corresponding to a perfect 

matching between the measured and predicted data.  Under- 

and over-prediction of a model for a given parameter are 

represented by negative and positive values of ME, 

respectively.  The prediction results of two methods (FFN 

and CFN) were also visually analyzed by plotting sample 
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number versus measured and predicted, and measured versus 

predicted values of BC, BO, and G.  

3. Results and Discussion 

Biomass characteristics of the experimental studies 

conducted in the literature, where the data used in this study 

are collected from, are presented in Table 1.  A wide range of 

biomass types from herbaceous to lignocellulosic are used in 

these studies.  Biomass particle size also has wide range 

between 0.224 and 4 mm.  Biomass sample weight changes 

between 2 and 125 g, but 19 of 41 samples are either 5 or 10 

g.  All experimental studies are conducted in a fixed-bed 

reactor except the two which are conducted in a free-fall 

reactor (not shown in Table 1).  

The descriptive statistics of biomass and pyrolysis process 

and product data used in the training and testing of two ANN 

methods are tabulated in Table 2. Input data have relatively 

large variations in especially the variables of T (400-800oC), 

HR (5-800 oC min-1), HHV (14.18-41.55 MJ kg-1), O (10.49-

52.26%), C (41.78-79.77%), and F (0.10-70.11%).  Pyrolysis 

products data (BC, BO, and G) have also wide ranges; 8-

52%, 10-55%, and 4.10-47%, respectively (Table 2). The 

large variations in biomass type, biomass particle size, and 

biomass sample weight, or experimental system 

configuration used for pyrolysis experiments in Turkey 

(Table 1) may cause these large variations in the biomass 

features, pyrolysis process parameters, and product 

distributions. 

 

Table 2. Descriptive statistics of the biomass and pyrolysis data used in the training and testing of the FFN and CFN methods.  

Input variables Acronym Unit Minimum Maximum Mean SD* 

Moisture M % 2.28 10.74 6.84 1.849 

Volatile Organic Carbon  V % 9.69 85.55 74.81 9.355 

Fixed Carbon F % 0.10 70.11 13.79 7.953 

Ash A % 0.38 19.90 4.81 3.706 

Carbon C % 41.78 79.77 52.68 6.402 

Hydrogen H % 4.95 10.15 6.80 1.377 

Oxygen O % 10.49 52.26 37.96 8.198 

Nitrogen N % 0.15 9.29 2.51 2.028 

Higher Heating Value HHV MJ kg-1 14.18 41.55 21.30 4.859 

Heating Rate HR oC min-1 5 800 111 181 

Temperature T oC 400 800 5230 86 

Output variables       

Biochar  BC % 8.00 52.00 27.20 7.892 

Bio-oil BO % 10.00 55.00 32.24 11.654 

Gases G % 4.10 47.00 26.79 8.280 

*SD: Standard deviation. 

The parameters used in both FFN and CFN methods and 

their values are given in Table 3.  

Table 3. The parameters of FFN and CFN methods.  

Parameters  Value 

Network type FFN and CFN 

Number of input layer neurons 1 to 11 

Number of hidden layer 2 

Number of hidden layer neurons 10, 10 

Number of output layer neuron 3 

Transfer function TANSIG 

Training function TRAINLM 

Performance function MSE 

Learning cycle 1000 Epochs  

Goal 0.000001 

Max_fail 15 

Mu_inc 10 

Mu_dec 0.1 

Mu 0.1 

*FFN: Feed-Forward Network, CFN: Cascade-Forward 

Network, TANSIG: Tangent Sigmoid, TRAINLM: Training 

Levenberg-Marquardt, MSE: Mean Square Error. 

The number of neurons in the input layers varied from 1 to 

11 as the number of input variables (M, V, F, A, C, H, O, N, 

HHV, HR, and T) changed in hierarchical modeling, whereas 

the output layers had 3 neurons corresponding to the output 

variables BC, BO, and G. The number of hidden layers and 

the number of neurons in each hidden layer were determined 

by trial and error procedure in order to minimize the MSE 

values, resulting in 2 layers and 10 neurons in each layer of 

both methods.  The overfitting problem during the training of 

both methods was controlled by using optimum number of 

hidden layers and neurons in the hidden layers.    Tangent 

sigmoid (TANSIG) was used as the transfer function, 

whereas the training Levenberg-Marquardt (TRAINLM) was 

selected as the training function.  MSE was used as the 

performance function and its goal value was set as 0.000001.  

Learning cycle was set 1000 epochs. 

The values of model performance evaluation for the 

training and testing of the FFN and CFN methods are 

displayed in Table 4.  For the training of FFN, in general, the 

models 1 through 9 simulated BO the best, BC the worst, and 

G between the two, with almost constant R2 of 0.96, 0.91, 

and 0.95, respectively.  However, the models 10 and 11 had 

perfect training performances with the R2 of 1.00.  The ME 

values of all models were zero, indicating a perfect model 
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performance.  For testing of FFN, in general, the models 

were the best, the worst, and between the two, in the 

simulation of BO, G, and BC, respectively, with the mean R2 

of 0.49, 0.31, and 0.42, respectively.  The RMSE and ME 

values of all models increased significantly compared to that 

of training, indicating the worse model performance.  In 

addition, almost all models under-predicted BC and over-

predicted BO and G, where ME values were negative and 

positive, respectively (Table 4). 

For the training of CFN, the same performances as the 

FFN training were observed in the simulation of BO, BC, 

and G with the same R2 of 0.96, 0.91, and 0.95, respectively 

(Table 4).  The training performances of the models 10 and 

11 were perfect with the R2 of 1.00.  All models except the 

last one had zero values of ME, indicating a perfect model 

performance.  For testing of CFN, in general, the models 

were the best, the worst, and between the two, in the 

simulation of BO, G, and BC, respectively, with the mean R2 

of 0.51, 0.32, and 0.37, respectively. The RMSE and ME 

values of all models increased significantly compared to that 
of training, indicating the worse model performance.  In 

addition, similar to FFN, almost all models under-predicted 

BC and over-predicted BO and G (Table 4). 

In general, both FFN and CFN models had very similar 

performances in training and testing for the simulation of 

BC, BO, and G as seen in Table 4.  For testing, even though 

the addition of the input variables to the models improved 

the performances of the FFN and CFN models for BO 

simulation, no clear trend was observed in both methods for 

the simulation of BC and G.  The R2 values of BC and G for 

testing of the all FFN and CFN models were less than 0.50, 

but the R2 values of BO were over 0.50 for only the last five 

models of FFN and CFN.  Overall, the models 11 and 8 were 

the best in the training and testing of FFN and CFN, 

respectively, indicating that the addition of the last 3 input 

variables (HHV, HR, and T), in general, did not improve the 

performances of CFN models for the simulation of BC, BO, 
and G.  Overall, the best FFN model was slightly better than 

the best CFN model in the simulations of BC, BO, and G 

(Table 4).  In general, the FFN and CFN methods simulated 

BO acceptably well-enough, but they had some problems in 

the simulations of BC and G.   

Measured and predicted values of pyrolysis products 

versus sample number for the best models of FFN (model 

11) and CFN (model 8) are presented in Figure 3.  
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Fig 3. Measured (empty circle) and predicted (solid circle line) values of pyrolysis products versus sample number for the best 

models of FFN (model 11) and CFN (model 8). 

The quantitative results (R2 values) of BC, BO, and G for the 

FFN and CFN methods correspond to the visual results, 

where less scattering between the measured and predicted 

BO points are observed compared to that of BC and G 

points.  Measured versus predicted values of pyrolysis 

products for the best FFN and CFN models are shown in 

Figure 4. Less scattering of the measured versus predicted 

BO points around a hypothetical line, which is crossing the 
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origin to the right corner of the plots, indicates that the FFN 

and CFN methods are good at the predictions of BO 

compared to the predictions of BC and G. 
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Fig. 4. Measured versus predicted values of pyrolysis products for the best models of FFN (model 11) and CFN (model 8). 

[21] predicted pyrolysis kinetic parameters (activation 

energy, pre-exponential factor, and reaction order) separately 

from biomass components (cellulose, hemicellulose, and 

lignin).  A total of 150 thermogravimetric analysis (TGA) 

results obtained from different biomass components were 

used to develop and test the networks.  The relationships 

between the biomass components and pyrolysis kinetic 

parameters were non-linear and predicted by the ANN 

models with R2 > 0.9. The number of hidden layers was 20, 

17, and 30 for log k0, log Ea, and log n, respectively. [22] 

predicted biomass (cotton shell) pyrolysis products (bio-oil, 

biochar, and gas) yields from pyrolysis process parameters 

(biomass particle size, pyrolysis temperature, and carrier gas 

flow rate) by using ANN.  After normalizing all the input 

and out data, 80 and 20% of the data were used for training 

and testing of the ANN models.  The ANN model structure 

was 3-10-3 with input, hidden, and output neurons, 

respectively.  The ANN models predicted the yields of bio-

oil, biochar, gas with R2 of 0.9914, 0.9978, and 0.9969, 

respectively. [23] predicted pyrolysis gas yields such as H2, 

CO, CH4, and CO2% from pyrolysis process parameters like 

biomass (pine sawdust) particle size, temperature, and space 

velocity by using ANN.  The ANN model had the neurons of 

3, 7, and 4 for input, hidden, and output layers, respectively.  

There was a good agreement between the measured and 

simulated results. [24] predicted biomass (cotton, tea, olive, 

and hazelnut) pyrolysis products yields (solid, liquid, and 

gas) from pyrolysis temperature and biomass characteristics 

(cellulose, hemicellulose, lignin, moisture, volatiles, fixed 

carbon, and ash) through ANN modeling.  The ANN model 

had 8 input neurons/parameters, 9 hidden neurons, and 3 

output neurons/parameters.  The model had high accuracy in 

the predictions during training and testing with R values of 

0.9999 and 0.9941, respectively.  The performances of the 

ANN models in the literature mentioned previously in 

training were very similar to that of this study. However, in 

general, the models had relatively better performances in the 

predictions of the product yields during testing.  Using larger 

experimental data set produced in the controlled 

experimental conditions, leading to more homogeneous data, 

may cause such a difference in the ANN performances in the 
favor of their studies.  Specifically, the studies in the 

literature with single or a few biomass types and therefore 

their more homogeneous features in addition to the 

controlled pyrolysis process conditions may result in 

somewhat better performances of the ANN models compared 

to the study presented here.  Besides, the input variables may 

be more related with the output variables in their studies.  

For instance, it is interesting that [22] produced better results 

even with the smaller data set, may be due the fact that more 

homogeneous data with more related input and output 

variables may give favor to that study.  
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Table 4. The values of evaluation parameters of the FFN and CFN methods. 

Feed-forward network  
      

Model Inputs Outputs 
Training Testing 

R2 RMSE ME R2 RMSE ME 

1 M BC, BO, G 0.90, 0.96, 0.93 2.50, 2.46, 2.08 0.00, 0.00, 0.00 0.41, 0.13, 0.28 8.36, 13.82, 8.87 -3.18, -1.80, 2.19 

2 M, V BC, BO, G 0.90, 0.96, 0.95 2.50, 2.46, 1.68 0.00, 0.00, 0.00 0.47, 0.42, 0.34 6.72, 9.89, 7.35 -1.66, 0.71, 1.51 

3 M, V, F BC, BO, G 0.90, 0.96, 0.95 2.50, 2.46, 1.68 0.00, 0.00, 0.00 0.35, 0.19, 0.34 8.53, 12.12, 7.65 -2.17, 0.29, 1.10 

4 M, V, F, A BC, BO, G 0.90, 0.96, 0.95 2.50, 2.46, 1.68 0.00, 0.00, 0.00 0.45, 0.25, 0.35 7.80, 11.53, 7.90 -3.77, 1.96, 3.10 

5 M, V, F, A, C BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.34, 0.47, 0.23 8.36, 9.25, 9.12 -4.26, 0.21, 2.82 

6 M, V, F, A, C, H BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.36, 0.49, 0.35 8.50, 8.78, 7.57 -3.74, 0.31, 2.28 

7 M, V, F, A, C, H, O BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.44, 0.64, 0.32 6.27, 7.32, 7.73 -1.90, 1.63, 1.77 

8 M, V, F, A, C, H, O, N BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.43, 0.80, 0.28 6.84, 5.38, 8.60 -2.83, 1.19, 3.12 

9 M, V, F, A, C, H, O, N, HHV BC, BO, G 0.92, 0.99, 0.97 2.30, 1.37, 1.33 0.00, 0.00, 0.00 0.45, 0.61, 0.46 7.37, 8.16, 7.38 -2.72, 1.72, 1.01 

10 M, V, F, A, C, H, O, N, HHV, HR BC, BO, G 1.00, 1.00, 1.00 0.12, 0.20, 0.10 0.00, 0.00, 0.00 0.41, 0.60, 0.25 9.14, 8.31, 9.67 -3.57, 1.20, 1.70 

11 M, V, F, A, C, H, O, N, HHV, HR, T BC, BO, G 1.00, 1.00, 1.00 0.03, 0.04, 0.03 0.00, 0.01, 0.00 0.49, 0.81, 0.26 7.44, 5.71, 9.16 0.43, 1.00, 2.87 

Cascade-forward network        

Model Inputs Outputs 
Training Testing 

R2 RMSE ME R2 RMSE ME 

1 M BC, BO, G 0.90, 0.95, 0.95 2.57, 2.47, 1.68 0.00, 0.00, 0.00 0.40, 0.17, 0.30 9.03, 13.98, 8.91 -3.60, -0.76, 1.77 

2 M, V BC, BO, G 0.90, 0.96, 0.95 2.50, 2.46, 1.68 0.00, 0.00, 0.00 0.45, 0.40, 0.30 7.19, 10.59, 7.82 -2.09, 0.65, 0.53 

3 M, V, F BC, BO, G 0.90, 0.96, 0.95 2.50, 2.46, 1.68 0.00, 0.00, 0.00 0.44, 0.30, 0.38 7.79, 10.71, 7.53 -4.22, 0.69, 2.24 

4 M, V, F, A BC, BO, G 0.90, 0.96, 0.95 2.50, 2.46, 1.68 0.00, 0.00, 0.00 0.42, 0.58, 0.44 7.72, 7.54, 6.93 -3.22, 0.84, 2.17 

5 M, V, F, A, C BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.27, 0.44, 0.26 8.86, 9.57, 8.23 -4.05, 0.37, 1.96 

6 M, V, F, A, C, H BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.44, 0.43, 0.35 7.20, 10.09, 7.37 -2.78, 0.20, 1.22 

7 M, V, F, A, C, H, O BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.34, 0.60, 0.29 7.23, 7.86, 8.25 -1.77, 2.24, 0.66 

8 M, V, F, A, C, H, O, N BC, BO, G 0.91, 0.96, 0.95 2.41, 2.40, 1.67 0.00, 0.00, 0.00 0.46, 0.72, 0.27 6.38, 6.64, 8.53 -0.66, 1.49, 2.40 

9 M, V, F, A, C, H, O, N, HHV BC, BO, G 0.92, 0.99, 0.97 2.30, 1.37, 1.33 0.00, 0.00, 0.00 0.15, 0.54, 0.31 10.33, 9.22, 10.16 -2.43, 0.53, 4.58 

10 M, V, F, A, C, H, O, N, HHV, HR BC, BO, G 1.00, 1.00, 1.00 0.12, 0.20, 0.10 0.00, 0.00, 0.00 0.34, 0.76, 0.30 10.67, 6.92, 9.78 2.64, 2.02, 0.43 

11 M, V, F, A, C, H, O, N, HHV, HR, T BC, BO, G 1.00, 1.00, 1.00 0.05, 0.02, 0.01 -0.01, -0.01, 0.00 0.40, 0.70, 0.28 9.33, 6.73, 9.44 0.38, 0.21, 1.09 

*M: Moisture (%), V: Volatile Organic Carbon (%), F: Fixed Carbon (%), A: Ash (%), C: Carbon (%), H: Hydrogen (%), O: Oxygen (%), N: Nitrogen (%), HHV: Higher 

Heating Value (MJ kg-1), HR: Heating Rate (oC min-1), T: Temperature (oC), BC: Biochar (%), BO: Bio-oil (%), G: Gases (%), R2: Coefficient of Determination, RMSE: Root 

Mean Square Error, ME: Mean Error.  Note: Statistical values for training and testing of both feed-forward and cascade-forward networks refer to BC, BO, and G, 
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4. Conclusions 

This study presented the application of two ANN methods 

(FFN and CFN) in the modeling of pyrolysis product yields 

(BC, BO, and G) using 9 biomass and 2 pyrolysis process 

parameters as input variables to the models.  In general, FFN 

and CFN methods had very similar performances in training and 

testing.  Both methods were trained with good performances, 

but they were not good enough in testing of especially BC and 

G.  Hierarchical modeling approach showed that there was no 

clear trend in the contribution order of the input variables to the 

models in testing of BC and G except BO, indicating that a few 

related variables may be used in the modeling of BC and G 

rather than using all of them.  

The study results suggest that the ANN models are easy-to-

use modeling tools for pyrolysis process modelers with no a 

priori knowledge of the relationships between input and output  

variables.  In addition, they can easily be utilized compared to 

the other modeling techniques in the modeling of complex, 

nonlinear, and limited biomass and pyrolysis data.  The 

potential of both ANN methods is worthy to be investigated 

further by applying to a larger data set produced from limited 
biomass types under the controlled pyrolysis process 

conditions.  Such a study may help developing more case-

specific models to use in pyrolysis modeling studies.  
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