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Abstract- In this paper, the development of a Parallel Kalman Filter for a bilinear model in the presence of correlation between 

process and measurement noise is discussed. The developed theory is implemented for estimation of both states and parameters 

of power system networks using measurements from synchronized Phasor Measurement Units (PMUs). Dynamics of states and 

parameters of power system networks comprise system dynamics for the bilinear system model representation, and 

measurements coming from PMUs are represented as observation for bilinear system model. Correlation between noise in voltage 

phasor dynamics and noise in PMU measurements as well as correlation between noises in parameter dynamics and measurement 

noise are considered for implementation of state and parameter estimation of power systems. The developed theory is 

implemented as a method to estimate voltage phasors and network parameters in parallel with each other. The developed theory 

is tested on various example power grids to show the effects of relevant correlation matrices on estimation of system states and 

network parameters of the power system network. 

Keywords State Estimation, Parameter Estimation, Parallel Kalman Filter, Phasor Measurement Units, Power Systems. 

 

1. Introduction 

Most of the decisions related to secure and economic 

operations of the grid are dependent on the outcome of state 

estimator of power systems [1, 2]. It is the central block in an 

Energy Management System (EMS), which gives inputs to 

both Energy/economy functions subsystems and security 

monitoring and control subsystems [3]. With the complexity 

in modern grid increasing exponentially with time, the role of 

state estimator has become even more important for secure 

operation of the power grid. Phasor measurement units 

provide measurements at much faster rate compared to 

traditional Supervisory Control and Data Acquisition system 

(SCADA). Apart from this, measurements from PMUs are 

synchronized with GPS clock and there is a linear relationship 

between measurements and system states in state space 

representation, making the analyses simpler. PMUs work 

according to a defined IEEE standard to ensure compatibility 

with relevant communication protocols [4].  

Schweppe first introduced application of static state 

estimation technique to state estimation of power systems [5-

7].  The noisy measurements coming from SCADA from one 

time instant were used to estimate voltage magnitudes and 

phase angles at every bus using weighted least squares 

method. Later on after introduction of PMUs, various 

researchers solved problems of incorporating SCADA and 

PMU measurements into the state estimation problem [8-9]. 

In [10] authors implemented a state estimator with PMUs in 

case of presence of phase biasing, which is a special form of 

bad data present in PMU measurements. The estimator was 

implemented on a small section of American Electric Power 

(AEP) grid. In [11] a distributed state estimator was 

implemented using PMU measurements. In this case, the 

estimator is divided into smaller local state estimators, each 

running their own estimation process. The overall effect is 
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estimator being more robust because of its decentralized 

nature. 

Dynamic state estimation (DSE) techniques use 

information from both system dynamics and observer model 

to estimate system states.  DSE has been used to estimate 

states of power system networks in various ways. A method to 

improve performance of DSE is developed in [12] which is 

extended from the model used in [13]. In [14], DSE is 

implemented in case of sudden load change using two 

different methods. The first method involves an iterative 

estimation at the instant of load change while the second 

method decreases effects of nonlinearity due to sudden change 

in load by using Taylor series expansion up to second term. It 

is found that a lack of synchronization in GPS clocks used by 

PMUs can deteriorate the performance of the state estimator. 

In [15], lack of synchronization is included in the estimation 

process. Both state dynamics model and synchronization error 

model are included into a bilinear model and state estimation 

is implemented using Alternating Minimization technique and 

Parallel Kalman Filter technique.  

Correct implementation of state estimator depends on 

correct knowledge of the parameters of the network. Despite 

of state estimation being a very active research topic and 

methods in state and parameter estimations being similar, not 

much effort has been directed towards parameter estimation of 

power systems. In [16] a method to estimate parameter errors 

in power system networks was developed which uses real time 

measurements. The algorithm uses weighted least squares for 

state estimation part while using sensitivity analyses for error 

identification. In [17-18], authors have introduced a method to 

implement joint estimation of states and parameters of power 

system networks using synchrophasor measurements when 

the correlation between errors in state prediction and pseudo 

measurement errors is known. Similar techniques have been 

used for both states and parameter estimation. Researchers 

have relied on various methods to implement parameter 

estimation using residual sensitivity analyses [19-21] and 

augmentation of states and parameters. Approaches based on 

normal equations [22-23] have been used which are extension 

to conventional state estimator in a manner that it is an 

augmentation of states and parameters of the network as a 

representation of new system states for the estimator. These 

methods may face issues related to convergence and 

observability. Power system network parameter estimation 

has been implemented in various ways based on dynamic state 

estimation techniques [24-26]. Approaches based on dynamic 

state estimation technique use information from both 

dynamics of parameters as well as measurements coming from 

various parts of the network and tend to be computationally 

expensive. In [28-38] some other important ways to 

implement state estimation of power systems have been 

discussed.  

Current methods for state/parameter estimation of power 

systems don’t take correlation between noises of system 

dynamics and measurements in to account. In this paper a new 

method for estimation of state-parameter bilinear system using 

Parallel Kalman Filter is developed for a case when 

correlation between various sections of process noise and 

measurement noise is present. PKF is a dynamic state 

estimation technique for a special class of nonlinear systems 

where the system states can be separated into two set of 

vectors each being a linear system. Derivation of PKF is based 

on game theory approach where decisions made by each team 

is in terms of the outcome of decisions made by the other team 

and vice versa [27]. Dynamics of voltage phasors and network 

parameters along with PMU measurements is combined into a 

format of bilinear system model.  The correlation between 

noise in process dynamics of voltage phasors and parameter 

networks with noise in PMU measurements is known.  

   The developed algorithm is used for estimation of 

system states and network parameters of power systems using 

PMU measurements. Developed algorithm is implemented on 

various standard bus test systems, e.g. IEEE 14, IEEE 30, 

IEEE 57 and IEEE 118 bus test systems and effects of 

correlation matrices on state/parameter estimation is verified 

using Root Mean Square Error values. Numerical Results 

reveal the effectiveness of the proposed method.  

2. Measurement and System Model 

2.1 Measurement Model  

For an example power system network consisting of N 

nodes connected by L transmission lines, the system states at 

time instant k are given by  

𝑋𝑘 =  [|𝑉1|    |𝑉2| … … |𝑉𝑁|       𝜃2      𝜃3     𝜃𝑁]
𝑘

𝑇
                (1) 

This system state representation can be changed to 

rectangular coordinates without any loss of accuracy, and is 

given by   

𝑋𝑘 =  [𝑋1
𝑖     𝑋2

𝑖 … … 𝑋𝑁
𝑖       𝑋1

𝑟    𝑋2
𝑟 … … 𝑋𝑁

𝑟 ]
𝑘

𝑇
                  (2) 

Where, 𝑋1
𝑖
 and 𝑋1

𝑟
are imaginary and real part of voltage 

phasor X for bus 1 and so on for time instant k. Relationship 

between branch currents with voltage phasors in the power 

systems has been derived using pi model of the transmission 

lines. 

 

Fig. 1 Pi model of the transmission line [1] 

Parameters of line i-j connecting nodes i and j are given 

by conductance gij and susceptance bij. Shunt conductance gsi 

is assumed to be negligible, bsi represents shunt susceptance 

for node i. Admittance of the line in fig. 1 is given by   

Yij = gij + j bij                   (3) 
Voltage phasors at nodes i and j and current phasors 

through line i-j are related as follows  

𝐼𝑖𝑗,𝑘
𝑟 =  𝑔𝑖𝑗,𝑘 . 𝑋𝑖,𝑘

𝑟 −  𝑔𝑖𝑗,𝑘 . 𝑋𝑗,𝑘 
𝑟  −  (𝑏𝑖𝑗,𝑘 +

𝑏𝑠ℎ,𝑘). 𝑋𝑖,𝑘
𝑖 +  𝑏𝑖𝑗,𝑘. 𝑋𝑗,𝑘 

𝑖                                                     (4) 

𝐼𝑖𝑗,𝑘
𝑖 =   𝑔𝑖𝑗,𝑘 . 𝑋𝑖,𝑘

𝑖 −  𝑔𝑖𝑗,𝑘 . 𝑋𝑗,𝑘 
𝑖  + (𝑏𝑖𝑗,𝑘 +

𝑏𝑠ℎ,𝑘)𝑋𝑖,𝑘
𝑟 − 𝑏𝑖𝑗,𝑘  𝑋𝑗,𝑘 

𝑟                                                     (5) 

Here it should be noted that expressions for real and 

imaginary components of current phasors are given in terms 

of voltage phasors and network parameters, all of which vary 
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with time instant k. The set of measurement equations for 

PMU placed at both node i and j can be given as  

𝑍𝑘   = 𝐻𝑘𝑋𝑘           (6) 
Where, subscript k denotes time instant for the 

measurement set𝑍𝑘. 

For a small subnetwork as given in fig. (1), measurement 

set 𝑍𝑘(which is a combination of voltage phasors due to PMUs 

at node i and j and current phasors through the line i-j) at time 

instant k is given by   

𝑍𝑘 = [ 𝑋𝑖,𝑘
𝑟    𝑋𝑗,𝑘 

𝑟   𝑋𝑖,𝑘
𝑖   𝑋𝑗,𝑘 

𝑖   𝐼𝑖𝑗,𝑘
𝑟     𝐼𝑗𝑖,𝑘 

𝑟    𝐼𝑖𝑗,𝑘
𝑖    𝐼𝑗𝑖,𝑘 

𝑖 ]
𝑇
     (7) 

For a set of PMUs placed on a network, each types of 

measurements generated can be combined together to 

represent the measurement set as in (6). The measurement 

Jacobian matrix Hk in (6) can be given as  

𝐻𝑘 =  [

𝐻11 𝐻12

𝐻21 𝐻22

𝐻31

𝐻41

𝐻32

𝐻42

]           (8) 

Where, each element of the Jacobian matrix represents the 

rate of change of corresponding type of measurement to a 

subset of system states (Xi or Xr) as shown for elements in first 

row 

H11 =  
𝜕𝑋𝑘

𝑟

𝜕 𝑋𝑘
𝑖       H12 =  

𝜕𝑋𝑘
𝑟

𝜕 𝑋𝑘
𝑟      

It is assumed that errors associated with PMU 

measurements are of Gaussian distribution in nature with zero 

mean and known covariance. Thus the PMU measurements 

can be modeled as  

𝑍𝑘  = 𝐻𝑋,𝑘𝑋𝑘 +   𝑊𝑍,𝑘           (9) 

Here WZ,k represents PMU measurement noise with 

Gaussian distribution represented by 

𝑊𝑍,𝑘  ~ ℵ(0, 𝑅𝑘)             (10) 

It should be noted that the elements in Jacobian matrix 

𝐻𝑋,𝑘 consists of time varying parameters of the power system 

network.  

2.2 System State Dynamics 

Following the state space representation from [17], we 

represent dynamics of system space in state space form where 

state vectors change only slightly around a central value. This 

representation is accurate in case of voltage phasors in power 

systems because voltage phasors in a balanced power system 

network don’t vary too far from a central value. 

𝑋𝑘 = 𝑋𝑐 +  𝑊𝑥,𝑘           (11) 

Random vector Wx,k takes a multivariate Gaussian 

distribution with zero mean and known covariance.   

𝑊𝑋,𝑘  ~ ℵ(0, 𝑄𝑋,𝑘)         (12) 
2.3 Network Parameter Dynamics  

Parameters of the power system network lines are 

modeled according to pi model of the transmission lines. 

Parameter Y for a transmission line connecting buses i and j is 

a vector consisting of gij, bij, and bsh associated with line i-j 

in our representation of parameter vectors. We represent 

dynamics of parameters of power systems network in state 

space model as follows [17]  

𝑌𝑘 = 𝑌𝑐 +  𝑊𝑌,𝑘                         (13) 

      Where, Wy,k represents noise in parameter dynamics which 

is assumed to be of Gaussian distribution as  

𝑊𝑌,𝑘 ~ ℵ(0, 𝑄𝑌,𝑘)           (14) 

      Using the known dynamics of network parameters, above 

measurement coming from PMUs can be represented in a new 

format given as follows   

𝑍𝑘  = 𝐻𝑌,𝑘𝑌𝑘 +   𝑊𝑍,𝑘                   (15) 

      Where, Vk represents random noise with Gaussian 

distribution associated with PMU measurements described in 

(10). Elements of Jacobian matrix 𝐻𝑌,𝑘used in (15) will be a 

linear function of system state vectors 𝑋𝑘
𝑟 or 𝑋𝑘

𝑖 and can be 

expressed as  

𝐻𝑌,𝑘 =  [

𝐻𝑌11 𝐻𝑌12 𝐻𝑌13

𝐻𝑌21 𝐻𝑌22 𝐻𝑌23

𝐻𝑌31

𝐻𝑌41

𝐻𝑌32

𝐻𝑌42

𝐻𝑌33

𝐻𝑌43

]          (16) 

        Elements of first row of Jacobian matrix in representation 

of second form of PMU measurements are given as follows 

HY11 =  
𝜕𝑋𝑘

𝑟

𝜕 𝐵_𝑙𝑖𝑛𝑒𝑘
𝑖     HY12 =  

𝜕𝑋𝑘
𝑟

𝜕 𝐺_𝑙𝑖𝑛𝑒𝑘
𝑖    HY13 = 

𝜕𝑋𝑘
𝑟

𝜕 𝐵_𝑠ℎ𝑘
  

It is assumed that there is correlation between process and 

measurements noises in the system. Which means noise in 

system dynamics of voltage phasors WX,k and noise in 

measurements i.e. WZ,k are correlated and their correlation is 

given by MXZ. Similarly, noise in process dynamics of 

parameters WY,k and noise in measurements are correlated and 

their correlation is represented by matrix MYZ.  

3. Development of PKF for Bilinear Model 

In this section, details of PKF is discussed for a case when 

correlation between process and measurement noise is 

present. Development of the theory behind this is discussed in 

appendix A.  PKF for bilinear system was first developed in 

[27]. A bilinear system is a special class of discrete time 

nonlinear system where given a partition in state vector, the 

system can be represented into two separate linear systems 

with respect to the system states of their own partition. This 

representation can be very useful for state estimation when 

system states are in form of a linear function of unknown 

parameters. For a hypothetical system, let us assume that the 

state vector can be partitioned into two vectors namely, Xk and 

Yk (in accordance with states and parameters in case of power 

systems). The partitioned vectors are assumed to be of 

dimensions such as 𝑋𝑘  𝜖 ℛ𝑝 and 𝑌𝑘𝜖 ℛ𝑞. In this case, the 

dynamics of the states can be represented as 

(
𝑋𝑘+1

𝑌𝑘+1
) = (

𝐴11+ 𝐹1(𝑌𝑘)

𝐴21
|

𝐴12

𝐴22+ 𝐹2(𝑋𝑘)
) (

𝑋𝑘

𝑌𝑘
) + (

𝐵1

𝐵2
) 𝑢𝑘 +

(
𝜀𝑘1

𝜀𝑘2
)            (17) 

        Where, 𝜀𝑘1and 𝜀𝑘2 are zero mean white noise with known 

covariance matrices 𝑄𝑘1 and 𝑄𝑘2 respectively. For power 

systems, 𝑋𝑘represents the voltage phasors and 𝑌𝑘represents 

network parameters. In above model, 𝐹1(𝑌𝑘) and 𝐹2(𝑋𝑘) 

depend linearly on 𝑌𝑘 and 𝑋𝑘 respectively. This can be 

represented as 

𝐹1(𝑌𝑘) =  ∑ 𝐹1𝑖𝑌𝑘𝑖
𝑞
𝑖=1           (18) 

𝐹2(𝑋𝑘) =  ∑ 𝐹2𝑖𝑋𝑘𝑖
𝑝
𝑖=1            (19) 

Two representations for observer model of the bilinear system 

are shown below 

𝑍𝑘 =  𝐻1 𝑋𝑘 +  𝐻2 𝑌𝑘 + 𝐶1(𝑌𝑘) 𝑋𝑘 + 𝑉𝑘         (20) 

𝑍𝑘 =  𝐻1 𝑋𝑘 +  𝐻2 𝑌𝑘 +  𝐶2(𝑋𝑘) 𝑌𝑘 +  𝑉𝑘       (21) 
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         In the observer model shown above, 𝑍𝑘  𝜖 ℛ𝑟 is the 

measurement vector, functions 𝐶1(𝑌𝑘) and 𝐶2(𝑋𝑘) are linear 

combinations of their respective arguments and 𝑉𝑘 is zero 

mean white measurement noise with known covariance𝑅𝑘.It 

is assumed that the correlation between X and Z as well as 

correlation between 𝑌 and Z is known and is denoted by MXZ  
and MYZ respectively.  

        Initialization step of the PKF is same as a regular Kalman 

filter for each of the filters. Recursive steps for the 

implementation of DSE for each of the partition of state 

vectors in form of prediction and correction steps are given as 

follows  

       The first Kalman Filter for estimation of system states Xk 

is implemented as follows  

Prediction:  

�̂�𝑘+1|𝑘 =  [𝐴11 +  𝐹1(�̂�𝑘|𝑘−1)]�̂�𝑘|𝑘 +  𝐴12�̂�𝑘|𝑘−1 +  𝐵1𝑢𝑘 (22) 

𝑃𝑘|𝑘−1
(1)

 =  [𝐴11 +  𝐹1(�̂�𝑘|𝑘−1)]  𝑃𝑘−1|𝑘−1
(1)

 [𝐴11 +

𝐹1(�̂�𝑘|𝑘−1)]
𝑇

+ 𝑄𝑘1                                     (23) 

Update:  

𝑆𝑘
(1)= 

(𝐻1 +  𝐶1(�̂�𝑘|𝑘−1))
𝑇

 𝑃𝑘|𝑘−1
(1)

 (𝐻1 +  𝐶1(�̂�𝑘|𝑘−1)) +  𝑅𝑘+ 

(𝐻1 +  𝐶1(�̂�𝑘|𝑘−1)) 𝑀𝑋𝑍 +  𝑀𝑋𝑍
𝑇 (𝐻1 +  𝐶1(�̂�𝑘|𝑘−1))

𝑇

  (24) 

𝐾𝑘
(1) = [𝑃𝑘|𝑘−1

(1)
 (𝐻1 +  𝐶1(�̂�𝑘|𝑘−1)) + 𝑀𝑋𝑍][𝑆𝑘

(1)]
−1

      (25) 

�̂�𝑘|𝑘 =  �̂�𝑘|𝑘−1 +  𝐾𝑘
(1) [𝑍𝑘  −

(𝐻1 �̂�𝑘|𝑘−1 +  𝐻2 �̂�𝑘|𝑘−1 +  𝐶1(�̂�𝑘|𝑘−1)) �̂�𝑘|𝑘−1 ]        (26) 

𝑃𝑘|𝑘
(1)

=  𝑃𝑘|𝑘−1
(1)

 −  𝐾𝑘
(1)  [𝐻1 +  𝐶1(�̂�𝑘|𝑘−1)]

𝑇
 𝑃𝑘|𝑘−1

(1)
            (27) 

The second Kalman Filter for estimation of system states Yk is 

implemented as follows  

Prediction: 

�̂�𝑘+1|𝑘 =  [𝐴22 +  𝐹2(�̂�𝑘|𝑘−1)]�̂�𝑘|𝑘 +  𝐴21�̂�𝑘|𝑘−1 +  𝐵2𝑢𝑘 (28) 

𝑃𝑘|𝑘−1
(2)

= [𝐴22 +

𝐹2(�̂�𝑘|𝑘−1)]   𝑃𝑘−1|𝑘−1
(2)

 [𝐴22 +  𝐹2(�̂�𝑘|𝑘−1)]
𝑇

+ 𝑄𝑘2           (29) 

Update: 

𝑆𝑘
(2) = (𝐻2 + 𝐶2(�̂�𝑘|𝑘−1))

𝑇

𝑃𝑘|𝑘−1
(2)

(𝐻2 +

𝐶2(�̂�𝑘|𝑘−1)) +  𝑅𝑘+(𝐻2 +  𝐶2(�̂�𝑘|𝑘−1)) 𝑀𝑌𝑍 

𝑀𝑌𝑍
𝑇 (𝐻2 +  𝐶2(�̂�𝑘|𝑘−1))

𝑇

                                                 (30) 

𝐾𝑘
(2) =  𝑃𝑘|𝑘−1

(2)
 (𝐻2 +  𝐶2(�̂�𝑘|𝑘−1)) [𝑆𝑘

(2)]
−1

        (31) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 +  𝐾𝑘
(2) [𝑍𝑘 −

(𝐻1 �̂�𝑘|𝑘−1 +  𝐻2 �̂�𝑘|𝑘−1 +  𝐶2(�̂�𝑘|𝑘−1)) �̂�𝑘|𝑘−1 ]                 (32) 

𝑃𝑘|𝑘
(2)

=  𝑃𝑘|𝑘−1
(2)

 −  𝐾𝑘
(2)  [𝐻2 +  𝐶2(�̂�𝑘|𝑘−1)]

𝑇
 𝑃𝑘|𝑘−1

(2)
         (33) 

        Above set of equations represent two Kalman Filters 

acting in parallel with output of one being input to the other 

and vice versa.  

4. Numerical Examples 

The theory developed above has been implemented on 

various example power system network models to do state 

(voltage phasors of different buses) and parameter (parameters 

of transmission lines represented by pi model) estimation of 

the power system network. A small example of 3 bus test 

system [17] has been used to elaborate application of 

developed PKF for various cases of state and parameter 

estimation of power system model. The developed algorithm 

has also been tested on IEEE 14, IEEE 30, IEEE 57 and IEEE 

118 bus test system to evaluate performance of the estimators. 

 
Fig. 2. 3 bus example network [17] 

      Dynamics of parameters as well as states along with 

various assumed correlations are presumed known. 

Parameters of 3 bus example network are given as follows.  

Table 1 Parameters of example 3 bus system 

Branch (m-n) 1-2 2-3 3-1 

gmn 2.5860 4.9196 2.1079 

bmn -9.3535 -16.3529 -7.6040 

        Dynamics for system states were generated by adding 

white Gaussian noise of known covariance to the base case 

value according to (11). The system parameters are generated 

by adding white Gaussian noise of zero mean and known 

covariance into the base case value according to (13). 

        For first example, we discuss implementation of PKF for 

a case when PMUs are placed on nodes 1 and 2 of the example 

network. Values of system states generated for first 6 times 

instant according to dynamic model given in (11) is shown in 

Table 2 

Table 2 System States for first 6 time instants 

The covariance matrix for process noise is given by Qx,k   

 0.009 -0.02 -0.07 -0.006 -0.06 0.006  

 -0.023 95.56 -5.20 -18.093 4.285 5.89  

Qxk =  -0.07 -5.205 101.64 -6.576 3.17 7.818 × 10-7 

 -0.006 -18.093 -6.57 108.381 -6.67 -11.11  

 -0.062 4.285 3.17 -6.671 88.09 -0.15  

 0.006 5.892 7.81 -11.111 -0.15 96.46  

        The above covariance matrix is generated randomly for 

the process dynamics of system states. System dynamics were 

generated assuming the correlation between process noise of 

system states and measurement noise (represented by MXZ). As 

discussed before, true values of system parameters were 

generated by adding white Gaussian noise of known 

covariance around a base case value of network parameters 

with including the effects of correlation matrix MYZ just like 

Time  1 2 3 4 5 6 

X1
i 0.0001 -0.0001 0 0 0 0 

X2
i 0.0401 0.0504 0.0417 0.0476 0.0477 0.0544 

X3
i 0.0753 0.0806 0.0788 0.0788 0.0781 0.0813 

X1
r 1.0132 1.0127 1.0106 1.0054 1.0128 1.0078 

X2
r 0.9846 0.9802 0.9833 0.9818 0.9829 0.9772 

X3
r 0.9968 1.0024 0.9934 0.9948 1.0023 0.9986 
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system states. The covariance for process noise of network 

parameters for this case are given as follows   

        True values of system states and parameters were 

generated using covariance matrices QXk, QYk, MXZ, MYZ and 

Rk. Size of matrices MXZ, MYZ and Rk depend on number of 

PMUs placed on the network. Value of correlation between 

process noise of power system states and PMU measurements, 

denoted by MXZ is given by Mxz = [Mxz1    Mxz2]. Where Mxz1 and 

Mxz2 are as follows 

 

 

        Correlation between noise in parameter dynamics and 

PMU measurements, denoted by MYZ is given as Myz =[ Myz1 

Myz2].where Myz1 and Myz2 are given by 

 

 

        Root Mean Square Error (RMSE) has been used as a 

performance metric for both the state and parameter 

estimation filters for developed PKF. RMSE of estimated state 

�̂�𝑘|𝑘 at time instant k using M Monte Carlo simulations is 

defined as 
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Where )(
~

| iX kk
is the estimation error of state vector X at time 

instant k. Effects of wrong values of correlation matrices were 

demonstrated by implementing two Parallel Kalman filters for 

each of the cases. First PKF does both state and parameter 

estimation using correct values of correlation matrices MXZ 

and MYZ while second PKF does it with assumed wrong values 

of MXZ and MYZ. Effects of wrong value of correlation matrices 

is demonstrated by evaluating normalized value of change in 

RMSE values of the filters. An increase in RMSE value means 

the filter is performing less accurately. Normalized RMSE is 

defined as follows  

deltaRMSE =  RMSEM  –   RMSE                       (35) 

Percentdelta = deltaRMSE / RMSE * 100         (36) 

Where, RMSE is Root Mean Square Error value of 

corresponding filter for correct MXZ and MYZ and RMSEM is 

Root Mean Square Error value of corresponding filter for 

assumed wrong values of above correlation matrices. For 

current example of 3 bus test system with PMUs placed on 

nodes 1 and 2, following analyses have been performed to 

evaluate performance of the developed PKF: 

a. State Estimation (correct Mxz and Myz) – from initial 

known values  

b. Parameter estimation (correct Mxz and Myz) – from initial 

known values  

c. State Estimation (correct Mxz and Myz) – from initial 

uncertain values  

d. Parameter estimation (correct Mxz and Myz) – from initial 

uncertain values 

e. Effects of wrong Mxz and Myz on RMSE of States 

f. Effects of wrong Mxz and Myz on RMSE of Parameters 

g. Effects of wrong Mxz on RMSE of States 

h. Effects of wrong Mxz on RMSE of Parameters 

i. Effects of wrong Myz on RMSE of States 

j. Effects of wrong Myz on RMSE of Parameters 

k. Effects of correlation matrix values on estimated, Vreal, 

Vimag, G, B and Bsh of the system  

Effects of change in RMSE values have been 

demonstrated on bigger test systems i.e. IEEE 14, IEEE 30, 

IEEE 57 and IEEE 118 bus test systems with given PMU sets.   

4.1 State Estimation using Developed PKF  

Performance of developed PKF for state estimation on 3 

bus test system when PMUs are placed at buses 1 and 2 is 

discussed here. 

 
Fig. 3.Actual Vs Estimated value of Vimag at bus 3 

 10.08 -0.47 -0.29 0.27 -0.96 -0.97  

 -0.47 7.21 0.87 -0.47 0.66 -0.03  

Qyk = -0.29 0.87 9.64 0.45 -0.24 0.92  

 0.27 -0.47 0.45 10.43 0.81 -0.09 × 10-6 

 -0.96 0.66 -0.24 0.81 10.07 1.06  

 -0.97 -0.03 0.92 -0.09 1.06 9.56  

 -0.07 0.15 -0.01 0.03 -0.09 -0.13  

 -11.0 -0.41 -23.9 -14.2 -3.34 8.35  

Mxz1 = 3.28 -5.77 -7.68 2.02 -2.85 6.36 × 10-7 

 -6.53 6.8 -3.52 -0.40 -3.01 -7.98  

 1.24 -10 -3.38 -6.96 13.82 -9.98  

 -5.79 -4.54 0.8 -4.59 2.382 -2.55  

 0 0.17 -0.02 -0.06 -0.19 -0.01  

 -3.62 -7.47 -6.79 -5.29 3.77 11.7  

Mxz2 = -2.32 10.28 6.85 -3.50 -13.21 2.64 × 10-7 

 -8.91 -3.56 14.28 -1.91 -26.35 -13.64  

 10.71 -8.03 -12.59 1.64 12.03 -9.27  

 -2.49 0.55 16.96 -7.07 -0.80 -7.78  

 
-2.38 -3.46 -12.06 9.19 -6.08 -1.26 

 

 
10.65 -8.73 1.41 0.005 0.73 0.64 

 

Myz1= 
-6.10 6.31 1.74 -1.27 4.33 15.01 

× 10-7 

 
-25.4 9.76 -7.09 -6.67 13.38 14.29 

 

 
-3.88 -6.58 35.80 3.03 1.88 -7.29 

 

 
1.79 7.83 11.86 -10.33 -1.47 7.71 

 

 -10.93 -3.31 18.88 22.96 4.03 -3.64  

 1.55 7.94 7.45 4.28 -11.49 2.03  

Myz2= -9.72 -3.26 9.77 16.12 -2.14 1.83 × 10-7 

 2.12 -14.25 -8.97 -6.51 1.28 -6.52  

 -2.01 -4.18 7.37 -9.53 22.39 3.14  

 8.77 -11.93 3.94 -10.39 6.62 -10.32  
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     In fig. 3 actual Vs estimated values of Vimag for bus 3 where 

PMU is not present has been shown for first 20 time instant of 

simulation.   

 
Fig. 4. Actual Vs Estimated value of Vreal at bus 3 

In fig. 4 actual Vs estimated value of Vreal at bus 3 is given 

for first 20 instants of simulation. We can see that state 

estimator part of the developed PKF working correctly for 

present example.  

4.2 Parameter Estimation using developed PKF  

In this section we discuss performance of developed PKF 

on parameter estimation of 3 bus example network when 

PMUs are placed on nodes 1 and 2. Parameter estimation is 

performed by second Kalman filter in the PKF. Estimated Vs 

actual value of parameters of line 2-3 are discussed here. 

 
Fig. 5. Estimated Vs actual value of Bline for line 2-3 

      A comparison between estimated and actual value of 

susceptance of transmission line 2-3 is shown in fig. 5. We see 

that developed PKF estimates the parameter values within 

close range to actual value. 

 
Fig. 6. Estimated Vs actual value of Gline for line 2-3 

Figure 6 gives a comparison between actual and estimated 

values of conductance of transmission line 2-3 from the 

second filter from developed PKF. We see that estimated and 

actual value are reasonably close proving the capability of 

PKF to track parameter values of the network.  

4.3 Estimation of states and parameters from initial 

uncertain value using developed PKF 

In this section we discuss about the state/parameter 

estimation using developed PKF when initially some 

parameter values were uncertain. To test the estimation 

algorithm, we assume that initially values of admittance for 

line 2-3 was 2.6111 - j 7.1039. We know that these are not 

correct values for admittance of line 2-3 and it may affect the 

performance of dynamic state estimation in case of a regular 

Kalman filter. 

 
Fig.7. Estimated Vs Actual value of Bline from uncertain 

initial values 

 
Fig.8. Estimated Vs Actual value of Gline from uncertain 

initial values 

      Figures (7-8) show estimated value of line susceptance and 

line conductance in case of uncertain values of line admittance 

initially available to the control center. We see that developed 

PKF can track values of line parameters within reasonably 

close range in this case as well.  

 
Fig.9. Estimated Vs Actual value of Vimag for bus 3 for 

uncertain initial value of parameters in line 2-3 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
R. Kumar et al., Vol.6, No.4, 2016 

1379 
 

 
Fig. 10. Estimated Vs Actual values of Vreal for uncertain 

initial values of line parameters 

        Figures (9-10) give comparison between estimated and 

actual values of voltage phasors for bus 3 in case of initially 

uncertain values of line parameters in line 2-3 when PMUs are 

placed on nodes 1 and 2. We see that even with uncertain 

values of line parameters available to us initially, the 

developed PKF is able to track system states as well as 

network parameters. Thus we see that both states and 

parameters of the power systems can be estimated successfully 

using developed algorithm.  

In next section we see the effects of these correlation 

matrices on performance of state and parameter estimation of 

power systems. To analyze this performance two PKFs were 

implemented for each of the cases. First PKF uses correct 

values of correlation matrices for state and parameter 

estimation while second filter uses wrong values of correlation 

matrices MXZ and MYZ. The performance of PKFs for these two 

cases are compared using RMSE values for two cases. 

4.4 State and Parameter Estimation with wrong values of MXZ 

and MYZ 

In this section we discuss effects of various correlation 

matrices on states/parameter estimation of power systems 

network using synchrophasor measurements. For each of the 

examples, 500 Monte Carlo simulations were run to calculate 

RMSE values of the estimator. To keep the simulation process 

simple, values of MXZ and MYZ used to generate the process 

dynamics and observers were assumed equal to zero. First 

PKF was implemented with values of correlation equal to zero 

while for second PKF a random value of same dimension with 

elements within proximity of QX,k and QY,k were generated for 

each of the cases as follows  

MXZfilter = 5e-7* randn(size(MXZ))                       (37) 

MYZfilter = 5e-7* randn(size(MYZ))                                       (38) 

 
Fig. 11. Effect of wrong MXZ and wrong MYZ on performance 

of state estimator in PKF 

 
Fig. 12. Percentage change in RMSE of state estimator due 

to wrong MXZ and wrong MYZ 

        Figures (11-12) show effects of assuming wrong values 

of correlation matrices MXZ and MYZ for the state estimator by 

comparing the RMSE value of first filter (of PKF) for both 

cases.  In fig 11 we clearly see that RMSE value increases 

indicating that the state estimator becomes less accurate when 

values of MXZ and MYZ are ignored in filter implementation.        

Figure 12 shows percentage increase in RMSE value of the 

state estimation filter due to using wrong value of mentioned 

correlation matrices. The parameter estimation process 

(second filter of the PKF) can be equally affected by using 

wrong correlation matrices.  

 
Fig. 13. Change in RMSE value of Parameter Estimator due 

to wrong MXZ and wrong MYZ 

 
Fig. 14. Percentage change in RMSE in parameter estimation 

due to wrong MXZ and wrong MYZ 

        Figures (13 – 14) demonstrate effects of wrong values of 

correlation matrices MXZ and MYZ on RMSE of parameter 

estimation of the system. We see from fig. 13 that RMSE 

values of parameter estimator increases and stays high 

consistently by using wrong values of correlation matrices. 

Figure 14 shows percentage increase in RMSE values for this 

case for first 40 time instants of simulation.   

        This analysis can be further extended to parts of the state 

and parameter vectors as well. For example, here effects of 

wrong values of correlation matrices are evaluated only for 
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estimated values of real parts of voltage phasors, represented 

as Vreal. 

 
Fig. 15. Change in RMSE value for estimation of Vreal for 

wrong correlation matrices 

Figure 15 elaborates effect on RMSE for state estimator 

for section estimating real part of voltage phasors of the state 

vector. This analysis can give further insight into estimation 

process and effects of various factors on estimated values of 

different parts of the state/parameter vectors. Similar analysis 

can be done for Vimag, bline, gline and bsh vectors as well.    

4.5 RMSE values for wrong MXZ and correct MYZ 

The effects of wrong values of MXZ on state and parameter 

estimation of power systems are shown with the help of 

developed PKF in this section. To further verify performance 

of developed PKF, we hypothesize a scenario with correct 

information of MYZ and wrong information of MXZ used in  

implementation for state and parameter estimation of power 

systems. Both process and observer model were generated 

with zero values of MXZ and MYZ while when implementing the 

filter one PKF was implemented with both values correct 

while another PKF was implemented using wrong value of 

MXZ. Wrong value of MXZ was generated using (37). The 

effects of these correlation matrices on performance of 

state/parameter estimation are discussed here.  

 
Fig. 16. Effect of wrong correlation matrix MXZ on state 

estimator 

        In fig. 16 we see that wrong value of correlation matrix 

MXZ deteriorates the filter performance as the RMSE value of 

state estimator increases indicating the filter becoming less 

accurate.   

 
Fig. 17. Effect of wrong correlation matrix MXZ on parameter 

estimation 

In fig. 17, it is observed that having a wrong value of 

correlation matrix MXZ does not affect the performance of 

parameter estimator as expected. It can be conjectured from 

the dynamics of system states and network parameters that 

they are independent of each other. A similar effect is found 

on performance of state estimator when wrong values of 

correlation matrix MYZ was considered for filter 

implementation, meaning that wrong values of MYZ only 

deteriorates performance of parameter estimation process 

while state estimation remains immune to it.  

4.6 State and parameter estimation for IEEE 14 bus test 

systems  

In this section effects of correlation matrices on 

state/parameter estimation of IEEE 14 bus test system is 

discussed when PMUs placed for measurements consist of 

minimum set of PMUs required for complete observability. 

For this example, PMU set following this criteria would be 

placement at buses 2, 6, 7 and 9. The set of correlation 

matrices for the implementation of a second PKF as described 

before are generated using (37-38) as before.  

 
Fig. 18. Effect of wrong MXZ and MYZ on RMSE of state 

estimator for IEEE 14 bus test system 

 
Fig. 19. Effect of wrong MXZ and MYZ on RMSE of parameter 

estimation for IEEE 14 bus test system 
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        Figures 18-19 show effects of wrong correlation matrices 

on RMSE values of state as well as parameter estimation of 

power systems for IEEE 14 bus test system. It is evident that 

RMSE value increases for both filters, making them to be less 

accurate as values of correlation matrices MXZ and MYZ are not 

appropriately included in filter implementation.   

        To further analyze the performance effects of correlation 

matrices MXZ and MYZ is shown on state/parameter estimation 

using developed PKF for available redundancy in 

measurement. For this case additional PMUs were placed on 

the network and developed PKF was implemented. A new 

placement set for this example is PMUs at nodes 1, 2, 3, 6, 7, 

9, 12 and 14. The correlation matrices were generated using 

(37-38). 

 
Fig. 20. RMSE for state estimation for IEEE 14 bus test 

system for new PMU set 

 
Fig. 21. RMSE for parameter estimation for IEEE 14 bus test 

system for new PMU set 

Figures (20-21) shows change in RMSE values of 

state and parameter estimation using developed PKF when a 

larger set of PMUs with redundancy in measurement is placed 

on the network.  

It should be evident that developed PKF can do both 

state and parameter estimation but to keep the analyses simple 

we are only showing performance of state estimator for 

following section. For following section, effects of wrong 

correlation matrices on state/parameter estimation of IEEE 30, 

IEEE 57 and IEEE 118 bus test system has been shown for the 

case where minimum number of PMUs were placed to make 

the network completely observable. 

 
Fig. 22. Effect of MXZ and MYZ on RMSE of state estimator 

for IEEE 30 bus test system 

 
Fig. 23. Effect of MXZ and MYZ on RMSE of parameter 

estimator for IEEE 30 bus test system 

 
Fig. 24. Effects of MXZ and MYZ on state estimation for IEEE 

57 bus test system 

 
Fig. 25. Effects of MXZ and MYZ on parameter estimation for 

IEEE 57 bus test system 
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Fig. 26. Effects of MXZ and MYZ on RMSE of state estimator 

for IEEE 118 bus test system 

 
Fig. 27. RMSE for parameter estimation for IEEE 118 bus 

test system 

Figures (22-27) show effects of correlation matrices on 

state and parameter estimation of power systems for various 

example bus networks. As we see in every case, the RMSE 

values of the filters increase when using wrong values of 

correlation matrices for filter implementation, proving them to 

be less accurate. Thus the developed algorithm performs better 

for all these examples.  

5. Conclusion 

State estimation of power systems for various cases have 

been done in literature before. Recently people have focused 

on estimating parameters of power systems network using 

various methods. This paper develops a novel method to 

implement state estimation using Parallel Kalman Filter for 

bilinear model systems when there are correlations present 

among noise in dynamics of each partitions of state vectors 

with measurement noise. State estimation for a bilinear system 

model in presence of correlation in noise of dynamics between 

various parts of system states has never been done before. This 

theory was found of direct use in case of changing parameter 

values of the power system networks. For this case, a method 

to do both state and parameter estimation of power systems 

using synchrophasor measurements was required. The 

developed PKF was implemented to do state and parameter 

estimation of power systems in presence of synchrophasor 

measurements. Developed algorithm was able to do state 

estimation for various cases as well as parameter estimation 

when initial values of parameters known were uncertain. 

Monte Carlo simulations were performed to evaluate 

performance of state and parameter estimation operations on 

the example networks. For each of the example networks, 

different measurement sets were generated for various PMU 

placement sets and state and parameter estimation was 

performed using developed PKF. The effects of correlation 

matrices were clearly shown on the performance of both state 

and parameter estimation of power systems by using RMSE 

values for the implemented filters. Developed algorithm was 

implemented on IEEE 14, IEE 30, IEEE 57 and IEEE 118 bus 

test systems for different measurement sets and results were 

found as expected. In addition to this, developed PKF can be 

applied to state estimation of power systems for regular cases 

of fixed parameters or cases where zero correlation is present 

between noises in state dynamics and dynamics of the 

parameters.     
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Appendix A 

Here we discuss development of Parallel Kalman Filter 

for bilinear systems when correlation between noise in 

dynamics in state vectors and noise in measurements are 

present. In [27] authors have introduced PKF for bilinear 

system model without presence of any correlation between 

process and measurement noises. Let the system state vector 

can be partitioned into two vectors Z and 𝜃. Variable Yk 

represents measurements of the system at time instant k, 

which depends on both states and parameters as a bilinear 

system.  

Let the bilinear discrete time representation of the dynamic 

system is given  

(
𝑍𝑘+1

𝜃𝑘+1

) = 

(
𝐴11+ 𝐹1(𝜃𝑘)

𝐴21
|

𝐴12

𝐴22+ 𝐹2(𝑍𝑘)
) (

𝑍𝑘

𝜃𝑘
) +  (

𝐵1

𝐵2
) 𝑢𝑘 + (

𝜀𝑘1

𝜀𝑘2
)             (39) 

Random variables 𝜀𝑘1and 𝜀𝑘2 represent zero mean white 

noise with known covariance matrices 𝑄𝑘1 and 𝑄𝑘2 

respectively. Also,  

𝐹1(𝜃𝑘) =  ∑ 𝐹1𝑖𝜃𝑘𝑖
𝑞
𝑖=1        (40) 

𝐹2(𝑍𝑘) =  ∑ 𝐹2𝑖𝑍𝑘𝑖
𝑞
𝑖=1                      (41) 

Measurement equations for bilinear model is given by  
𝑌𝑘

𝑌𝑘
=  

 𝐻1 𝑍𝑘+ 𝐻2 𝜃𝑘+ 𝐶1(𝜃𝑘) 𝑍𝑘+ 𝑉𝑘 

 𝐻1 𝑍𝑘+ 𝐻2 𝜃𝑘+ 𝐶2(𝑍𝑘) 𝜃𝑘+ 𝑉𝑘
                                        (42) 

It is assumed that the correlation between Z and Y as 

well as correlation between 𝜃 and Y is known and is denoted 

by MZY  and MθY respectively. Also, Vk represents 

measurement noise vector which is a white noise with zero 

mean and known variance matrix Rk. 

Fundamental idea behind PKF is derived from game 

theory where each of the opponent makes their decision 

based as an optimal response to the decision made by the 

other opponent. In context of state estimation theory, the 

move decided by each of the player can be considered as 

output of the filter where objective is to minimize the 

covariance of estimation errors. Filters are implemented 

recursively with arrival of each of the measurements. Thus 

output of the filters can be obtained by minimizing 

following objective functions  

min
�̂�𝑘|𝑘

𝐽1(�̂�𝑘|𝑘  , �̂�𝑘|𝑘
∗
)                                                          (43) 

min
�̂�𝑘|𝑘

𝐽2(�̂�𝑘|𝑘
∗
, �̂�𝑘|𝑘)                                 (44) 

Where, J1 and J2 are covariance of estimation error for 

each of the filters. The superscripts * stands for optimal 

solution and ^ stands for estimated value of the states. 

Subscript i/j denotes estimated value of the variable at time 

instant i based on information up to time instant j. to be able 

to implement two Kalman filters parallel to each other, it is 

imperative that instead of using optimal value (output of the 

other filter), predicted optimal value (predicted output of the 

other filter) is used as parameters for the implementation of 

first filter. This means that instead of  �̂�𝑘|𝑘
∗
, variable 

�̂�𝑘|𝑘−1
∗
will have to be used for first Kalman filter and vice 

versa. Thus each of the system becomes a linear subsystem 

which has time varying parameters.  

Prediction:  

Prediction is same as a standard Kalman Filter for this 

model and is given by  

�̂�𝑘+1|𝑘 =  [𝐴11 +  𝐹1(�̂�𝑘|𝑘−1)]�̂�𝑘|𝑘 +  𝐴12�̂�𝑘|𝑘−1 + 𝐵1𝑢𝑘     

                                   (45) 

�̂�𝑘+1|𝑘 =  [𝐴22 + 𝐹2(�̂�𝑘|𝑘−1)]�̂�𝑘|𝑘 +  𝐴21�̂�𝑘|𝑘−1 +  𝐵2𝑢𝑘

                                   (46) 

Predictions of covariance matrices of estimation errors for 

first filter can be given by  

𝑃𝑘|𝑘−1
(1)

 =   [𝐴11 +  𝐹1(�̂�𝑘|𝑘−1)]   𝑃𝑘−1|𝑘−1
(1)

 [𝐴11 +

 𝐹1(�̂�𝑘|𝑘−1)]
𝑇

+ 𝑄𝑘1                                  (47) 

Similarly, prediction for covariance of estimation error for 

second Kalman filter is given by  

𝑃𝑘|𝑘−1
(2)

 =   [𝐴22 +  𝐹2(�̂�𝑘|𝑘−1)]   𝑃𝑘−1|𝑘−1
(2)

 [𝐴22 +

 𝐹2(�̂�𝑘|𝑘−1)]
𝑇

+  𝑄𝑘2                                (48) 

Update:  

Here we will discuss derivation of first filter out of two 

interlaced filters. Derivation of second Kalman filter Update 

process has steps similar to first Kalman Filter. 

The predicted measurement at time instant k for first filter 

is given by 

∆𝑌𝑘 =  𝑌𝑘 −  �̂�𝑘|𝑘−1                                  (49) 

The covariance of innovation for first filter  

𝑆𝑘 = 𝑐𝑜𝑣(∆𝑌𝑘)        (50) 

The covariance of innovation error for first filter, which 

will have presence of MZY, is given by 

𝑆𝑘
(1)

= (𝐻1 + 𝐶1(�̂�𝑘|𝑘−1))
𝑇

𝑃𝑘|𝑘−1
(1)

(𝐻1 + 𝐶1(�̂�𝑘|𝑘−1)) +

 (𝐻1 + 𝐶1(�̂�𝑘|𝑘−1)) 𝑀𝑍𝑌 + 𝑀𝑍𝑌
𝑇 (𝐻1 +  𝐶1(�̂�𝑘|𝑘−1))

𝑇

                                             

(51) 

Equation for Kalman gain for first filter is given by (based 

on expression for standard Kalman filter with presence of 

correlation between process and measurement noise) 

𝐾𝑘
(1) = [𝑃𝑘|𝑘−1

(1)
(𝐻1 + 𝐶1(�̂�𝑘|𝑘−1)) + 𝑀𝑍𝑌][𝑆𝑘

(1)]
−1

  (52) 

Updated estimate for first filter is given by 

�̂�𝑘|𝑘 =  �̂�𝑘|𝑘−1 +  𝐾𝑘
(1)  [𝑌𝑘 −  (𝐻1 �̂�𝑘|𝑘−1 + 𝐻2 �̂�𝑘|𝑘−1 +

 𝐶1(�̂�𝑘|𝑘−1)) �̂�𝑘|𝑘−1 ]                                              (53) 

Expression for update of covariance of estimation error is 

given by  

𝑃𝑘|𝑘
(1)

=  𝑃𝑘|𝑘−1
(1)

 −  𝐾𝑘
(1)  [𝐻1 +  𝐶1(𝜃𝑘|𝑘−1)]

𝑇
 𝑃𝑘|𝑘−1

(1)
  (54) 

 


