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Abstract- This paper presents the estimation of the state of charge (SOC) for a lithium-ion battery using feature selection and 

an optimal NN algorithm. Principle component analysis (PCA) is used to select the most influencing features. Out of nine 

variables, five input variables are selected based on the value of eigenvectors. An optimal neural network (NN) is developed by 

selecting the hidden layer neurons and learning rate since these parameters are the most critical factors in constructing a NN 

model. The model is tested and evaluated by using US06 driving cycle at 25°C and 45°C respectively. In order demonstrate the 

effectiveness and accuracy of the proposed model, a comparative study is performed between proposed NN model and two 

different NN models (NN1 and NN2). The proposed NN model estimates SOC with lower mean squared error (MSE) and root 

mean squared error (RMSE) compared to two NN models which proves that the proposed model is competent and robust in 

estimating SOC. The simulation results show an improvement in proposed NN model accuracy over NN1 and NN2 models in 

minimizing RMSE by 26% and 22% and MSE by 45% and 39% respectively at 25°C. 
 

Keywords- state of charge; lithium-ion battery; neural network; principle component analysis; data training and testing; mean 

squared error (MSE); root mean squared error (RMSE) 

 

1. Introduction 

With ever rising concerns over climate change, global 

warming, and energy conservation, research and 

development on EVs are being actively performed  [1]–[4]. 

EVs have already been widely accepted in the automobile 

industry and are considered the most promising replacements 

of gasoline based vehicles in reducing CO2 emissions [5], 

[6]. However, the performance of electric vehicles is highly 

dependent on battery size, cost, safety, battery management 

system [7]–[9] as well as traction cotrol and heat control 

[10]. Therefore, a further development is required to enhance 

the battery performance and efficiency.  

There are different categories of batteries are being 

employed in EVs: Ni-Cd battery, Ni-MH battery, lead-acid 

battery and lithium-ion battery [11]. Of these, lithium-ion 

battery has achieved massive popularity due to its lucrative 

features such as high energy density, high voltage, long life 

cycle, low self-discharge rate and low pollution [12]–[14]. 

Due to it its attractive characteristics of the lithium-ion 

battery, a lot of research and development have already been 

performed to improve the stability and performance [15]. 

However, the lithium-ion battery still suffers from high 

initial cost and its unstable operation in battery charging and 

discharging [16]. Even though the lithium-ion battery has 

some drawbacks, the market progress has been growing 

gradually and is likely to continue its growth in future [17]. 

The SOC in one of the critical parameters to signify the 

current and remaining performance of a battery. Battery SOC 

describes how the much charge is available inside a battery 

to drive an electric vehicle. Nevertheless, Estimating battery 

SOC accurately is a challenging task and it cannot be 

computed directly because the lithium-ion battery has non-

linear, time-varying characteristics and complex 

electrochemical reactions [18]. Furthermore, lithium-ion 

battery is very sensitive to some internal and external factors 

[19]–[21]. Battery SOC can be calculated in many ways. For 

instance, ampere-hour method uses current integration to 
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estimate SOC which is the easiest method and can be 

implemented with low power consumption. However, the 

method suffers from determining the initial value of SOC 

which causes a cumulative effect [22]. Open circuit voltage 

(OCV) is another commonly used method which estimates 

SOC with high accuracy. However, OCV needs long rest 

time to reach steady state condition [23]. Kalman filter (KF) 

has been the most widely used method to estimate battery 

state. Nevertheless, the model has high mathematical 

computation and is extremely vulnerable to aging, 

temperature and external disturbances [24]. Fuzzy logic (FL) 

is an intelligent algorithm that estimates SOC considering 

aging, temperature, and noises. Nonetheless, the method 

requires lots of computation and a huge amount of training 

data as well as costly processing unit [25]–[27]. Support 

vector machine (SVM) has satisfactory performance in 

battery nonlinear and high dimension model. The method has 

benefits of estimating SOC quickly and accurately. However, 

highly complex computation makes the process difficult to 

be executed in the BMS [28]. 

To overcome these shortcomings, an optimal neural 

network (NN) algorithm is proposed to estimate the SOC of 

a lithium-ion battery for an electric vehicle application. This 

paper uses the feedforward backpropagation (BP) NN which 

updates the weights and biases of each hidden layer to 

minimize error. Firstly, an optimal number of input variables 

is selected out of many variables using PCA which has a 

significant impact in improving accuracy. Secondly, a 

number of hidden layer neurons and learning rate are 

optimized to reduce the MSE and RMSE between actual 

SOC and estimated SOC. 

The paper is arranged as follows. Section two describes 

the steps and explanation of input data selection based on 

PCA. The data collection method is presented in section 

three. Section four describes data normalization and 

preprocessing. The explanation of NN structure is presented 

in section five. Section six covers the steps of the NN 

algorithm. Section seven narrates the process of data training, 

validation and mathematical expression of statistical errors. 

Finally, the results are analyzed and compared with other two 

NN models to verify the performance the proposed NN 

algorithm on estimating lithium-ion battery SOC. 

 

2. Features Selection Using PCA  

Input data selection is very important in constructing an 

optimal NN model. Irrelevant data selection not only extends 

the training time but also causes an increase in the estimated 

error. Due to a complex nonlinear characteristic of the 

lithium-ion battery, SOC is estimated by many features. In 

this research, three basic input variables including current, 

voltage and temperature are selected first. However, these 

three variables cannot estimate battery SOC precisely. 

Therefore, new input features must be included to the model 

to improve the estimation accuracy. The features will be 

derived from the basic variables in the form of derivative and 

integration.  Hence, a first and second derivative of voltage 

 VddV 2,  and current  IddI 2,  are considered. Also, 

integration of current   Idt  and voltage  Vdt  are also taken 

into account. These features are selected since the sensitivity 

of these features is significant in estimating SOC. It is 

observed that the higher number inputs increases the 

accuracy but reduces the convergences. Hence, the 

correlations between input features and SOC are evaluated.  

There are various methods to extract the most relevant 

input features such as linear correlation analysis [29], genetic 

algorithm [30], partial least square regression (PLSR) [31] 

However, each model suffers from a lack of accuracy and 

complex computation. Therefore, the optimal number of 

input variables for the estimation of SOC is computed using 

PCA or Karhunen Loève Transform (KLT) . PCA or KLT is 

a dimension reduction tool which is used to transform a large 

set of the dataset into a small set that still obtains the most of 

the information in the large dataset. PCA is a mathematical 

procedure which reduces the uncorrelated variables and finds 

a number of correlated variables that accounts for as much 

variability in the data as possible [32]. C. Turchetti, et al. 

[33] proposed KLT technique to represent the nonlinear 

random transformations by non-gaussian stochastic neural 

networks. The KLT basis set consists of the eigenvectors of 

the covariance matrix. The KLT is also guaranteed to provide 

the most efficient and accurate transformation by minimizing 

mean square error (MSE) in reconstruction and maximizing 

the entropy of the representation. This has the effect of 

greatly reducing the dimensionality of uncorrelated features 

from many variables. The similar approach can be introduced 

for battery charging model since the lithium-ion battery has 

non-linear characteristics.  

The algorithm to extract feature using PCA can be 

explained in the following seven steps [34]. 

Step 1 Select the whole dataset consisting of nine 

variables. 

Step 2 Compute mean, variance and covariance matrix. 

Step 3 Calculate eigenvalues and corresponding 

eigenvectors of the covariance matrix. 

Step 4 Extract factors based on eigenvalues greater than 

one. 

Step 5 Select the factor which has the highest eigenvalue 

and highest variability. 

Step 6 

 

 

Step 7 

Calculate the eigenvector, correlations between 

variables and factors, and contribution of the 

variables (%) of the most influencing factor. 

Rank the variables based on the value of 

eigenvector, correlation and variable contribution 

from the highest to the lowest. This will arrange the 

variables in order of significance.  

 

Table 1 shows the eigenvalue, variable and cumulative of 

three factors for data US06 at 25°C and 45°C respectively. 

All three factors have eigenvalues greater than one. The 

factor which has high eigenvalues contributes high to the 

explanation in the variables. The factor one contains 34% 

variability while the factor two and factor three capture 25% 

and 20% of the variance respectively at 25°C. Among three 

factors, factor one is chosen since it has achieved the highest 

value of eigenvalue and the highest variability.  
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Table 1. Factor analysis using PCA 

Factor 
F1 F2 F3 

25°C 45°C 25°C 45°C 25°C 45°C 

Eigenvalue 3.09 2.98 2.23 2.22 1.83 1.81 

Variability 

(%) 
34.43 33.15 24.82 24.69 20.38 20.12 

Cumulative 

% 
34.43 33.15 59.26 57.84 79.64 77.96 

 

Table 2 presents the eigenvalue, correlation significance 

and variable contribution of each input. It is observed that 

current integration has the maximum eigenvector of 0.47 

followed by the current, voltage integration, voltage and the 

first derivative of the voltage at 25°C. Similarly, at 45°C, the 

current integration, current, voltage integration, and voltage 

have a high contribution in explaining the variance. The 

correlation coefficient and variable contribution also prove 

that there are high significance and variation in current, 

voltage as well as their integration values where current 

integration holds the highest value.  

Table 2. Results of PCA 

Features Eigenvectors 
Correlations 

coefficient 

Contribution of 

the variables 

(%) 

 
25°C 45°C 25°C 45°C 25°C 45°C 

I 0.47 0.49 0.83 0.84 22.24 24.03 

V 0.41 0.39 0.71 0.68 16.45 15.60 

T -0.16 -0.12 -0.28 -0.21 2.58 1.59 

dV  0.38 0.37 0.67 0.64 14.61 13.97 

Vd 2
 -0.02 -0.11 -0.03 -0.20 0.04 1.37 

dI  0.16 0.07 0.28 0.12 2.65 0.49 

Id 2
 -0.13 -0.17 -0.23 -0.29 1.75 2.93 

 Idt  0.47 0.49 0.84 0.85 22.98 24.36 

Vdt  0.41 0.39 0.71 0.68 16.66 15.61 

 

Table 3 and Table 4 show the feature selection for NN 

algorithm from the highest to lowest based on the values 

used in Table 2. Table 3 and Table 4 have the identical 

results for the variables ranked from one to five. However, 

the ranking hierarchy for the input variables placed at rank 

six to nine is not similar at both temperatures. These features 

are not considered as they are the least influential factors and 

they have very low correlation with the output. In summary, 

the first five variables are chosen out of nine variables since 

these five variables have the higher eigenvector, correlation 

and contribute almost 93% variation. 

 

Table 3. Rank of input from highest to lowest at 25°C 

Rank 1 2 3 4 5 6 7 8 9 

Input  Idt

 

I 

 
Vdt

 

V dV
 

dI
 

T Id 2

 

Vd 2

 

Table 4. Rank of input from highest to lowest at 45°C 

Rank 1 2 3 4 5 6 7 8 9 

Input  Idt

 

I 

 
Vdt

 

V dV
 

Id 2

 

T Vd 2

 

dI  

 

3. Data Collection 

Battery data was collected from 18,650 

LiNiMnCoO2/Graphite lithium-ion cells with a nominal 

capacity of 2.0 Ah and voltage of 3.6 V. The upper and lower 

cut-off voltage of the battery is 4.2 V and 2.5 V respectively 

and a maximum current of 22 A. The cell was charged by 

constant current constant voltage (CCCV) method. The 

measurements were recorded in a 1-second interval. The 

highway driving profile named US06 [35] are used for data 

training and testing. Experiments were conducted at 25°C 

and 45°C.  The current and voltage profile of US06 is shown 

in Fig. 1.  
(a)

(b)

Fig. 1. US06 testing profile (a) current (b) voltage 

4. Data Normalization 

The training data of NN can be made more efficient and 

robust through appropriate normalization of data. The data 

normalization can enhance the convergence rate and is able 

to remove the negative influence. In this study, input and 

output are normalized to a range [-1,1] by 

 
1

2

minmax

min 





xx

xx
x                               (1) 

Where maxx  and minx  are the maximum and minimum 

value of input vector x  of the NN model.  The validation 

dataset is scaled using the same range used in the training 

data.  
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5. Neural Network Structure 

A three-layer feedforward back-propagation (BP) neural 

network is used in this research for the estimation of SOC. 

The first layer is the input layers to characterize the inputs 

variables, the second layer consists of one or more hidden 

layers and the third layer is the output layer to characterize 

the output variables. The input layer has inputs with weights 

without any processing of data. The hidden layers and output 

layer are called processing layer with the activation function. 

In NN structure, the neurons calculate the summation of the 

multiplying of inputs weighted with the inputs variables, and 

the threshold or bias. The summation is processed neurons’ 

activation function to generate the outputs. The hidden layer 

uses hyperbolic tangent sigmoid function as an activation 

function which is defined as 

 xe
xf




1

1
)(                                   (2) 

The output layer can be mathematically represented as 














 



N

j

jjj bXwfY
1

                         (3) 

Where X and Y represent the input and the output variables 

of the BPNN model, respectively, jw is the weight, jb  

represents the bias.  

 

The weights and biases values are estimated in each 

neuron is a supervised training process with the learning 

data. During the training process, NN minimizes the error 

rate between estimated SOC and actual SOC by adjusting the 

weights and biases at each iteration. The training process 

stops once the distinction is lower than the present value of 

the error rate. Fig. 2 shows the NN structure with optimal 

inputs. 
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Fig. 2. Structure of NN with optimal input variables 

 

6. Optimal NN Algorithm 

The flowchart of optimal NN algorithm is shown 

in Fig. 3 

Start

Data Collection

Features selection using PCA

Data Normalization

n   50

Reach maximum iteration?

Set optimal NN parameters: 

Number of iteration

Number of dimension: hidden neurons, n

 and learning rate, Lr

n=n+1

Lr=Lr+0.1

Select best learning rate for the current hidden layer 

neuron

Run the NN algorithm with optimal value of 

learning rate and hidden layer neurons

Model validation with testing data

SOC estimation

End

Lr   1

Reach maximum search space ?

No

No

Yes

Run the NN algorithm and compute RMSE of 

learning rate

Yes

Model performance evaluation: calculate RMSE 

and MSE

Choose the minimum RMSE value of learning rate 

and hidden neurons that gives the optimal solution

 

Fig. 3. Proposed optimal NN algorithm flowchart for SOC 

estimation 

The steps of the proposed NN algorithm for estimating SOC 

are described as follows. 

Step 1 The estimation process starts by selecting the 

appropriate inputs. In this study, five inputs are 

selected out of many variables including 

 VdtIdtdVVI ,,,, since these five inputs 

have a significant relationship with battery SOC 

which is mentioned in section three. 

Step 2 The input and output data are normalized to a 

range [-1,1]. 

Step 3 The maximum iteration is selected as 50. The 

initial number of the hidden neuron and learning 

rate assign as 1 and 0.1 respectively. 

Step 4 A ‘for loops’ is introduced to handle all the 
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numbers of neurons in the search space. 

Step 5 At the same time, another ‘for loops’ is initiated 

inside the previous ‘for loops’ to find an optimal 

value of learning rate. During each iteration, the 

objective function (i.e., RMSE) is calculated for 

the current hidden layer neuron. The search space 

is controlled for 1 as the maximum values. The 

value of learning rate is increased by 0.1 and will 

stop until it reaches maximum search space. 

Step 6 The learning rate is chosen for the current hidden 

layer neuron. 

Step 7 The minimum value of the objective function for 

hidden layer and learning rate are selected to 

achieve the best results accuracy. 

Step 8 The simulation is executed with the activation 

function of the NN algorithm with the optimal 

number of neurons and learning rate that has 

achieved from the previous sequences. 

Step 9 The model is verified using testing data. 

Step 10 SOC is estimated and compared the results with 

actual SOC. 

Step 11 Evaluate the performance of the proposed model 

by estimating RMSE and MSE. 

 

7. Model Training and Validation 

US06 is randomly divided into two data sets. The model 

is trained by using 60% randomly selected data and verified 

by using 40% randomly selected data. Training of the NN is 

performed using Levenberg-Marquardt back propagation 

because it has good training speed and maintains very good 

accuracy. In this study, the maximum number of epochs is 

1000 and the performance goal is set as 0.000001. 

Two statistical error terms are used to evaluate the results 

of the proposed NN model including RMSE and MSE. The 

mathematical expression of RMSE and MSE are expressed 

as follows: 

 2

1

1
aes

N

i
II

N
RMSE   

                 (4) 

             2
1

1
aes

N

i
II

N
MSE   

                       (5)                         

Where 
esI  represents the estimated value, 

aI is actual value 

and N is a number of observations. 

 

8. Results and Discussion 

This study presents three NN models to estimate SOC 

based on different input variables, hidden layer and learning 

rate. The NN1 model takes current (I), voltage (V), 

temperature (T) as inputs. The number of hidden neurons is 

considered as 10 and learning rate is 0.5. The inputs of the 

NN2 model are current (I), voltage (V), temperature (T), the 

first derivative of voltage and current  dVdI , . The hidden 

neuron and learning rate is chosen as 15 and 0.8 respectively. 

The NN3 model optimizes the number of inputs, hidden 

layer and learning rate. Three NN models estimate SOC 

using a three-layer structure with Levenberg-Marquardt back 

propagation training and the same activation function.  

8.1 NN1 model 

Fig. 4 compares the estimated SOC with actual SOC for 

the NN1 model at 25°C and 45°C. The solid curve represents 

the SOC estimated by coulomb counting method. It is 

observed that both show similar characteristics to predict 

SOC. However, SOC estimated at 45°C is more stable than 

that of 25°C. Ambient temperature has a significant effect on 

battery SOC. The increment of ambient temperature results 

in an increase in battery capacity [36]. This is due to the fact 

that the temperature acceleration results in a reduction in 

viscosity and a rise in activity of the electrolyte which may 

support the migration impact and ion diffusion [37].  
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Fig. 4. SOC estimation of NN1 model (a) 25°C (b) 45°C 

 

8.2 NN2 model 

Likewise, for the NN2 model, the SOC estimation 

performs better when it is tested at 45°C as shown in Fig. 5. 

In addition, the performance is enhanced compared to NN1 

model due to the increasing number of input features and 

different values of hidden layer neurons and learning rate. 

The results demonstrate that there is an improvement in SOC 

estimation when the number of input variables is increased. 

However, it does not mean that the more we have the input 

features, the less we achieve error in SOC estimation. 

Selecting input features needs careful observations since 

increasing the input features can cause model complexity and 

lengthen the training time. Similarly, if the hidden neuron 

and learning rate are not optimized, then the estimation error 

will also increase.  
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Fig. 5. SOC estimation of NN2 model (a) 25°C (b) 45°C 

8.3 NN3 Model 

The NN3 model is the proposed model with the optimal 

number of input features together with an optimal number of 

hidden neurons and learning rate. The proposed NN model 

computes the optimal number of neurons and hidden layer 

based on RMSE. Fig. 6 (a) shows that the RMSE is very high 

at the beginning part of neurons for the US06 cycle at 25°C. 

The highest value of RMSE is estimated at 0.018 when the 

number of a neuron is one and since then, RMSE starts 

decreasing and achieves the lowest RMSE of 0.0057 with 22 

neurons. The value of RMSE starts rising with some quick 

fluctuations between neurons 10 and 50. The result indicates 

that increasing the number neurons does not attain a better 

performance. Fig. 6 (b) shows the RMSE value of a number 

of neurons for US06 cycles at 45°C. Similarly, the higher 

value of RMSE is achieved at the initial part of neurons. 

There is a dramatic decrease in RMSE value for neurons 

placed from one to three. The RMSE starts declining again 

and reaches its lowest value of 0.0033 with 25 hidden 

neurons. The value of RMSE fluctuates between the value of 

0.003 and 0.005 when the neuron value lies between 10 and 

50 which again proves that the model is not suitable for 

higher values of neurons. The learning rate is computed as 

0.1 for both 25°C and 45°C. 

 

Fig. 7 shows the simulation results of SOC estimation 

for the proposed NN model. The estimated SOC is nearly 

aligned with actual SOC which proves the high accuracy of 

the proposed model compared to the first and second NN 

model.  
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Fig. 6. Proposed NN model training RMSE vs number of 

neurons (a) 25°C (b) 45°C 
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Fig. 7. SOC estimation of the proposed model (a) 25°C (b) 

45°C 
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Fig. 08 shows the absolute error which is the difference 

between actual SOC and estimated SOC. The range of 

absolute error lies at between -2% and +2% at 25°C with 

rapid fluctuations. Nevertheless, at 45°C, absolute error is 

more stable and has less fluctuation than operating at 25°C. 

The majority error lies at between -1% and +1% with a very 

few values reach -2% and +2%. 

(a) 

0 200 400 600 800
-0.02

-0.01

0

0.01

0.02

Time (s)

A
b

s.
 e

rr
o

r

 

(b) 

0 200 400 600 800
-0.02

-0.01

0

0.01

0.02

Time (s)

A
b

s.
 e

rr
o

r

 

Fig. 8. Absolute error of the proposed model (a) 25°C (b) 

45°C 

8.4 Comparative Analysis 

Fig. 9 and Fig. 10 compares the performance among 

three NN models based on MSE and RMSE. The RMSE for 

the NN1 and NN2 models are estimated as 0.86% and 0.82% 

respectively at 25°C while the proposed model has an RMSE 

of 0.64% which is a 26% and 22% reduction from the NN1 

model and NN2 model. The MSE value of the proposed NN 

model is also decreased and dropped by 45% and 39% 

compared to the NN1 and NN2 model. The value RMSE and 

MSE for the NN1 and NN2 models are declined further at 

45°C and reach at 0.65% and 0.47% respectively. However, 

the proposed model performs better and achieves RMSE of 

0.42% which is a decrement by 35% and 11% compared to 

NN1 and NN2 model respectively. There is also an 

improvement of MSE in the proposed NN model where the 

error is reduced by 57% and 18% in comparison to the NN1 

model and NN2 model.   

 

Fig. 9. RMSE comparison of three NN models 

 

Fig. 10. MSE comparison of three NN models 

9. Conclusion 

An advanced NN model with an optimal value of inputs, 

hidden layer and learning rate are presented in this paper. 

The detailed explanation of PCA algorithm, NN operating 

principle, and the optimal algorithm have been provided. 

US06 cycle is used for model training and validation at two 

different temperatures. The proposed model is compared 

with two different NN models to prove the model robustness 

and accuracy. The results are significant to conclude that: 

 Selecting the most relevant input features is an effective 

method to optimize the NN model. The study considers 

many input variables including current, voltage, 

temperature with their first, second derivative as well as 

integration. However, the results obtained from PCA 

demonstrate that the combination of five inputs 

including  VdtIdtdVVI ,,,, have strong relevance 

with battery SOC. 

 Finding the optimal number of hidden neurons and 

learning rate is another promising method to enhance the 

SOC accuracy. The optimal number hidden layer 

neurons are computed as 22 and 25 based on lowest 

RMSE at 25°C and 45°C respectively. The results also 

show that increasing the number hidden layer neuron 

does not improve model performance. The learning rate 

is 0.1 at both temperatures. The validation reports prove 

that the proposed model is effective in enhancing 

accuracy and has RMSE under 1%. 
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 A comparison is studied between the proposed model 

and two different NN models to check the model 

accuracy and robustness. The proposed NN model is 

demonstrated as a better model in terms of performance 

and accuracy. The results show that there is a reduction 

in RMSE by 26% and 22% and MSE by 45% and 39% 

respectively compared to the NN1 model and NN2 

model at 25°C. 
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