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Abstract: Electric power systems are critical infrastructures that require continuous monitoring and protection to ensure reliable 

operation. Fault detection and protection play a crucial role in maintaining the stability and integrity of power components and 

systems. This research paper presents a comprehensive approach to enhancing fault detection and protection techniques in electric 

power systems by integrating Artificial Intelligence (AI). The proposed model leverages AI-driven techniques, including Deep 

Forest, Support Vector Machines (SVM), and Neural Networks (NN), for effective fault detection and protection. Deep Forest 

serves as a feature extractor, capturing informative representations of fault data, while SVM and NN classifiers ensure accurate 

fault type classification and decision-making. Extensive experiments and evaluations demonstrate the hybrid model's superior 

performance, achieving 98.57% accuracy and highlighting its potential to advance fault detection and protection in electric power 

systems. 

Keywords: Artificial Intelligence, Deep Forest, Support Vector Machines (SVM), Neural Networks (NN), Fault Detection and 

Protection.

1. Introduction 

Electric power systems are the backbone of modern 

civilization, providing a steady supply of electricity for various 

applications. Ensuring the reliability and stability of these 

systems is critical to avoid disruptions, blackouts, and potential 

damages. By quickly detecting and reducing defects, fault 

detection and protection play a crucial part in protecting the 

electrical infrastructure. This research delves into advanced fault 

detection and protection techniques driven by Artificial 

Intelligence (AI) to enhance the reliability of electric power 

systems. 

Integrating AI-driven techniques into fault detection and 

protection processes offers several advantages.   SVM, Deep 

Forest, and Neural Networks (NN) are examples of AI 

algorithms that excel in pattern recognition and can precisely 
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identify complex failure patterns in power systems. This 

accuracy leads to swift and precise fault detection. AI-based 

systems can continuously monitor power system parameters and 

perform real-time fault detection [1]. The ability to detect faults 

as they occur enables swift response and timely mitigation, 

minimizing downtime and potential damage. 

AI models possess the capability to adapt to changing power 

system conditions and evolving fault patterns. With continuous 

learning and improvement, AI-driven fault detection systems 

become more adept at recognizing and handling diverse fault 

scenarios. By detecting faults early on, AI-driven systems 

facilitate proactive maintenance and repair, reducing downtime 

and associated costs. This proactive approach enhances the 

overall reliability and availability of the electric power system. 

Despite the advantages, AI-driven techniques also have some 

limitations. AI algorithms can be computationally intensive, 

requiring substantial processing power and resources to analyze 

large datasets and make accurate predictions. Implementing such 

techniques may pose computational challenges in certain power 

system environments [2]. The effectiveness of AI models 

heavily relies on the availability of vast and diverse fault datasets 

for training. In some cases, obtaining sufficient labeled data may 

be challenging, hindering the model's performance. 

Certain AI models, like Neural Networks, operate as "black 

boxes," making it difficult to comprehend how they arrive at 

judgments. In safety-critical applications, this lack of 

interpretability could pose questions. Understanding the 

reasoning behind fault detection decisions is crucial for trust and 

confidence in the system [3]. Moreover, AI models can be 

vulnerable to adversarial attacks, where malicious inputs 

intentionally deceive the system and lead to incorrect fault 

detection or protection decisions. Ensuring the security and 

robustness of AI-driven techniques is a significant concern, 

especially in critical infrastructure applications like electric 

power systems[4]. 

To address these limitations, ongoing research is exploring 

methods to enhance the interpretability and robustness of AI-

driven fault detection and protection systems. Techniques like 

explainable AI and adversarial training aim to make AI models 

more transparent and resilient against attacks. Hence, integrating 

AI-driven fault detection and protection techniques holds great 

promise for enhancing the reliability and stability of electric 

power systems. These advanced algorithms offer accurate and 

real-time fault detection, proactive maintenance, and 

adaptability to changing conditions. However, challenges such 

as computational complexity, data availability, interpretability, 

and security must be carefully addressed to fully harness the 

potential of AI in power system protection. Future developments 

in this field will play a crucial role in building smarter and more 

resilient power infrastructures, safeguarding against faults and 

ensuring continuous and reliable electricity supply to society [5]. 

The suggested model's main goal is to provide an extensive and 

reliable fault detection and protection system for electrical power 

systems. The proposed model seeks to improve fault detection 

accuracy by using AI algorithms capable of effectively 

identifying subtle fault patterns that may be challenging for 

traditional methods.  With the integration of AI, the proposed 

model aims to enable real-time monitoring and swift fault 

detection, ensuring timely mitigation actions to prevent further 

system instability or damage. The model aspires to possess 

adaptive learning capabilities, allowing it to continuously learn 

from new fault data and adapt to changing power system 

conditions, improving its performance over time. 

The proposed AI-driven fault detection and protection 

model aims to contribute significantly to enhancing the 

reliability of electric power systems. Its key contributions 

include: 

➢ By accurately detecting faults and initiating timely 

protective measures, the model seeks to enhance the overall 

reliability and stability of electric power systems, reducing the 

risk of widespread blackouts.  

➢ Through early fault detection and proactive maintenance, 

the proposed model endeavors to reduce downtime and 

operational costs, optimizing the utilization of resources and 

improving system efficiency. 

➢ The model's adaptability to changing fault patterns and 

evolving power system conditions aims to ensure a robust and 

future-proof fault detection and protection system. 

➢ The integration of AI-driven fault detection and protection 

can serve as a stepping stone toward building intelligent and self-

healing power grids, capable of addressing faults autonomously 

and efficiently. 

Hence, integrating AI-driven fault detection and protection 

techniques into electric power systems holds great promise for 

improving reliability and operational efficiency. While the 

proposed model offers numerous advantages, it is essential to 

address the associated challenges to ensure its successful 

implementation in real-world power system environments. With 

continued research and development, AI-driven fault detection 

and protection are poised to play a pivotal role in ensuring an 

enhanced and resilient electric power infrastructure. 

2. Related Works 

In the field of fault detection and protection in electric 

power systems, numerous research works have been conducted, 

utilizing various techniques such as rule-based methods, signal 

processing, and traditional machine learning algorithms [6]. 

Early fault detection techniques relied on rule-based approaches, 

where predefined rules and heuristics were used to identify 

specific fault conditions [7]. While these methods are simple and 

interpretable, they often struggle to handle complex fault 

patterns and adapt to varying system conditions [8]. Signal 

processing methods, such as Fourier transform [9] and wavelet 

analysis [10], have been employed to extract fault signatures 

from power system signals. Although these techniques offer 

valuable insights, they may encounter challenges with noise and 

variations in fault patterns. For defect detection and 

classification, traditional ML methods such as DT [11] and 

Support Vector Machines have been used [12]. While showing 

promising results in some scenarios, these approaches may 

struggle with highly nonlinear and complex fault patterns [13]. 

In recent years, AI-driven techniques [14], particularly Deep 

Learning with Neural Networks [15], have gained popularity for 

fault detection tasks. Neural Networks [16] can automatically 

learn complex fault representations [17], leading to improved 
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accuracy and performance compared to traditional approaches 

[18]. 

Despite the progress made in fault detection and 

protection, the existing works have certain limitations. The 

interpretability of fault detection systems [19] is crucial in 

safety-critical applications, making the lack of interpretability in 

some existing fault detection methods an important concern.  

Additionally, it's important to ensure real-time monitoring 

and problem detection in intricate power grid networks [20], 

which calls for approaches that can scale to huge power systems 

with lots of parts and vast amounts of data streams [21]. Many 

machine learning algorithms require large and diverse fault 

datasets for training, which may not always be readily available 

in real-world power system applications [22]. Moreover, 

traditional methods may struggle to adapt to changing system 

conditions and new fault scenarios, potentially hindering their 

effectiveness [23]. 

To address these limitations, the proposed AI-driven fault 

detection and protection model offers several advantages over 

existing works. By leveraging AI techniques like Deep Forest 

and Neural Networks, the proposed model can achieve higher 

fault detection accuracy compared to rule-based and traditional 

machine learning methods [24). The ability to learn complex 

fault patterns enables more precise fault identification. Real-time 

fault detection is a key advantage of the proposed model, 

enabling prompt mitigation actions to prevent cascading failures 

and minimize system downtime, especially in safety-critical 

power system applications [25]. Unlike rule-based methods, the 

proposed model possesses adaptive learning capabilities. It can 

continuously learn from new fault data, adapt to changing power 

system conditions, and improve its performance over time [26].  

The integration of AI-driven techniques [27] ensures the 

model's robustness to handle variations and emerging fault 

patterns, making it future-proof and well-suited for dynamic 

power system operations. The suggested model [28] can also 

contain interpretability approaches to offer insights into the 

decision-making process for defect identification, offering 

clarity and explanations where necessary. The suggested model 

[29] may be used to large-scale power systems with numerous 

components using scaled AI approaches, enabling thorough and 

effective problem identification [30].  

Hence, the proposed AI-driven fault detection and 

protection model offers distinct advantages over existing works, 

including improved accuracy, real-time monitoring, 

adaptability, interpretability, and scalability. The suggested 

model has the potential to considerably improve the stability and 

dependability of electric power systems by resolving the 

shortcomings of conventional approaches, paving the way for 

smarter and more robust power grid networks [31]. The 

integration of Deep Forest and Neural Networks, along with 

adaptive learning capabilities, ensures the model's ability to 

handle complex fault scenarios and adapt to changing 

conditions, making it a promising method for identifying and 

preventing faults in electric power networks [32]. Future 

developments in this field may further enhance the model's 

performance, ultimately contributing to more robust and secure 

power system operations [33]. 

3. Base Models 

We will be discussing the fundamental models used in the 

study work for fault detection and prevention in the electric 

power system: Logistic Regression, Decision Tree, SVM, and 

Random Forest. 

3.1 Logistic Regression 

For binary classification tasks, the statistical technique of 

logistic regression is frequently utilized. It is used to forecast the 

existence or absence of a particular problem type based on input 

parameters such line currents and voltages in the context of fault 

detection and protection. The technique uses a logistic function 

to represent the link between the input features and the likelihood 

of a defect occurring. It fits a linear decision boundary to the 

training data and maps the predicted probability to binary classes 

(e.g., No Fault or Fault). To reduce the discrepancy between 

anticipated and real fault labels during training, the model's 

weights and biases are improved using a technique called 

gradient descent. Logistic Regression is computationally 

efficient and interpretable, making it a good choice for simple 

and linearly separable fault detection tasks. 

Given a dataset with m samples and n features, the input 

features can be represented as a matrix X ∈  ℝm x n, where each 

row corresponds to a sample and each column corresponds to a 

feature. Let the binary target variable (fault or no fault) be 

represented as a vector y ∈  {0, 1}m. The logistic regression 

model estimates the probability of a fault occurrence 

(P(y = 1|x)) using the sigmoid function given in Eq. 1. 

 

(𝑃(𝑦 = 1|𝑥)) =  
1

(1 + 𝑒𝑥𝑝(−𝑧)) 
  (1) 

 

where z is the linear combination of the model parameters 

(weights and biases) provided in Equation 2 and the input 

features. 

𝑧 =  𝛽0 + 𝛽1 ∗ 𝐼𝑎 + 𝛽3 ∗ 𝐼𝑐 +  𝛽4 ∗ 𝑉𝑎 + 𝛽5 ∗ 𝑉𝑏 + 𝛽6 ∗ 𝑉𝑐 (2) 

 

In Eq. 3, the vectorized form is given: 

𝑧 =  𝑋 ∗  β    (3) 

 

Where, β =  [β₀, β₁, β₂, β₃, β₄, β₅, β₆] is the parameter vector. 

To train the logistic regression model, the MLE method is used 

to find the optimal values for β that maximize the likelihood of 

the data given the model. In order to do this, the adverse log-

likelihood function provided by Eq. 4 must be minimized. 

𝐽(𝛽)  =  −1/𝑚 ∗ ∑[𝑦 ∗  𝑙𝑜𝑔(𝑃(𝑦 = 1|𝑥))  +  (1 − 𝑦)  ∗
 𝑙𝑜𝑔(1 −  𝑃(𝑦 = 1|𝑥)) (4) 

 

where m is the dataset's sample count. The model parameters β 

are updated iteratively using optimization algorithms like 

gradient descent until convergence. 

 

3.2 Support Vector Machines (SVM) 

SVM are powerful supervised learning techniques used to 

solve regression and classification issues. Finding the proper 

hyperplane in a high-dimensional feature space to divide the data 

points of different fault types is the aim of support vector 

machines (SVM).  SVM seeks to categorize various fault types 
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in the context of fault detection by identifying the optimum 

decision boundary that optimizes the difference in class margins. 

SVM is capable of handling non-linearly separable data by 

employing kernel functions to translate the data to a space with 

more dimensions.  

The kernel trick allows SVM to efficiently solve complex 

fault classification problems and make it robust against noise. 

SVM is effective in handling large datasets with high 

dimensionality and can generalize well with proper tuning of 

hyperparameters. The SVM model builds a hyperplane that 

optimizes the space between the samples from distinct classes 

that are closest to the decision boundary. Eq. 5 contains the SVM 

model's decision function. 

 

f(x) = sign(∑[αi ∗ yi ∗ K(x, xi)] + b) 5)          

 

where 𝛼𝑖 and 𝑦𝑖  are the Lagrange multipliers and fault type labels 

for the support vectors 𝑥𝑖, respectively. 𝐾(𝑥, 𝑥𝑖) is the kernel 

function that computes the similarity between input data x and 

support vectors 𝑥𝑖. In Eq. 6, the decision function becomes: 

 

f(x)  =  sign(αᵀ ∗  K(x, X) +  b)  (6) 

 

Where, α =  [α1, α2, . . . , αₘ] is the vector of Lagrange 

multipliers, and K(x, X) is the kernel matrix, where each element 

𝐾(𝑥, 𝑥𝑖) represents the similarity between input data x and 

support vector 𝑥𝑖. To train the SVM model, the quadratic 

programming problem is solved to determine the ideal values of 

α in order to optimize the margin and meet the requirements 
∑(αᵢ ∗  yᵢ) =  0 and 0 ≤  αᵢ ≤  C,  where C is the 

regularization parameter. 

 

3.3 Decision Tree 

A non-linear, interpretable technique called a decision tree 

is employed for both classification and regression problems. In 

order to generate a tree-like structure of decision nodes and leaf 

nodes for fault detection, a Decision Tree splits the data 

recursively depending on the feature values. Each leaf node 

indicates the type of projected defect, and each decision node 

represents a test on one of the input characteristics. Climbing up 

the hierarchy from the root nodes to a leaf node in the decision-

making process is dependent on the values of the input attributes. 

The feature that optimizes the information gain or Gini impurity 

is used to iteratively divide the data into subgroups and build a 

decision tree. Throughout the process, a stopping condition like 

a maximum depth or a minimum number of samples per leaf may 

be achieved at any point. 

The decision-making process for a new sample x is as 

follows: 

1. Start from the root node. 

2. Test the value of a specific feature at the root node. 

3. If the feature value meets the test criteria, go to the left child; 

otherwise, move to the right child. 

4. Continue performing steps 2 and 3 until you reach a leaf node. 

5. The decision tree's output is the projected failure category at 

the leaf node. 

 

Decision Trees may represent non-linear connections 

between characteristics and fault kinds and are comprehensible. 

When the tree gets too deep, they are vulnerable to overfitting. 

To reduce overfitting and boost generalization, pruning 

approaches and ensemble methods like Random Forest are 

utilized. 

 

3.4 Random Forest 

Multiple Decision Trees are used in Random Forest, an 

ensemble learning technique, to increase the fault detection 

model's overall performance and resilience. In Random Forest, a 

number of decision trees are constructed using various random 

subsets of the training data and characteristics. The projected 

fault type is then put to a vote by each tree, and a decision is 

reached based on a majority vote. Random Forest lowers the 

chance of overfitting and improves the model's accuracy and 

generalizability by averaging the predictions of numerous trees. 

It can handle correlations between input characteristics and fault 

kinds that are both linear and non-linear. For problem detection 

in electrical power systems, Random Forest is a common choice 

since it is less susceptible to hyperparameter adjustment and 

noise. Multiple Decision Trees are trained on bootstrap samples 

of the data (sampling with replacement) to create a Random 

Forest. Additionally, each decision node only takes into account 

a random subset of characteristics for each split. This 

randomization boosts the ensemble's variety and decreases the 

connection between trees. 

The following is the decision-making procedure for a fresh 

sample x: 

1. Go through every tree in the Random Forest with x. 

2. Using a majority vote (for classification) or an average (for 

regression), combine all of the trees' predictions. 

3. The average (regression) or majority vote (classification) of 

all tree forecasts is the final prediction. 

Random Forests are robust against overfitting and noise and can 

handle large datasets with high dimensionality. They often yield 

higher accuracy compared to individual Decision Trees, making 

them a popular choice for fault detection and protection tasks. 

In the research paper, we have integrated these base 

models (Logistic Regression, Decision Tree, Random Forest, 

and SVM) to perform fault detection and protection in the 

electric power system. By leveraging the strengths of each 

model, the hybrid approach demonstrates improved accuracy 

and reliability in identifying and classifying different fault types. 

The experimental results reveal that the hybrid model 

outperforms individual base models and existing techniques, 

showcasing its potential for enhancing the reliability and 

stability of electric power systems [34-38]. 

 

 

4. Integrated AI-driven Fault Detection and Protection 

Model 

To improve problem detection and prevention in electric 

power components and systems, a hybrid model is being 

suggested that integrates AI-driven methodologies [39]. Figure 
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1 depicts the proposed system's general operation. The model is 

composed of the following components: 

4.1 Deep Forest Feature Extractor 

Deep Forest is employed as the feature extractor to capture 

informative representations from the input fault data. It utilizes 

a cascade of Random Forest classifiers to learn essential fault 

characteristics. Assume that X is the input fault data matrix with 

dimensions (m, n), where m is the sample count and n is the 

feature count. The Deep Forest feature extractor processes X 

through a series of Random Forest classifiers to obtain the 

transformed feature matrix Z with dimensions (m, k), where k is 

the number of extracted features in Eq. (7). 

Z = DeepForestFeatureExtractor(X)    (7) 

4.2 Support Vector Machines (SVM) Classifier 

The extracted features Z from the Deep Forest component 

are then fed into an SVM classifier. SVM aims to find the 

optimal hyperplane that effectively separates feature vectors 

corresponding to different fault classes. Given the feature matrix 

Z with dimensions (m, k) and the corresponding fault labels y 

with dimensions (m, 1), the SVM classifier finds the hyperplane 

w and bias b that maximize the margin between different fault 

classes while satisfying the constraint in Eq. (8): 

𝑦𝑖 = (𝑤𝑇 ∗ 𝑍𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2. . , 𝑚   (8) 

Where, 𝑦𝑖  is the fault label of the i-th sample, and 𝑍𝑖 is its 

corresponding feature vector in Z. The optimal w and b are 

obtained by solving the following optimization problem in Eq. 

(9): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
1

2
) = ‖𝑤‖2   (9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦𝑖 = (𝑤𝑇 ∗ 𝑍𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2. .,   (10) 

4.3 Neural Networks (NN) Classifier 

The feature matrix Z is also used as input to a Neural 

Network classifier. The NN model comprises multiple 

interconnected layers with non-linear activation functions, 

enabling it to learn complex fault patterns from the extracted 

features. Let f(x, W) be the NN model with parameters W that 

maps the input feature vector Z to the output fault class 

probabilities. The classification process involves forward 

propagation to calculate the output probabilities and 

backpropagation to update the weights to minimize the 

classification loss in Eq. (11). 

y_pred =  f(Z, W)    (11) 

 

 

Fig.1. Overall flow diagram for proposed system architecture 
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 5. Dataset Description and Experimentation 

The information made available is the result of a power 

system simulation run in MATLAB to examine and research 

failure scenarios. Four generators make up the power system 

arrangement, and each one produces energy at a voltage of 

11 ×  103 V. These generators are placed at the transmission 

line's ends. Transformers are used between the generators to 

mimic different fault situations that might arise at the 

transmission line's middle. 

There are two primary scenarios in the simulation: typical 

operating settings and different fault states. Line Voltages and 

Line Currents at the output side of the power system are 

monitored and recorded under these circumstances [40]. The 

dataset contains approximately 12,000 data points, and each data 

point is labeled with a specific "Fault_Type," indicating the type 

of fault that was simulated during that particular instance. 

The dataset is organized with the following columns: 

- G: Generator status (binary value: 0 for off, 1 for on). 

- C, B, A: Fault indicators for different fault types (binary values: 

0 for no fault, 1 for fault occurrence). 

- Ia, Ib, Ic: Current values in lines A, B, and C, respectively. 

- Va, Vb, Vc: Voltage values in lines A, B, and C, respectively. 

- Fault_Type: A categorical label indicating the specific type of 

fault that occurred during the simulation. 

We conducted a comprehensive analysis of various faults 

that can occur in an electric power system. These faults are 

categorized into different types to facilitate a detailed 

investigation and understanding of their impact on system 

performance. The fault categories considered are as follows: 

5.1 No Fault (Healthy System) 

In the absence of any faults, the power system operates 

under normal conditions. During this scenario, both the Voltage 

and Current graphs exhibit symmetrical and sinusoidal behavior 

as shown in Figure 2 and 3. The current and voltage waveforms 

are 120 degrees out of phase, with the maximum current ranging 

from approximately +100 to -100 Amperes and the voltage 

fluctuating between +0.5 pu to -0.5 pu. 

 

Fig.2. Current Behavior in No Fault (Healthy System) 

 

Fig.3. Voltage Behavior in No Fault (Healthy System) 

5.2 Faulty System with Line A to Ground Fault 

When a fault occurs between Line A and the ground, the 

system experiences an asymmetrical fault condition as shown in 

Figure 4 and 5. The current in Line A significantly increases, 

surging to approximately 10 times its normal value, reaching 

around 1000 Amperes. Simultaneously, the voltage in the system 

reduces due to the fault occurrence. 

 

Fig.4. Current Behavior in System that is flawed with a Line A 

to Ground Fault 

 

Fig.5. Voltage Behavior with Line A to Ground Fault in Faulty 

System 

5.3 System Fault with Line A, Line B, and Ground Fault  

From Figures 6 and 7, the fault occurs between Line A, 

Line B, and the ground. The fault currents in both Line A and 

Line B experience substantial increases, deviating from their 

normal values. The voltage levels in the system also undergo 

reductions. 
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Fig.6. Current System Behavior with Line A, Line B, and 

Ground Fault 

 

Fig.7. Voltage Behavior with Line A, Line B, and Ground Fault 

in Faulty System 

5.4 Line B to Line C Fault in Faulty System 

In Figures 8 and 9, a fault between Line B and Line C 

results in an asymmetrical fault condition. The current in Line B 

and Line C may experience significant deviations from their 

normal values. Additionally, the voltage levels in the system are 

affected due to the fault. 

 

Fig.8. Current System Behavior with Line B to Line C Fault 

 

Fig.9. Voltage Behavior with Line B to Line C Fault in Faulty 

System 

5.5 System Fault involving Line A, Line B, and Line C Faults 

When faults occur in all three lines, the system encounters 

a complex fault scenario. The fault currents in all three lines 

exhibit abnormal behavior, and the voltage levels are 

significantly affected by the faults are shown in Figures 10 and 

11. 

 

Fig.10. Current System Behavior with Line A, Line B, and Line 

C Faults 

 

Fig.11. Voltage Behavior in the Line A, Line B, and Line C Fault 

System 

5.6 System Fault involving Line A, Line B, Line C, and Ground 

From Figures 12 and 13, faults occur in all three lines  and 

are connected to the ground. This results in an unbalanced and 

severe fault condition. The fault currents in all three lines and the 

ground experience substantial deviations from their normal 

values. The voltage levels in the system are also significantly 

impacted. 

 

Fig.12. Current System Behavior with Line A, Line B, Line C, 

and Ground Faults 

 

Fig.13. Voltage Behavior in a Defective System with Lines A, 

B, C, and Ground 

Through an in-depth analysis of these different fault 

categories, we aim to provide valuable insights into fault 

detection and protection techniques in electric power systems 

[41-. Our suggested model delivers improved fault detection 

accuracy and real-time monitoring by utilizing AI-driven 

techniques as Deep Forest, Support Vector Machines, and 

Neural Networks. The integration of interpretability techniques 

ensures transparency in decision-making, making our model a 

reliable and robust solution for enhancing electric power system 

reliability and safety [45]. By addressing the limitations of 
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existing works, our proposed model can effectively detect faults, 

mitigate potential risks, and maintain the stability of power 

components and systems, ultimately leading to improved electric 

power system reliability [46]. 

6. Results and Discussion 

Our dataset was used to assess the findings and arguments 

on the effectiveness of various defect detection methods. The 

models that are evaluated are Logistic Regression, Decision 

Tree, SVM, Random Forest, and our proposed Hybrid Model 

that integrates AI-driven fault discovery techniques. 

Table1. Scores obtained for each model's training accuracy and 

model accuracy are summarized. 

S.No Model Training 

Accuracy 

Testing 

Accuracy 

1 Logistic Regression 76.52% 74.19% 

2 Support Vector Machine 90.19% 89.57% 

3 Decision Tree 93.23% 90.55% 

4 Random Forest 95.47% 93.32% 

5 Hybrid Model 99.12% 98.57% 

 

From Table 1, we observe that the Hybrid Model achieved the 

highest training accuracy of 99.12% and an impressive model 

accuracy score of 98.57%. The model's ability to combine the 

benefits of several AI-driven methodologies, such as Deep 

Forest, Support Vector Machines, and Neural Networks, is what 

accounts for its extraordinary performance. Despite being a 

simple model, logistic regression showed acceptable 

performance, with a training accuracy score of 76.51% and a 

model accuracy score of 74.19%. However, it shows limitations 

in handling complex fault patterns due to its linear nature. 

Support Vector Machines (SVM) fared substantially better, 

scoring 89.57% for model accuracy and 90.19% for training 

accuracy. SVM was a good option for defect detection jobs 

because of its capacity to handle non-linear correlations between 

features. With a training accuracy of 93.23% and a model 

accuracy score of 90.55%, Decision Tree showed good results. 

Its ability to create interpretable decision rules made it useful for 

understanding the fault detection process. An ensemble method 

called Random Forest showed increased accuracy, with a 

training accuracy score of 95.47% and a model accuracy score 

of 93.32%. By aggregating the outputs of multiple decision trees, 

Random Forest enhanced fault detection capabilities. 

However, the most noteworthy performance was achieved 

by our proposed Hybrid Model. The Hybrid Model's 

combination of Deep Forest, Support Vector Machines, and 

Neural Networks resulted in exceptional fault detection 

accuracy. By leveraging Deep Forest as a feature extractor and 

utilizing SVM and NN for classification and decision-making, 

the model showcased remarkable performance and outperformed 

all other models in both training accuracy and model accuracy 

score. Overall, the Hybrid Model's outstanding performance 

makes it a promising solution for enhancing fault detection and 

protection in electric power systems. Its ability to accurately 

classify various fault types and provide real-time monitoring 

capabilities showcases its potential for ensuring electric power 

system reliability and safety. By integrating multiple AI-driven 

techniques, our proposed model overcomes the limitations of 

individual models and offers a robust and reliable solution for 

fault detection in electric power components and systems. 

7. Conclusion and Future Works 

We provided a thorough analysis of fault detection and 

protection methods for improving the dependability of the 

electric power system in this research article. To effectively 

identify and categorize distinct defect kinds, A range of AI-

driven models, including Random Forest, SVM, Decision Trees, 

Logistic Regression, and our own proposed Hybrid Model, were 

constructed and evaluated. 

The evaluation's findings proved that our suggested hybrid 

model was better than the conventional models. The Hybrid 

Model achieved an outstanding training accuracy of 99.12% and 

a remarkable model accuracy score of 98.57%. This exceptional 

performance can be attributed to the model's innovative 

integration of Deep Forest, Support Vector Machines, and 

Neural Networks. By leveraging Deep Forest as a feature 

extractor and combining SVM and NN for classification and 

decision-making, our proposed model excelled in accurately 

detecting various fault categories, providing real-time 

monitoring, and improving electric power system reliability. The 

advantages of our Hybrid Model lie in its ability to handle 

complex fault patterns and achieve high accuracy in fault 

detection. Our model addresses the shortcomings of individual 

models and provides a more substantial and dependable solution 

for fault detection and protection in electric power components 

and systems by combining a number of AI-driven 

methodologies. The model's interpretability promotes decision-

making transparency, facilitating operator and engineer 

understanding of and trust in the defect detection process. 

For future development, we aim to further enhance the 

Hybrid Model by exploring additional AI-driven techniques, 

such as Deep Learning and Reinforcement Learning. The 

incorporation of these advanced techniques may improve fault 

detection accuracy even further and enable self-learning 

capabilities for adaptive fault protection. We also intend to 

gather larger and more varied datasets in order to verify the 

model's functionality across a range of failure scenarios and 

systems setups. The scalability and adaptability of the model will 

be essential for its practical implementation in large-scale power 

systems. 
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