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Abstract- This paper proposes a risk-aware control approach intended to generate the most profitable decisions for the 

manager of a public fleet of electric vehicles that can interact bidirectionally with the electrical network, providing different 

energy services to it. Specifically, the proposed control approach is intended to generate the best charging/discharging decisions 

for the fleet, including car-sharing uncertainties and the desired confidence level at which the fleet operator wants to cover these 

uncertainties. It considers a hierarchical control structure at whose first level an economic dynamic optimization is executed, 

and, at whose second level, a risk-aware reference tracking of the first-level references is performed. Using this a stochastic 

MPC controller at the second level, whose mathematical approach has as a novelty that it extends the current methodologies in 

the state of the art, allowing the inclusion of the linear time-varying behavior of the dynamic system, whose constraints are also 

time-varying, and whose uncertainties are additive-multiplicative with non-zero mean and non-unitary variance. Finally, the 

approach established is tested in a hypothetical car-sharing system located in Colombia. 
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1 Introduction 

Since 2014, the topic that addresses control strategies for 

electric vehicles (EVs) that bi-directionally exchange power 

with the electrical (V2G mode), has been gaining relevance, 

as the EVs can be used flexible storage elements when they 

are connected to the charging facilities. Hence, in those 

moments, the EVs can provide different kind of services to the 

power network, and they can sell energy. These new sources 

of income can help to improve the profitability of the EVs 

project, even more, when these are intended to supply a public 

transport demand as in the case of the car-sharing schemes. 

Because one of the most representative barriers to the 

implementation of this kind of project is the low-income 

margins for the aggregators of public or shared EVS. 

Delving in such matter, in the state of the art, there are two 

main approaches to address the EVs aggregator management 

problem: the direct [1] and the hierarchical [2]. Specifically, 

in the direct approach, the solution for the problem is found in 

one stage, in which different control approaches such as, 

dynamic optimization [3]–[5] and Economic Model Predictive 

Control (EMPC) [6], [7], are used. However, the direct 

approach requires guaranteeing the stability of the proposed 

feedback law which can become a complex task if the system 

is nonlinear or if the objective function of the problem is non-
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convex [2]. This fact has motivated the choice of hierarchical 

techniques to solve the problem of economic control, as the 

authors specify in [2].  

Wherefore, considering the features and drawbacks of the 

direct control approach, this paper uses the hierarchical 

scheme to calculate the optimal charging/discharging 

decisions for the operator of a shared EVs fleet (also called 

aggregator) who participates in the electricity sales and 

ancillary services provision markets.  

More specifically, this second level is in charge of the EVs 

power and energy re-scheduling, adapting them to the new real 

conditions of the system, which can deviate from the mean 

expected conditions, considered at the first control level [8].  

To conduct the tasks of this second level, there exists a 

variety of methods in the current state of the art. They are 

classified in the next categories, which are related to the 

uncertainties treatment: deterministic, such as the presented in 

[9], [10], and stochastic such as those presented in [11], [12]. 

Moreover, the last category that treats the uncertainties in 

a stochastic way, is part of a global topic that addresses 

stochastic processes and control methods topic is composed of 

the following three main subcategories. 

https://orcid.org/0000-0001-9032-3150
https://orcid.org/0000-0002-4861-3258
https://orcid.org/0000-0003-4510-0753
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The robust approach, which characterizes the stochastic 

variables as sets with known bounds and calculates the control 

actions looking for the constraints fulfillment for all the 

elements in these sets [13]–[15]. 

The stochastic equations approach that models the system 

dynamics as a stochastic process and includes the desired risk 

level in the cost function or constraints of the controller [16]–

[19]. 

And the Montecarlo approach, relies on a sampling 

process to derive the probability density function of the 

aleatory variables [11], [20]–[22]. 

Altogether, this paper includes the uncertainties 

(multiplicative and additive) at the second level within 

stochastic approach, having this feature as main difference 

from the approaches followed in references [23], [24], where 

robust controllers were proposed. This implies that the 

controllers set in [23], [24] are not able to include the 

probability density function of the uncertainties explicitly, as 

they are modeled as polytopes. Therefore, in the robust 

approach, the risk that the uncertainties deviate from their 

mean value, cannot be estimated directly, hence, it cannot be 

considered in the cost function and neither restricted in the 

constraints of the system. Besides, under the adopted 

stochastic control approach, the probability density function 

of the system uncertainties is included and restricted directly 

in the constraints, following the mathematical procedure 

proposed in reference [19], but extending it for linear time-

varying systems under non-zero mean and non-unitary 

variance disturbances with time-varying disturbances, making 

the risk-aware stochastic MPC approach applicable for the 

car-sharing system model adopted. Additionally, the selected 

risk-aware stochastic approach avoids the accuracy and 

computational drawbacks derived from the Montecarlo 

methods. 

In the remainder of the paper, the control architecture is 

depicted in Section 2, whereas the uncertainties 

characterization is presented in Section 3. Furthermore, the 

risk-aware control approach is detailed in Section 4. On the 

other hand, Section 5 describes the obtained with the 

application of the proposed controller to the selected car-

sharing study case. Finally, Section 6 depicts the main 

highlights of the paper and the future research directions for 

the improvements of the results. 

2. The Risk-Aware Control Approach 

1.1 General Description of the Dynamic System 

The system under consideration in this study is a station-

based car-sharing, in which the EVs flow among the pre-

defined charging stations to supply the transport requirements. 

In addition to this, the vehicles parked at the charging stations 

can sell energy and provide frequency regulation services to 

the electrical power network. 

Regarding the frequency regulation services, there are two 

ways in which they can be provided: a) the upward regulation, 

and b) the downward regulation. For both services, the 

Electrical System Operator requires that the EVs aggregator 

defines, in a Day-Ahead (DA) horizon, the capacity or reserve 

that the EVs will assign for providing the upward and 

downward regulation. These capacities given for each hour of 

the day are denoted by 𝑃𝑟𝑑 and 𝑃𝑟𝑢. 

A complete dynamic description of the aforementioned 

car-sharing system model is given in the previous work [25], 

which corresponds with an aggregated energy model. This 

aggregated energy model is similar to the one proposed in [8]. 

However, the model used in [25] and in the current paper 

includes the features of the ancillary and car-sharing transport 

service provision. Particularly, in [25] the mentioned 

aggregated energy model for the shared EVs fleet is employed 

to estimate the optimal hourly DA scheduling of the ancillary 

services provision, the energy sales, and energy purchases for 

the whole fleet of EVs. 

Although, these results were obtained under the 

assumption that the number of vehicles performing a trip 

among the stations (𝑁𝑣 ), and the energy consumed during 

those trips (𝐸𝑐) behaved as their expected values. Neglecting 

the fact that these two variables are stochastic. Impacting with 

this the accuracy of the estimated incomes from the car-

sharing transport service. Hence, this paper, considers the 

hierarchical control scheme illustrated in Fig 1, which 

considers the case in which the variables 𝑁𝑣  and 𝐸𝑐  have a 

deviation regarding the mean condition. 

 

Fig 1. Scheme of the proposed hierarchical control approach.

On Fig 1, two control levels are set: The primary control 

level, in charge of generating the economic optimum reference 
values of the system, states 𝒙𝒓𝒆𝒇  and the inputs 𝒖𝒓𝒆𝒇 . This 

level is fed by the mean condition of the car-sharing system 
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disturbances 𝝁𝝃   and the secondary frequency regulation 

activation signal (named in Fig 1 as LFC activation signal). 

And the secondary control level, which oversees regulating 

the changes in the charging/discharging processes and in the 

battery’s energy level considering the uncertain behavior of 

the stochastic variables (𝑁𝑣, 𝐸̂𝑐 , 𝑁̂𝑎 , 𝛾𝑎 ) and the desired risk 

level at which the system should compensate the uncertainties. 

Moreover, this secondary level controller should be in charge 

of splitting the total power and energy of the aggregated 

vehicle´s set into the individual vehicles that are connected at 

the charging stations, based on the measured state of charge of 

the vehicles (SOC) and their departure schedules. However, 

this task is considered out of the scope of the paper and is not 

addressed. 

1.2 First Control Level 

The mathematical formulation of the first level control 

stage is given in Eqn. (1). It corresponds with an economic 

control problem which is deeply described in [23]. 

            
min
𝒖𝒓𝒆𝒇

∑ 𝑔1
𝑁
𝑘=1 (𝒙𝒓𝒆𝒇(𝑘), 𝒖𝒓𝒆𝒇(𝑘), 𝝁𝝃(𝑘))

Subject to:
      (1.1) 

 𝒙𝒓𝒆𝒇(𝑘 + 1) = 𝒇(𝒙𝒓𝒆𝒇(𝑘), 𝒖𝒓𝒆𝒇(𝑘), 𝝁𝝃(𝑘)),      (1.2) 

         𝒉(𝒙𝒓𝒆𝒇(𝑘),𝒖𝒓𝒆𝒇(𝑘), 𝝁𝝃(𝑘)) ≤ 0;      (1.3) 

                     𝒙𝒓𝒆𝒇(𝑁 + 1) ∈ 𝛸𝑓 , 𝑘 ∈ {1, . . . , 𝑁}      (1.4) 

where 1( )g    is a function that estimates aggregator’s 

cash-flow on a daily basis, 𝒇(⋅) is the state transition function 

of the model that represents the car-sharing system dynamics, 

𝒉(⋅)  is the function associated to the system constraints for 

energy and power limits, and 𝛸𝑓 is a defined terminal set that 

guarantees the stability of the control. 

On the other hand, the reference inputs 𝒖𝒓𝒆𝒇, the reference 

states 𝒙𝒓𝒆𝒇, and the char-sharing system disturbances 𝝃 are:  

           𝒖𝒓𝒆𝒇(𝑘) = [𝑃𝑐,𝑟𝑒𝑓(𝑘) 𝑃𝑑,𝑟𝑒𝑓(𝑘)]𝑇;      (2.1) 

         𝒙𝒓𝒆𝒇(𝑘) = [𝐸̂𝑏,𝑟𝑒𝑓(𝑘) 𝐸̂𝑎,𝑟𝑒𝑓(𝑘)]
𝑇
;      (2.2) 

                       𝝃(𝑘) = [𝑁̂𝑣(𝑘) 𝐸̂𝑐(𝑘)]𝑇      (2.3) 

being 𝑃𝑐,𝑟𝑒𝑓(𝑘)  and 𝑃𝑑,𝑟𝑒𝑓(𝑘)  the power 

charged/discharged in the time slot        [𝑘, 𝑘 + 1) , 
respectively; 𝐸̂𝑏,𝑟𝑒𝑓(𝑘) the energy stored in all the batteries of 

the vehicles parked charging stations at the time step 𝑘 which 

have arrived at least since 𝑘 − 1 , and 𝐸̂𝑎,𝑟𝑒𝑓(𝑘)  is the 

remaining energy content in the batteries of vehicles that have 

arrived to the charging stations in the time slot [𝑘, 𝑘 + 1) that 

stay until  𝑘 + 1. 

And finally, the uncertain variables 𝝃  are the vehicles 

making trips among the stations 𝑁̂𝑣(𝑘) in the time slot [𝑘, 𝑘 +
1), and the energy consumed by the EVs departing from the 

time step 𝑘  and arriving at the time step 𝑘 + 1  denoted as 

𝐸̂𝑐(𝑘). 

1.3 Second Control Level 

Besides, the second control level relies on a state feedback 

law, which minimizes the difference between new calculated 

input and state variables, considering the system uncertainties, 

regarding their reference values. These deviation variables are 

calculated as 𝛥𝒙(𝑘) = 𝒙(𝑘) − 𝒙𝒓𝒆𝒇(𝑘) , 𝛥𝒖(𝑘) = 𝒖(𝑘) −

𝒖𝒓𝒆𝒇(𝑘), and 𝛥𝝃(𝑘) = 𝝃(𝑘) − 𝝁𝝃(𝑘). 

The dynamic model that relates the deviation variables 𝛥𝒙 

and 𝛥𝒖, is described in Eqn. (3).  

       𝛥𝐸̂𝑏(𝑘 + 1) = [𝛥𝑃𝑐(𝑘)]𝜂𝑐 − [𝛥𝑃𝑑(𝑘)]
1

𝜂𝑑
+

𝛥𝐸̂𝑎(𝑘) + (1 −
𝛾𝑐,𝑟𝑒𝑓(𝑘)𝑁̂𝑣(𝑘)

𝑁̂𝑝(𝑘)
)𝛥𝐸̂𝑏(𝑘);                          (3.1) 

𝛥𝐸̂𝑎(𝑘 + 1) = 𝛥𝐸̂𝑏(𝑘)
𝑁̂𝑣(𝑘)

𝑁̂𝑝(𝑘)
− 𝛾𝑐,𝑟𝑒𝑓(𝑘)𝛥𝐸̂𝑐(𝑘)    (3.2) 

where 𝜂𝑐  and 𝜂𝑑  are the charging and discharging 

efficiencies of the EVs. 

It is highlighted that the deviation variables 𝛥𝐸̂𝑏 , 𝛥𝐸̂𝑎 , 

𝛥𝑃𝑐, and 𝛥𝑃𝑑 are obtained considering that the values of the 

variables 𝐸̂𝑏,𝑟𝑒𝑓, 𝐸̂𝑎,𝑟𝑒𝑓, 𝑃𝑐,𝑟𝑒𝑓 , 𝑃𝑑,𝑟𝑒𝑓, 𝑃𝑟𝑑,𝑟𝑒𝑓, and 𝑃𝑟𝑢,𝑟𝑒𝑓 are 

previously set at the first control level.  

Furthermore, the linear simplified model of (3) was 

generated assuming that the car-sharing service price 𝑉𝑐 and 

the ancillary services calculated reserves, 𝑃𝑟𝑑 , 𝑃𝑟𝑢 , remain 

constant at their optimal reference values 𝑉𝑐,𝑟𝑒𝑓 , 𝑃𝑟𝑑,𝑟𝑒𝑓, and 

𝑃𝑟𝑢,𝑟𝑒𝑓. Hence, they are taken as parameters coming from the 

first control level. Moreover, the portion of the total car-

sharing demand covered 𝛾𝑐,𝑟𝑒𝑓 is obtained with the expression 

set in (4) that relates the demand and the transport service 

price of the car-sharing system. 

  𝛾𝑐,𝑟𝑒𝑓(𝑘) = 𝑝1 ⋅ 𝑒𝑝2⋅𝑉𝑐,𝑟𝑒𝑓(𝑘) + 𝑝3 ⋅ 𝑒𝑝4⋅𝑉𝑐,𝑟𝑒𝑓(𝑘)        (3) 

being 𝑝1 , 𝑝2 , 𝑝3 , and 𝑝4  parameters that depend on the 

car-sharing users preferences, calculated in [23].  

Moreover, as it was indicated previously, the proposed 

approach considers two main uncertain variables in this 

model: the vehicles performing trips 𝑁̂𝑣 and the total energy 

consumption during those trips 𝐸̂𝑐; and other three secondary 

uncertain variables related to the main ones, which are the 

vehicles parked 𝑁̂𝑝 , the vehicles arriving 𝑁̂𝑎 , and the 

departure-available vehicles' ratio 𝛾𝑎. 

𝑁̂𝑝(𝑘 + 1) =𝑁̂𝑝(𝑘) + 𝑁̂𝑎(𝑘) − 𝛾𝑐,𝑟𝑒𝑓(𝑘)𝑁̂𝑣(𝑘);      (3.4) 

                             𝛾𝑎(𝑘) =
𝛾𝑐,𝑟𝑒𝑓(𝑘)⋅𝑁̂𝑣(𝑘)

𝑁̂𝑝(𝑘)
                   (3.5) 

Where, (5.1) considers that the vehicles that depart at 𝑘 −
1  arrives at k-th time step. Hence, the number of EVs that 

arrive at the time step k, 𝑁̂𝑎(𝑘) , are calculated as 𝑁̂𝑎(𝑘) =
𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1)𝑁̂𝑣(𝑘 − 1). 

Therefore, the model in (3), can be rewritten in terms of 

these new uncertain variables as Eqn. (6) indicates: 

 

𝛥𝐸̂𝑏(𝑘 + 1) = [𝛥𝑃𝑐(𝑘)]𝜂𝑐 − [𝛥𝑃𝑑(𝑘)]
1

𝜂𝑑

+ 

               (1 − 𝛾𝑎(𝑘))𝛥𝐸̂𝑏(𝑘) + 𝛥𝐸̂𝑎(𝑘);                     (4.1) 

           𝛥𝐸̂𝑎(𝑘 + 1) = 𝛾𝑎(𝑘) ⋅ 𝐸̂𝑎(𝑘) − 𝛥𝐸̂𝑝(𝑘)      (4.2) 
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being 𝐸̂𝑝(𝑘) = 𝛾𝑐,𝑟𝑒𝑓(𝑘)𝐸̂𝑐(𝑘). 

At this point, it should be noted that there are two kinds 

of uncertain variables in (6): 

The uncertain variable additive with the states 𝛥𝐸̂𝑝(𝑘) 

(since it is a subtracting term in (6.2). Whose expected value 

and variance 𝜇𝛥𝐸̂𝑝
(𝑘) = 0 , are obtained from the stochastic 

characterization of the variable 𝐸̂𝑝 , since 𝛥𝐸̂𝑝(𝑘) = 𝐸̂𝑝 −

𝜇𝛥𝐸̂𝑝
. 

The uncertain variable multiplicative with the states 

𝛾𝑎(𝑘) (since its multiplying to the state 𝐸̂𝑏 in (6.1) and (6.2). 

Whose expected value and variance are 𝜇𝛾̂𝑎
 and 𝜎𝛾̂𝑎

2 . 

The procedure to obtain these values are detailed in 

Section 3. 

Therefore, it is concluded that the model set in (6) belongs 

to the category of time-varying linear systems with additive 

and multiplicative disturbances, which can be represented in 

the general form given in Eqn. (7): 

   [
Δ𝒙(𝑘 + 1)

𝜼(𝑘 + 1)
] = ([

𝑨𝟎(𝑘) 𝟎

𝑪𝑨𝟎(𝑘) 𝑰
] +

[
𝑨𝒊(𝑘) 𝟎
𝑪𝑨𝒊(𝑘) 𝟎

]) [
Δ𝒙(𝑘)
𝜼(𝑘)

] + [
𝑩
𝑪𝑩

]Δ𝒖(𝑘) + [
𝑫
𝑪𝑫

] Δ𝝃𝒂(𝑘)  (5) 

The expression in (7) can be also represented in a compact 

form, as: 

𝒙̃(𝑘 + 1) = (𝑨𝟎̃(𝑘) + 𝑨𝒊̃(𝑘)) 𝒙̃(𝑘) + 𝑩̃𝛥𝒖(𝑘) + 

𝑫̃𝛥𝝃𝒂(𝑘)                     (6) 

where the variable Δ𝝃𝒂(𝑘) = 𝛥𝐸̂𝑝(𝑘)  denotes the 

additive uncertainties, while the multiplicative uncertainties 

are introduced in the matrices 𝑨𝟎̃ and 𝑨𝒊̃are given in (9). 

Moreover, the states and inputs, set in (7), are  𝒙̃(𝑘)𝑇 =
[𝛥𝐸̂𝑏(𝑘) 𝛥𝐸̂𝑎(𝑘) 𝜐1 𝜐2] , and Δ𝒖(𝑘)𝑇 =

[𝛥𝑃𝑐(𝑘) 𝛥𝑃𝑑(𝑘)] . The augmented states 𝜐1 , 𝜐2  are 

integrators of the errors for the states Δ𝒙; and, since the states 

are measurable, the matrix C is equal to the identity. 

𝑨̃𝟎(𝑘) = [
1 − 𝜇𝛾̂𝑎

(𝑘) 1

𝜇𝛾̂𝑎
(𝑘) 0

] ,  𝑨̃𝒊(𝑘) = [
−𝜎𝛾̂𝑎

(𝑘) 0

𝜎𝛾̂𝑎
(𝑘) 0

]  (7) 

3. Uncertainties Characterization 

The mathematical approach of the complete system, 

formed by the model established in (6), and the constraints 

established (10), has 4 stochastic variables: 𝛥𝐸̂𝑝, 𝛾𝑎 , 𝑁̂𝑝 , 𝑁̂𝑎 , 

which need to be characterized. 

Specifically, for the variable 𝛥𝐸̂𝑝  it is necessary to 

determine its second moment 𝜎𝐸̂𝑝
,   (since its first moment 

𝜇𝐸̂𝑝
= 0 ). And, as the variable 𝐸̂𝑝  is the total energy 

consumption of vehicles traveling among the stations, it 

implies that this variable can be obtained from the product 

𝐸̂𝑝 = 𝛾𝑐,𝑟𝑒𝑓 ⋅ 𝑁̂𝑣(𝑘) ⋅ 𝐸̂𝑣(𝑘) , were 𝑁̂𝑣(𝑘)  is the number of 

vehicles traveling and 𝐸̂𝑣(𝑘) is the individual consumption of 

vehicles for a specific path. Therefore, the second moment of 

𝐸̂𝑝 can be derived as Eqn. (10) indicates: 

                   𝑉𝑎𝑟[𝐸̂𝑝(𝑘)] = 𝛾𝑐,𝑟𝑒𝑓
2 (𝑘) ⋅ 

        𝑉𝑎𝑟 [∑ 𝑁̂𝑑
𝐷

𝑠=1
(𝑠, 𝑘) ∑ 𝐸̂𝑣

𝐷

𝑠=1
(𝑠, 𝑘)]       (8) 

where 𝑁̂𝑑(𝑠, 𝑘)  is the number of vehicles traveling 

between some stations in the s-th direction at the k-th time 

step, and hence 𝑁̂𝑣(𝑘) = ∑ 𝑁̂𝑑
𝐷

𝑠=1
(𝑠, 𝑘). 

On the other hand, the variable 𝐸̂𝑣(𝑠, 𝑘) is the consumed 

by an EV that takes the s-th path at the time slot [𝑘, 𝑘 + 1). 

Hence, the values for 𝑁̂𝑑(𝑠, 𝑘) and 𝐸̂𝑣(𝑠, 𝑘)  are obtained from 

the traffic simulation of the considered study case network 

under different traffic scenarios and, and then, their first and 

second moments of these variables are estimated for deriving, 

posteriorly, the second moment of 𝐸̂𝑝. 

In an analogous way, the moments of the other stochastic 

variables are obtained. In this regard, the mean and variance 

of the variable 𝑁̂𝑎 are calculated with expressions (11.1) and 

(11.2). 

 𝛦[𝑁̂𝑎(𝑘)] = 𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ 𝛦 [∑ 𝑁𝑑̂
𝐷

𝑠=1
(𝑠, 𝑘 − 1)] = 

 𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ ∑ 𝜇𝑁̂𝑑

𝐷

𝑠=1
(𝑠, 𝑘 − 1);               (9.1) 

 

𝑉𝑎𝑟[𝑁̂𝑎(𝑘)] = 𝛾𝑐,𝑟𝑒𝑓
2 (𝑘 − 1) ⋅ 𝛦 [∑𝑁̂𝑑

𝐷

𝑠=1

(𝑠, 𝑘 − 1)] = 

         𝛾𝑐,𝑟𝑒𝑓
2 (𝑘 − 1) ⋅ ∑ 𝜎𝑁̂𝑑

2
𝐷

𝑠=1
(𝑠, 𝑘 − 1)               (9.2) 

 

Where the formulation given in Eqn. (11.2), considers that 

the samples of 𝑁̂𝑑 are not correlated in time. 

The first and second momentum of the variable 𝑁̂𝑝  are 

calculated as Eqns. (12.1) and (12.2) indicate, which are based 

on the definition of 𝑁̂𝑝 given in (5.1). 

𝛦[𝑁̂𝑝(𝑘)] = 𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ 𝛦 [𝑁𝑡 − ∑𝑁̂𝑑

𝐷

𝑠=1

(𝑠, 𝑘 − 1)] = 

𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ (𝑁𝑡 − ∑ 𝜇𝑁̂𝑑

𝐷

𝑠=1
(𝑠, 𝑘 − 1)) ;  (10.1) 

 

𝑉𝑎𝑟[𝑁̂𝑝(𝑘)] = 𝛾𝑐,𝑟𝑒𝑓
2 (𝑘 − 1)𝑉𝑎𝑟 [𝑁𝑡 − ∑𝑁̂𝑑

𝐷

𝑠=1

(𝑠, 𝑘 − 1)] = 

            𝛾𝑐,𝑟𝑒𝑓
2 (𝑘 − 1) ⋅ ∑ 𝜎𝑁̂𝑑

2
𝐷

𝑠=1
(𝑠, 𝑘 − 1);              

(10.2) 

 

where 𝑁𝑡 is the fleet size. 

Finally, the first and second moment of 𝛾𝑎  are obtained 

with (13.1) and (13.2), detailed described in [23]. 

 𝛦[𝛾𝑎](𝑘) =
𝛾𝑐,𝑟𝑒𝑓(𝑘)

𝛾𝑐,𝑟𝑒𝑓(𝑘−1)
𝛦 [

∑ 𝑁̂𝑑
𝐷
𝑠=1

(𝑠,𝑘)

𝑁𝑡−∑ 𝑁̂𝑑
𝐷

𝑠=1
(𝑠,𝑘−1)

] ;    (11.1) 

𝑉𝑎𝑟[𝛾𝑎(𝑘)] =
𝛾𝑐,𝑟𝑒𝑓

2 (𝑘)

𝛾𝑐,𝑟𝑒𝑓
2 (𝑘−1)

𝑉𝑎𝑟 [
(∑ 𝑁̂𝑑

𝐷

𝑠=1
(𝑠,𝑘))

𝑁̂𝑝(𝑘)
]   (11.2) 
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Now, considering the previous characterization of the first 

and second moment of the stochastic variables, they can be 

represented as stochastic variables as equation (14) indicates, 

assuming they are normally distributed: 

 

             𝜉1(𝑘) = 𝛥𝛾𝑎(𝑘)~𝒩 (0,    
𝛾𝑐,𝑟𝑒𝑓(𝑘)⋅𝜎𝛾̂𝑎

(𝑘)

𝛾𝑐,𝑟𝑒𝑓(𝑘−1)
) ;                                 (12.1) 

         𝜉2(𝑘) = 𝛥𝐸̂𝑝(𝑘)~𝒩 (0,    𝛾𝑐,𝑟𝑒𝑓(𝑘) ⋅ 𝜎𝐸̂𝑐
(𝑘)) ;                                 (12.2) 

      𝜉3(𝑘) = 𝑁̂𝑝(𝑘)~𝒩 (𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ (𝑁𝑡 − 𝜇𝑁̂𝑣
(𝑘 − 1)) , 𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ 𝜎𝑁̂𝑣

(𝑘 − 1)) ;    (12.3) 

             𝜉4(𝑘) = 𝑁̂𝑎(𝑘)~𝒩(𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ 𝜇𝑁̂𝑣
(𝑘 − 1), 𝛾𝑐,𝑟𝑒𝑓(𝑘 − 1) ⋅ 𝜎𝑁̂𝑣

(𝑘 − 1))                 (12.4)

 

4.  Stochastic Risk-Aware Controller Setting 

This chapter describes the risk aware stochastic MPC 

approach followed to perform the second stage reference 

tracking task on Fig 1. Whose general mathematical approach 

is set in equation (15). 

min
𝛥𝑥,𝛥𝑢

(∑ ∥ 𝛥𝑥(𝑘) ∥𝑄
2 +∥ 𝛥𝑢(𝑘) ∥𝑅

2

𝑁

𝑘=1

) + 

∥ 𝛥𝑥(𝑁 + 1) ∥𝑃(𝑁+1)
2 + (∑ Tr𝑁

𝑘=1 ((𝑄 +

𝐾(𝑘)𝑅𝐾(𝑘))𝛴𝛥𝑥(𝑘))) + Tr(𝑃(𝑁 + 1)𝛴𝛥𝑥(𝑁 + 1))      (13.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝒙̃(𝑘 + 1) = (𝑨𝟎̃(𝑘) + 𝑨𝒊̃(𝑘)) 𝒙̃(𝑘) + 𝑩̃𝛥𝒖(𝑘) + 

                    𝑫̃𝛥𝝃𝒂(𝑘);  ∀𝑘 ∈ {1, . . . , 𝑁};               (13.2) 

ℙ(𝑨𝒙̃ ⋅ [
𝒙̃(𝑘)
𝝃𝒄

] + 𝒃𝒙(𝑘) ≤ 0) ≥ 1 − 𝜖𝑥 ,  

                                     ∀𝑘 ∈ {1, . . . , 𝑁};                     (13.3) 

ℙ (𝑨𝒖 ⋅ [
Δ𝒖(𝑘)

𝝃𝒄
] + 𝒃𝒖(𝑘) ≤ 0) ≥ 1 − 𝜖𝑢, 

                                    ∀𝑘 ∈ {1, . . . , 𝑁};     (13.4) 

Where the variables 𝜖𝑥 and 𝜖𝑢 are the confidence levels 

for the states and inputs constraints accomplishment, 

respectively. These confidence levels include the risk, 

implicitly, as they guarantee the degree for constraint 

fulfillment and penalizes undesirable operational conditions. 

Furthermore, these variables can be included in the control 

objective function to economically penalize or reflect the cost 

of operating the system at certain points, using different 

penalizing functions, also called risk measures. But for the 

shake of simplicity, in this paper, the confidence values will 

be previously fixed. 

Therefore, as the computation of constraints (15.3- 15.4) 

involves calculations over the probability density functions of 

the stochastic variables 𝒙̃ or operations with their moments, 

these constraints will be a joint-chanced constraints. Being 

𝝃𝒄 = [𝜉3 𝜉4]
𝑇  the disturbances associated with the system 

constraints (see ref. [23] for the complete description of the 

constraints) which are the variables 𝜉3(𝑘) = 𝑁̂𝑝(𝑘) , and 

𝜉4(𝑘) = 𝑁̂𝑎(𝑘). 

The mathematical approach set in equation (15) is similar 

to the control equation of a robust MPC set in [23] and [24]; 

however there are 2 main differences: the first one is the 

inclusion of a penalization term for the variance matrix of the 

states 𝚺Δ𝒙 in order to guarantee the mean-square stability of 

the stochastic process Δ𝒙; and the second one is the addition 

of the joint chanced constraints in equations (15.3) - (15.4). 

On the other hand, in the work developed in [24] the 

uncertainties are treated as polytopes, without setting an 

specific relationship among the control law, the risk and the 

moments of the probability distribution of the uncertainties. 

Besides, the work presented reference [19], goes an step 

further and proposes a stochastic controller that takes into 

account the moments of the probability density function and 

the risk or confidence level of the uncertain variables to derive 

a control law for a discrete linear time invariant dynamic 

system for additive and multiplicative noises with zero mean 

and unitary variance. Thus,  the present paper complements 

the work presented by [19], extending its mathematical 

approach for the linear time-varying system set in equation 

(15.2), whose uncertainties are non-zero mean, non-unitary 

variance, as can be observed in equation (14); which also has 

time-varying constraints, since the matrices 𝒃𝒙(𝑘), 𝒃𝒖(𝑘) in 

(15.3) - (15.4) depend on the time step.  

Specifically, equation (16) indicates the terms that 

compose the matrices in the constraints (15.3) - (15.4) which 

are derived from the system constraints set in [23]: 

𝑨𝒙̃ = [

1 0 0 0 −𝐸𝑀 0
0 1 0 0 0 −𝐸𝑀

−1 0 0 0 𝐸𝑚 0
0 −1 0 0 0 𝐸𝑚

] ;   

                   𝑨𝒖 = [

1 0 −𝑃𝑀 0
0 1 −𝑃𝑀 0

−1 0 0 0
0 −1 0 0

] ;    (14.1) 

𝒃𝒙(𝑘) =

[
 
 
 
 
 
 

𝐸𝑏,𝑟𝑒𝑓(𝑘) − 𝜂𝑐𝑃𝑟𝑑,𝑟𝑒𝑓(𝑘)

𝐸𝑎,𝑟𝑒𝑓(𝑘) − 𝜂𝑐𝑃𝑟𝑑,𝑟𝑒𝑓(𝑘)

−𝐸𝑏,𝑟𝑒𝑓(𝑘) +
1

𝜂𝑑
𝑃𝑟𝑢,𝑟𝑒𝑓(𝑘)

−𝐸𝑎,𝑟𝑒𝑓(𝑘) +
1

𝜂𝑑
𝑃𝑟𝑢,𝑟𝑒𝑓(𝑘)

]
 
 
 
 
 
 

;  

             𝒃𝒖(𝑘) = [

𝑃𝑐,𝑟𝑒𝑓(𝑘) + 𝑃𝑟𝑑,𝑟𝑒𝑓(𝑘)

𝑃𝑑,𝑟𝑒𝑓(𝑘) + 𝑃𝑟𝑢,𝑟𝑒𝑓(𝑘)

0
0

]          (14.2) 

Where 𝐸𝑀 is the maximum energy content allowed in the 

individual EVs, 𝐸𝑚 is the minimum energy content allowed, 

and 𝑃𝑀 is the maximum charging/discharging power. 
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Then, the joint chanced-constraints set in equations (15.3) 

- (15.4) are solved based on the Chebyshev bounds theory and 

Boole's inequality addressed in [26]; in which, these joint 

constraints are divided into individual constraints as follows: 

√
1 − 𝜖𝑥𝑖

𝜖𝑥𝑖

√𝒂̃𝒙𝒊 [
𝜮𝒙̃(𝑘) 𝑐𝑜𝑣(𝒙̃(𝑘), 𝝃𝒄)

𝑐𝑜𝑣(𝒙̃(𝑘), 𝝃𝒄)
𝑇 𝜮𝝃𝒄

𝑇 (𝑘)𝜮𝝃𝒄
(𝑘)

] 𝒂̃𝒙𝒊
𝑇 + 𝒂̃𝒙𝒊 [

𝝁𝒙̃(𝑘)

𝝁𝝃𝒄
(𝑘)

] ≤ −𝑏𝑥𝑖(𝑘), 

∀𝑖 ∈ {1, . . . , 𝑁𝑥}, ∀𝑘 ∈ {1, . . . , 𝑁};                                   (15.1) 

√
1 − 𝜖𝑢𝑖

𝜖𝑢𝑖
√𝒂𝒖𝒊 [

𝜮𝛥𝒖(𝑘) 𝑐𝑜𝑣(𝛥𝒖(𝑘), 𝝃𝒄)

𝑐𝑜𝑣(𝛥𝒖(𝑘),𝝃𝒄)𝑇 𝜮𝝃𝒄

𝑇 (𝑘)𝜮𝝃𝒄
(𝑘)

]𝒂𝒖𝒊
𝑇 + 𝒂𝒖𝒊 [

𝝁𝜟𝒖(𝑘)

𝝁𝝃𝒄
(𝑘)

] ≤ −𝑏𝑢𝑖(𝑘), 

∀𝑖 ∈ {1, . . . , 𝑁𝑢}, ∀𝑘 ∈ {1, . . . , 𝑁}                     (15.2)

 

Where 𝒂̃𝒙𝒊, 𝑏𝑥𝑖 , 𝒂𝒖𝒊 and 𝑏𝑢𝑖 are row vectors and elements 

of the matrices 𝑨̃𝒙, 𝒃𝒙, 𝑨𝒖  and 𝒃𝒖  respectively; and the term 

𝑓𝑠 = √
1−𝜖𝑖

𝜖𝑖
  indicates the multiplicative factor of the stochastic 

process standard deviation required to guarantee the selected 

risk level. 

On the other hand, the control actions are given by the 

next expression:  

               𝛥𝒖(𝑘) = 𝑲(𝑘)𝒙̃(𝑘) + 𝒄(𝑘)       (16) 

Where the gain 𝑲(𝑘) is estimated according to equation 

(22), and the dual variables 𝒄(𝑘)  are selected as eqn. (25) 

indicates. 

Hence, the first moment of the variables 𝒙̃ and inputs 𝛥𝒖 

are calculated with Equations (19).  

                      𝝁𝛥𝒖(𝑘) = 𝑲(𝑘) ⋅ 𝝁𝒙̃(𝑘) + 𝒄(𝑘); 
         ∀𝑘 ∈ {1, . . . , 𝑁};                           (17.1) 

𝜮𝛥𝒖(𝑘) = 𝑲(𝑘) ⋅ 𝜮𝒙̃(𝑘) ⋅ 𝑲(𝑘)𝑇 

                               ∀𝑘 ∈ {1, . . . , 𝑁}     (17.2) 

Outlining, the control setting consists of finding 𝑲(𝑘) and 

𝒄(𝑘) that give the minimum reference tracking error (17), and 

that guarantee the accomplishment of the constraints. 

Furthermore, the control law must accomplish with the 

recursive Riccati Equation, and therefore the gain 𝑲(𝑘) can 

be estimated as Equation (22) indicates, using Semidefinite 

Programming – SDP for the perturbed time-varying system in 

Eqn. (6) which described the evolution of the states, assuming 

some pre-selected values for the matrices 𝑸 and 𝑹. 

(𝑨̃(𝑘) + 𝑩̃𝑲(𝑘))
𝑇

𝑷(𝑘 + 1)𝑨̃(𝑘) + 𝑩̃(𝑘)𝑲(𝑘)) − 

                 𝑷(𝑘) + 𝑸 + 𝑲(𝑘)𝑇𝑹𝑲(𝑘) ≤ 0       (18) 

Defining for this, the new auxiliary variables 𝑺 ∈
ℝ𝑛𝑥×𝑛𝑥×(𝑁+1) , 𝒀 ∈ ℝ𝑛𝑢×𝑛𝑥×𝑁 , and 𝛼 ∈ ℝ , relating them to 

the original ones as Equation (21) indicates.   

             𝑲(𝑘) = 𝒚𝒌⋅𝒔𝒌
−1, 𝑷(𝑘) = 𝛼 𝒔𝒌

−1       (19) 

Then, the optimization can be reformulated as Eqn. (21) 

indicates: 

                    
min
𝑆,𝑌,𝛼

𝛼

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
           (20.1) 

                             𝛼 > 0;                        (20.2) 

                    [
1 𝒙̃(1)𝑇

𝒙̃(1) 𝑠𝑁+1 
] ≽ 0;                       (20.3) 

                       𝒔𝒌 = 𝒔𝒌
𝑇 , ∀𝑘 ∈ {1, . . . , 𝑁 + 1};          (20.4) 

                        𝑠𝑘 ≽ 0, ∀𝑘 ∈ {1, . . . , 𝑁 + 1};          (20.5) 

                      𝒔𝑁+1 = 𝛼 ⋅ 𝑸−1;          (20.6) 

                         

[
 
 
 
 

𝒔𝒌 (𝑨̃𝟎(𝑘) + 𝑨̃𝒊(𝑘)) ⋅ 𝒔𝒌 + 𝑩̃ ⋅ 𝒚𝒌)
𝑇 𝒔𝒌 ⋅  𝑸1/2 𝒚𝒌 ⋅  𝑹1/2

𝑨̃𝟎(𝑘) + 𝑨̃𝒊(𝑘)) ⋅ 𝒔𝒌 + 𝑩̃ ⋅ 𝒚𝒌 𝒔𝒌+𝟏 𝟎 𝟎

 𝑸1/2 ⋅ 𝒔𝒌 𝟎 𝛼 𝑰 𝟎

 𝑹1/2 ⋅ 𝒚𝒌 𝟎 𝟎 𝛼 𝑰 ]
 
 
 
 

≽ 0,     (20.7) 

 ∀𝑘 ∈ {1, . . . , 𝑁} 

where 𝒔𝒌, 𝒚𝒌 are obtained as 𝒔𝒌 = 𝑺(⋅,⋅, 𝑘), 𝒚𝒌 = 𝒀(⋅,⋅, 𝑘)  

On the other hand, as it was indicated previously, the 

matrix 𝜮𝒙̃ must be selected such that the mean square stability 

of the stochastic process 𝒙̃  holds. This can be guaranteed 

constraining 𝜮𝒙̃   to accomplish with the next Lyapunov 

Equation: 

𝑨𝟎̃(𝑘) + 𝑩̃𝑲(𝑘)) ⋅ 𝜮𝒙̃(𝑘) ⋅ (𝑨𝟎̃(𝑘) + 𝑩̃𝑲(𝑘))
𝑇
− 

         𝜮𝒙̃(𝑘 + 1) + 𝑾̅̅̅(𝑘) = 𝟎;   ∀𝑘 ∈ {1, … , 𝑁};          
(21) 

Where the variable 𝑾̅̅̅  is a semidefinite matrix 

estimated according to the procedure indicated in [19] 

as: 

𝑾̅̅̅(𝑘) = 𝑨𝒊̃(𝑘) ⋅ 𝝁𝒙̃(𝑘) ⋅ 𝜎𝜉1

2 (𝑘) ⋅ 𝝁𝒙̃(𝑘)𝑇 ⋅ 𝑨𝒊̃(𝑘)𝑇 +

𝑨𝒊̃(𝑘) ⋅ 𝝁𝒙̃(𝑘) ⋅ 𝜌𝜉1(𝑘),𝜉2(𝑘) ⋅ 𝜎𝜉1
(𝑘) ⋅ 𝜎𝜉2

(𝑘) ⋅ 𝑫̃(𝑘)𝑇 +

𝑫̃(𝑘) ⋅ 𝜌𝜉1(𝑘),𝜉2(𝑘) ⋅ 𝜎𝜉1
(𝑘) ⋅ 𝜎𝜉2

(𝑘) ⋅ 𝝁𝒙̃(𝑘)𝑇 ⋅ 𝑨𝒊̃(𝑘)𝑇 +

𝑫̃(𝑘) ⋅ 𝜎𝜉2

2 (𝑘) ⋅ 𝑫̃(𝑘)𝑇;  ∀𝑘 ∈ {1, . . . , 𝑁};                     (22) 

Subsequently, dual variables 𝒄 are calculated, solving the 

SDP optimization set in (25) for a pre-stablished value for the 
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risk level of the individual states and inputs chance 

constraints.

min
𝑴𝒙,𝑴𝒖,𝑩𝒙,𝑩𝒖,𝑽𝒙,𝑾̅̅̅,𝒄,𝛼2, 𝝑𝒙, 𝝑𝒖

 (𝒄𝑇 ⋅ 𝑾𝒄 ⋅ 𝒄 + 𝜔𝑀𝑥
∑ ∥ 𝒎𝒙,𝒌 ∥𝐹

𝑁+1

𝑘=1
−

𝜔𝐵𝑥
∑ 𝑑𝑒𝑡( √𝒃𝒙,𝒌

𝑛 )
𝑁+1

𝑘=1
−𝜔𝐵𝑢

∑ 𝑑𝑒𝑡( √𝒃𝒖,𝒌
𝑛 )

𝑁

𝑘=1
+ 𝜔𝜗𝑥

∑ 𝝑𝒙
𝑁+1
𝑘=1 + 𝜔𝜗𝑢

∑ 𝝑𝒖
𝑁
𝑘=1 + 𝜔𝑉𝑥

∑ ∥
𝑁+1

𝑘=1

𝒗𝒙,𝒌 ∥𝐹 + 𝜔𝛼2
∣ 𝛼2 ∣)                                                     (23.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
   𝝁𝒙̃(𝑘 + 1) = (𝑨𝟎̃(𝑘) + 𝑩̃𝑲(𝑘)) ⋅ 𝝁𝒙̃(𝑘) + 𝑩̃ ⋅ 𝒄(𝑘);  ∀𝑘 ∈ {1, . . . , 𝑁};                (23.2) 

𝝁𝜟𝒖(𝑘) = 𝑲(𝑘) ⋅ 𝝁𝜟𝒙(𝑘) + 𝒄(𝑘);  ∀𝑘 ∈ {1, . . . , 𝑁};    (23.3) 

𝝁𝜟𝒙̃(1) = 0;        (23.4) 

             𝒎𝒙,𝒌 = 𝒎𝒙,𝒌
𝑇 ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁 + 1};     (23.5) 

   𝒎𝒖,𝒌 = 𝒎𝒖,𝒌
𝑇 ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁}            (23.6) 

𝒃𝒙,𝒌 = 𝒃𝒙,𝒌
𝑇 ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁 + 1};                             

(23.7) 

          𝒃𝒖,𝒌 = 𝒃𝒖,𝒌
𝑇 ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁};                            (23.8) 

𝒗𝒙,𝒌 = 𝒗𝒙,𝒌
𝑇 ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁 + 1};         (23.9) 

          𝒘𝒌̅̅ ̅̅ ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁};                  (23.10) 

            [
𝒎𝒙,𝒌+𝟏 − 𝒘𝒌̅̅ ̅̅ [𝑨𝟎̃(𝑘) + 𝑩̃𝑲(𝑘)]

𝑇

[𝑨𝟎̃(𝑘) + 𝑩̃𝑲(𝑘)] 𝒗𝒙,𝒌

] ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁};        (23.11) 

[
 
 
 
 
 
 
 
 

𝒘𝒌̅̅ ̅̅ [𝑨𝒊̃(𝑘)𝝁𝒙̃(𝑘)) 𝑫̃(𝑘)] [𝑨𝒊̃(𝑘)𝝁𝒙̃(𝑘)) 𝑫̃(𝑘)]

[𝑨𝒊̃(𝑘)𝝁𝒙̃(𝑘)) 𝑫̃(𝑘)]𝑇 [

1

𝜎𝑥𝑖1
2 (𝑘)

0

0
1

𝜎𝑥𝑖1
2 (𝑘)

] 0

[𝑨𝒊̃(𝑘)𝝁𝒙̃(𝑘)) 𝑫̃(𝑘)]𝑇 0 [
0

1

𝑐𝑜𝑣(𝜉1(𝑘),𝜉2(𝑘))

1

𝑐𝑜𝑣(𝜉1(𝑘),𝜉2(𝑘))
0

]  

]
 
 
 
 
 
 
 
 

≽ 𝛼2 ∀𝑘 ∈

{1, . . . , 𝑁};                                      (23.12) 

   𝒎𝒖,𝒌 = 𝑲(𝑘) ⋅ 𝒎𝒙,𝒌 ⋅ 𝑲(𝑘)𝑇;  ∀𝑘 ∈ {1, . . . , 𝑁};            (23.13) 

     [
𝒗𝒙,𝒌  𝑰

𝑰 𝒎𝒙,𝒌
] ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁 + 1};                            (23.14) 

    [
𝒎𝒙,𝒌  𝒃𝒙,𝒌

𝑻

𝒃𝒙,𝒌  𝑰
] ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁 + 1};            (23.15) 

     [
𝒎𝒖,𝒌 𝒃𝒖,𝒌

𝑻

𝒃𝒖,𝒌 𝑰
] ≽ 0;  ∀𝑘 ∈ {1, . . . , 𝑁};                               (23.16) 

√
1−𝜖𝑥𝑖

𝜖𝑥𝑖
⋅ ‖[

𝒎𝒙,𝒌+𝟏 √𝑐𝑜𝑣(𝒙̃(𝑘), 𝝃𝒄)

√𝑐𝑜𝑣(𝒙̃(𝑘), 𝝃𝒄)
𝑇

𝜮𝝃𝒄

𝑇 (𝑘)𝜮𝝃𝒄
(𝑘)

]𝒂𝒙𝒊̃
𝑇
‖ + 𝒂𝒙𝒊̃ [

𝝁𝒙̃(𝑘)

𝝁𝝃𝒄
(𝑘)

] ≤ −𝑏𝑥𝑖(𝑘) + 𝜗𝑥𝑖(𝑘); ∀𝑖 ∈

{1, . . . , 𝑁𝑥};  ∀𝑘 ∈ {1, . . . , 𝑁};                                    (23.17) 

√
1−𝜖𝑢𝑖

𝜖𝑢𝑖
⋅ ‖[

𝒎𝒖,𝒌 √𝑐𝑜𝑣(Δ𝒖(𝑘), 𝝃𝒄)

√𝑐𝑜𝑣(Δ𝒖(𝑘), 𝝃𝒄)
𝑇

𝜮𝝃𝒄

𝑇 (𝑘)𝜮𝝃𝒄
(𝑘)

]𝒂𝒖𝒊
𝑇‖ + 𝒂𝒖𝒊 [

𝝁𝚫𝒖(𝑘)

𝝁𝝃𝒄
(𝑘)

] ≤ −𝑏𝑢𝑖(𝑘) + 𝜗𝑢𝑖(𝑘); ∀𝑖 ∈

{1, . . . , 𝑁𝑢};  ∀𝑘 ∈ {1, . . . , 𝑁};                                                                  (23.18) 

 

where the decision variables of the optimization are: 

𝑴𝒙 ∈ ℝ𝑁𝑥̃×𝑁𝑥̃×𝑁+1 which is a three dimensional array that 

contains in their 2-dimensional subsets 𝒎𝒙,𝒌  the second 

moment of the states 𝒙̃, i.e. 𝒎𝒙,𝒌 = 𝜮𝒙̃(𝑘), being 𝑁𝑥 = 2 ⋅ 𝑁𝑥 

the number of augmented states 𝒙̃ , and 𝑁𝑥  the number of 

states in Equation (6). 

𝑴𝒖 ∈ ℝ𝑁𝑢×𝑁𝑢×𝑁, which is a three dimensional array that 

contains in their 2-dimensional subsets 𝒎𝒖,𝒌  the second 

moment of the inputs ∆𝒖 , i.e. 𝒎𝒖,𝒌 = 𝜮∆𝒖(𝑘) , being 𝑁𝑢  the 

number of inputs in Equation (6); 𝑩𝒙 ∈ ℝ𝑁𝑥̃×𝑁𝑥̃×𝑁+1 , is a 

three dimensional array that contains in their 2-dimensional 

subsets 𝒃𝒙,𝒌  the square root of the second moment of the 
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system states, i.e. 𝒃𝒙,𝒌 = 𝜮𝒙̃
1 2⁄ (𝑘) ; 𝑩𝒖 ∈ ℝ𝑁𝑢×𝑁𝑢×𝑁 , is a 

three dimensional array that contains in their 2-dimensional 

subsets 𝒃𝒖,𝒌  the square root of the second moment of the 

system inputs, i.e. 𝒃𝒖,𝒌 = 𝜮∆𝒖
1 2⁄ (𝑘); 𝑽𝒙 ∈ ℝ𝑁𝑥̃×𝑁𝑥̃×𝑁+1, is a 

three dimensional array that contains in their 2-dimensional 

subsets 𝒗𝒙,𝒌 the inverse of the second moment of the system 

states, i.e. 𝒗𝒙,𝒌 = 𝜮𝒙̃
−1(𝑘); 𝒄 ∈ ℝ𝑁𝑢⋅𝑁 is a matrix containing 

the dual variables 𝒄(𝑘) ; 𝑾̅̅̅ ∈ ℝ𝑁𝑥̃×𝑁𝑥̃×𝑁  is a three 

dimensional array that contains in their 2-dimensional subsets 

the elements 𝒘𝒌̅̅ ̅̅  ; 𝛼2 ∈ ℝ  is a scalar value corresponding to 

the minimum eigenvalues of the matrices 𝒘𝒌̅̅ ̅̅  ; and 𝝑𝒙 ∈
ℝ𝑁𝑥̃⋅𝑁, 𝝑𝒖 ∈ ℝ𝑁𝑢⋅𝑁 are vectors containing slack variables that 

allow the feasibility of the optimization problem, relaxing the 

chanced constraints. 

On the other hand, the scalar 𝜔𝑀𝑥
 is a weight factor that 

penalizes the Frobenius norm of the state variance matrices 

𝒎𝒙,𝒌  (since the proposed strategy minimizes the states 

variance as much as possible); 𝜔𝐵𝑥
  and 𝜔𝐵𝑢

  are scalars that 

incentives the product of eigenvalues of matrices 𝒃𝒙,𝒌 , 𝒃𝒖,𝒌 

(since the calculated matrices 𝒃𝒙,𝒌  and 𝒃𝒖,𝒌  have the largest 

possible eigenvalues); 𝜔𝑉𝑥
 is a weight factor that penalizes the 

Frobenius norm of the inverse state variance matrices 𝒗𝒙,𝒌 

(since the proposed strategy minimizes also the inverse of 

states variance matrix); 𝜔𝛼2
 is a weight factor that penalizes 

the absolute value of the scalar 𝛼2 ; 𝜔𝜗𝑥
  and 𝜔𝜗𝑢

  are scalars 

that penalizes the slack variables 𝜗𝑥 and 𝜗𝑢, which are set to 

make feasible the control problem under conditions that do not 

accomplish with the constraints. 

 

5.  Results 

The proposed hierarchical control technique has been 

applied to the car-sharing system study case set in [25], which 

is proposed for the Medellín city (Colombia). Specifically, the 

considered system is a 6 stations carsharing with a fleet of 854 

Nissan Leaf EVs with a maximum individual energy capacity 

of 17.6 kWh, a minimum allowed energy content of 20%, and 

a maximum individual charging/discharging power of 2.2 kW. 

Moreover, in the Chapter 5.1 of [25], the stochastic 

characterization of the variables in Equation (14), it is carried 

out. And here, this characterization is taken to evaluate the 

joint chanced constraints given in equations (25.17), (25.18), 

with risk levels of 15% and 30%. The results obtained of these 

evaluations are shown in Fig. 2-4 and summarized in Table 1, 

where the obtained solutions are compared regarding the 

results presented in the previous work [25], where the 

stochastic behavior of the uncertainties was omitted. 

Furthermore, the results presented in Table 1 include an 

evaluation of the control performance for the carsharing 

system under a perturbed condition, in which the energy 

consumption of EVs during travels and the number of vehicles 

traveling among stations deviate from their mean condition. 

Those variables take a value of the mean plus 2 standard 

deviations. 

On the other hand, Fig. 2-4 depict the obtained results 

considering the risk levels of 15% and 30 %.  

 

Fig 2. Calculated control actions, considering a risk level 

of 15%. 

Where the max case indicates that the uncertainties take 

the mean value plus the standard deviation multiplied by the 

defined confidence level, and the min case indicates that the 

uncertainties take the mean value minus the standard deviation 

multiplied by the defined confidence level. 

 

Fig 3. Calculated control actions considering a risk level 

of 30%. 

In Fig. 2-3 it can be appreciated that the 

charging/discharging powers cannot be kept always inside 

their limits, since the control law is not able to compensate the 

high value of the uncertainties in the scenarios evaluated. 

However, the obtained control actions deviate the minimum 

possible from the established reference values. Furthermore, 

it can be noted that the charging power is the highest for the 

max case and the discharging power is the highest for the min 

case; this happens because the system requires more charging 

power to supply the energy consumption in travels for the max 

case, and, as the min case represent the minimum energy 

consumption in travels, the system will be available to sell 

more energy to the network since exists surplus energy in the 

batteries after travels.  

Regarding the changes introducing by modifying the risk 

level, it can be appreciated that the deviation from reference 

charging/discharging values is higher in the Fig. 2, since the 

risk level is lower than the evaluated in Fig. 3, and the system 

should be able to manage higher uncertainties. This 
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phenomenon can be also appreciated in Fig. 4.a and 4.b, where 

the gap between the energy content in the bank for the max 

case and the min case is wider for the lowest risk level 

evaluated (Fig. 4.a). 

Additionally, upon examining Fig. 4, it can be appreciated 

that the energy content of vehicles stationed at the charging 

stations surpasses the maximum permissible energy content. 

This observation indicates that the system, with the given 

controller tuning parameters, fails to fully mitigate 

disturbances at the established confidence levels. 

Nevertheless, the inclusion of slack variables𝜗𝑥  and 𝜗𝑢  in 

Equation (25) offers a viable solution that minimizes 

deviations from nominal conditions. Consequently, the 

incorporation of these slack variables enables the control 

problem to remain feasible even under substantial 

perturbations, thereby addressing the system's robustness 

requirements. 

 

 
a) 

 
b) 

Fig 4. Aggregated energy content in the battery bank, considering a risk level of a) 15% and b) 30%. 

 

Finally, Table 1 presents a comparison for the decision-

making system performance regarding the solution assuming 

that the uncertainties behave as their mean values, which was 

presented in the previous work [25]. 

Table 1. Comparison of results regarding the nominal 

MPC. 

- Risk-aware 

15% of risk 

level 

Risk-aware 

30% of risk 

level 

Nominal 

(solution given 

in [25]) 

Aggregator 

incomes 

25.748 

[MCOP] 

25.966 

[MCOP] 
26.314 [MCOP] 

Constraints 

violation 

4,1485 4,469 10,178 

Execution 

time 

15.821 [s] 16.195 [s] 41.516 [s] 

From Table 1 it can be observed that proposed second 

level risk-aware stochastic MPC improves the decision 

making performance; because the obtained average value of 

constraints violation (calculated in [23]) is lower for the both 

risk levels considered than in the nominal solution, which 

implies that the proposed controllers improve the ability of the 

decision making system to reject the disturbances. 

Also, it can be noted that the incomes of the aggregator 

consider the nominal case (first level solution with no 

uncertainties), are higher than the incomes for the risk-aware 

control cases; this agrees with the results illustrated in Fig. 2-

4, since, under the evaluated conditions, the aggregator must 

charge the vehicles more than in the nominal or reference 

value to compensate the uncertainties, reducing with this, its 

incomes. 

On the other hand, in Table 1 the execution times were 

also reported; from which it can be concluded that the risk-

aware controller is 2.5 times faster than the first level nominal 

control; this implies that, for real-time applications (the 

requires execution time will depend of the dynamic system 

change rate), the proposed hierarchical controller is more 

suitable than the direct approach-based control schemes, such 

as the EMPC, since they will require higher computational 

burden, higher execution times, and can present stability 

issues as they must solve the non-linear economic 

optimization (see (1)) at each time step and must consider also 

the uncertainties, which add computational complexity to the 

problem; furthermore it is highlighted that the stability of the 

second-level tracking stochastic MPC can be proved (it was 

already proven in [23]), but the stability proofs of non-linear 

EMPCs is an open issue in the current literature. However, 

there is no guarantee that the solution given by the secondary 

control level is the global optimum of the problem, but it is the 

solution that can manage the system uncertainties with the less 

deviation possible from the initial plan, and that also considers 

the economy of the system. 

6. Conclusion  

This research paper presented a hierarchical control 

scheme designed for the decision-making system of a shared 

Electric Vehicles (EVs) aggregator actively participating in 

energy sales and frequency regulation reserve provision to the 

power network. The proposed scheme comprises two levels: 

the first level focuses on determining optimal economic 

decisions based on average uncertainty behavior, while the 

second level incorporates a risk-aware reference tracking 

controller that minimizes decision deviations from reference 

values. The stochastic nature of uncertainties is accounted for 
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by considering a predefined confidence level for their 

characterization. The experimental results demonstrated a 

better performance of the proposed scheme compared to a 

nominal Model Predictive Control (MPC) solution that 

disregards the stochastic behavior of uncertainties. 

Specifically, the proposed scheme exhibits enhanced 

disturbance rejection capabilities, thereby enhancing the 

system's overall performance. 

The proposed scheme offers advantages over existing 

counterparts in the literature, including EMPCs (Economic 

Model Predictive Controllers) and robust controllers. These 

advantages encompass reduced computation time, solution 

stability, scalability, and the ability to directly incorporate 

probability density functions of uncertainties and their 

associated confidence levels within the controller design. 

Moreover, this work represents an extension of the current 

state-of-the-art stochastic MPC approaches. Unlike previous 

approaches that primarily focus on linear time-invariant 

systems with constant constraints and zero-mean 

disturbances, the present study considers a linear time-varying 

system with time-varying constraints and non-zero mean 

disturbances with non-unitary variances. This extension 

broadens the applicability of the proposed scheme within the 

existing literature. 

Moreover, it is suggested, as future work, the 

implementation of direct EMPC control schemes for the 

proposed model, and the use of other stochastic control 

techniques as the PMP-based and dynamic programming. 
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