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Abstract- Conventional engine-powered vehicles gradually decline in sales due to their emission effects as well as the 

unavailability of fuels in 2030. Alternatively, Electric Vehicles (EVs) which is substantially growing in the automobile sector 

due to their zero-emission and sustainable power. Electric Vehicles utilize lithium-ion batteries for their significant properties 

such as high specific power, long lifespan, high efficiency, moderate energy density, and minimum loading effect. A Battery 

Management System (BMS) is primarily used to monitor the battery operating conditions and its health in real time. Another 

primary role of a battery management system is to detect the fault that arises in the battery during its operation. This paper 

consolidates various internal and external battery faults and their detection techniques executed on the battery management 

system. The fault detection techniques are classified into model-based, Knowledge-based and data-driven methods programmed 

on BMS, which analyses the fault data acquired from the battery and stores the diagnostic trouble code (DTC) in the fault 

memory. Effective fault detection algorithms and appropriate sensors fixed around batteries help to detect battery faults in 

advance and alert the user to avoid catastrophic failure in EVs are discussed. 

Keywords Li-ion rechargeable cell, Faults in batteries, Battery management system, Fault diagnosis techniques.  

 

1. Introduction 

Greenhouse gas emissions from road transportation are 

nearly 17% around the globe which can be reduced by 

switching to EVs worldwide. The sales of electric vehicles are 

growing due to their enhanced range, availability of various 

models, and efficiency. In 2022, the EV car sector sales have 

grown about 14% compared with the previous year and it is 

predicted zero emissions in 2050. At present, adopting electric 

vehicles is not widely popular globally due to selling costs and 

few charging infrastructure availability. The overall EV sales 

in November 2022 witnessed a marginal increase of 0.1% to 

reach 1,19,949 units. Besides, there was a leap of more than 

185% as mentioned in Fig 1.  

 

Fig. 1. Electric vehicle sales from Nov 2021- Nov 2022 

Source: JMK Research 

Li-ion batteries are widely used in consumer electronics 

compared to other energy storage based on greater power 
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densities, extended lifespans, high energy density, and lower 

self-discharge characteristics at fluctuating temperatures [1]. 

A battery management system (BMS) is essential for 

monitoring the condition of lithium-ion batteries during their 

operation. A BMS is an embedded board connected to the 

battery bank to detect failures or faults and isolate the battery 

from potential issues caused during its operation [2]. The 

embedded software executes on BMS involves data 

collection, SOC estimation, cell balancing, SOH estimation, 

and thermal and charge management [3]. 

As depicted in Fig 2, In 2020, 124 battery-related fire 

accidents in electric vehicles were recorded, out of which 23% 

were due to long-term charging, 37.1% were idle explosions, 

and 39.9% were battery operating explosions. Battery faults 

are classified into Internal and External faults. Internal battery 

faults are the faults occurred in the battery internally caused 

by overcharging, overheating, internal short circuits, external 

short circuits, thermal runaway, and over-discharging. 

External battery faults are faults occurred in the battery 

externally caused by sensors connected to the battery, cell 

connection, and cooling system. Appropriate battery fault 

diagnostic techniques executed on battery management 

systems can detect internal and external faults that may 

significantly limit battery explosions and failures through 

effective monitoring and protection circuits. The fault-

detection algorithms implemented on a BMS are classified 

into model and non-model techniques. Model-based 

techniques can be classified into Structural analysis, 

Parameter and State Estimation and Parity Space. Non-model-

based techniques are classified into knowledge-based and 

signal-processing methods. 

 

Fig. 2. Electric vehicle fire accident 

 Fault detection algorithms executed on the BMS are 

required to compute the present Cell Temperature, State of 

Charge (SOC), Cell voltage, Cell current, State of Health 

(SOH), Cycle Durability, and Discharging and Charging 

profiles of the battery are evaluated in real-time. The state of 

charge of a battery is computed using its initial charge and the 

maximum charge stored in the battery (1). The accuracy of the 

SOC can be improved by an effective technique called the 

Kalman Filter and Extended Kalman Filter. The SOH of a 

battery was calculated using the full battery charge and rated 

capacity. The SOC and SOH are useful to evaluate the 

battery's ageing and predict the valid or useful lifetime. 

Battery temperature is another important parameter for 

calculating battery ageing, which varies according to the 

charging and discharging profiles and atmospheric changes 

(2). The battery voltage and current were continuously 

monitored to find deviations from the expected values and any 

deviations. If any faults are calculated by the BMS, then the 

isolation circuit disconnects the battery banks from the chassis 

ground to avoid disastrous accidents. The novelty of the 

literature review comprises the various internal and external 

battery faults using knowledge-based, non-model based and 

data-driven methods integrating Machine Learning techniques 

used for fault diagnosis of battery packs in EVs. The flow of 

the study is structured as follows. 

 

Fig. 3. Flowchart of the present study 
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Acronyms: 

SEI  Solid electrolyte interface 

Li-ion Lithium-ion battery 

ML  Machine learning 

KF  Kalman filter 

OCV  Open circuit voltage 

RF  Random Forest 

RLS  Recursive least square 

UKF  Unscented Kalman filter 

PWM  Pulse width modulation 

FDI  Fault Detection Isolation 

EMF  Electromotive force 

EKF  Extended Kalman filter 

BNN  Biological Neural Network 

RL  Reinforcement learning 

 XGBoost Extreme Gradient Boosting 

RVM  Relevance vector machine 

SVR  Support vector regression 

ISOMAP Isometric feature mapping 

GPR  Gaussian process regression 

LSTM The long short-term memory 

SC  Short-circuit 

SVM  Support vector machine 

KNN  K-Nearest neighboring 

LR  Logistic regression 

ANN  Artificial Neural Network 

KSVM Kernel space vector machine 

GNB  Gaussian naive Bayes 

NI-MH Nickel metal hydrate 

ECM  Equivalent circuit model 

TR  Thermal runaway 

    EIS  Electro-chemical impedance spectra 

2. Lithium-Ion Battery Faults in EV 

Fault diagnostics algorithms executed on the BMS are 

highly important and equal to application code. The lifetime 

of Li-ion batteries is shortened because of various conditions, 

such as high atmospheric temperatures and 

overcharging/discharging. Therefore, faults in Li-ion batteries 

are shown in Fig 4. 

 

Fig. 4. Classification of Lithium-ion battery faults 

2.1. Internal Faults in Lithium- Ion battery 

Li-ion cell operation remains unclear (3), and it may be 

difficult to detect internal battery faults. The most hazardous 

characteristics of Li-ion batteries are sensitivity to rapid 

degradation and thermal runaway, which may reduce their 

utility and potentially threaten their owners' lives (4). 

Generally, abnormal operational responses of the battery, such 

as a decrease in voltage or state of charge, an increase in 

temperature or internal resistance, or a physical change, or 

swelling, are indicative of internal battery problems. Internal 

faults occurring in a Li-ion battery are shown in Fig 5. 

 

Fig. 5. Classification of Internal faults in Lithium-ion battery 

faults 

2.1.1. Over-charge 

Overcharging is the process of providing (or) delivering 

excess current to charge the battery. The inherent 

unpredictability of Li-ion cell capacity, inadequate voltage, 

current monitoring, and an inaccurate SOC forecast from the 

BMS all contribute to the potential of this occurrence (5). 

They acquire additional issues when overcharging batteries, 

such as rapid degeneration and thermal runaway. Furthermore, 

a standard battery pack can be overcharged if the charger 

charges continuously without disconnection while the battery 

is fully charged. In addition, when Li-ion batteries are 

overcharged, the electrochemical interactions cause the active 

materials to deplete. Moreover, gas buildup in enclosed 
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batteries can lead to explosions during their operation (6). In 

addition to generating a short circuit inside the battery, the 

results show an excessively thick SEI layer. Finally, 

overcharging the cathode results in issues such as electrolyte 

breakdown, metal dissolution, and phase shift, which results 

in a fire explosion (7).  

2.1.2. Over-discharge 

Over-discharge of Li-ion batteries can cause due to 

variable capacity of the cell, low voltage and current 

monitoring, and inaccurate SOC estimation (5). Over-

discharge may harm Li-ion batteries by initiating an undesired 

electrochemical reaction which results in thermal runaway and 

accelerated deterioration. Therefore, over-discharge reduces 

the battery life and increases the cell temperature variation. 

Consequently, Li-ion batteries are expected to develop 

internal short circuits (6). Gan et al. (8) used machine learning 

(ML) to design a two-layer defective detection system for Li-

ion batteries to identify an over-discharge in electric vehicle 

batteries. If the battery voltage is compared to the cut-off 

voltage, the first layer can detect over-discharge. The second 

layer is a deterioration mechanism using the extreme Gradient 

Boosting (XGBoost) algorithm, activated whenever the 

battery voltage exceeds a certain threshold. 

2.1.3. Over-heating 

Overheating in the Li-ion battery occurs when the voltage 

regulator fails, it causes the battery to overheat by returning an 

excessive amount of power from the generator. In addition, 

internal and external short circuits, or both lead to overheating 

(9). Moreover, if a Li-ion battery is overheated, its 

components may degrade and release gas bubbles, causing it 

to enlarge or even explode (10). Overheating also results in 

thermal runaway which occurs, when a thermal reaction 

begins at a critical temperature because heat cannot escape as 

quickly as it is produced. Battery thermal defects were 

identified and classified using the Luenberger observer by 

Statista et al. [9]. These include convection cooling resistance 

faults, heat explosion faults, and internal heat resistance faults. 

2.1.4. Accelerated-Degradation 

The deterioration process is increased during storage at 

high temperatures due to interactions between the electrode 

and the electrolyte, changes in electrode material and 

corrosion of current collectors are also some other 

mechanisms of accelerated degradation. In some applications 

like EVs, the battery's lifespan decreases due to accelerated 

degradation. Moreover, it also causes contact deterioration 

surface layer deformation that results in material 

disintegration and loss of lithium [13]. 

 In (11,12) the researchers identified that rapid 

deterioration is a severe problem in Li-ion battery 

applications. When temperatures exceed their optimal range, 

the deterioration accelerates. In addition, several variables 

such as increasing impedance, increased cycle frequency, 

fluctuating state-of-charge levels, and higher voltage rates, 

promote deterioration of the exterior environment [15,16], 

Current collector corrosion, electrode composition 

fluctuations, and electrode-electrolyte interaction are three 

mechanisms leading to rapid degradation. Rapid battery 

ageing is a significant issue in several applications, including 

electric vehicles. In addition, it may accelerate the formation 

of surface layers and contact degradation, which results in 

electrode and material disintegration and Li-ion loss (3). 

2.1.5. Short-circuit 

Short circuits occur when the insulating layer between 

electrodes is unavailable or degraded. High temperatures, cell 

deformation, dendritic development, and compressive stress 

are associated with separator failure, as a result, temperatures 

may rapidly reach toxic levels, a phenomenon known as 

thermal runaway [17,18], because the electrolyte decomposes 

exothermically. An increase in the temperature from a short 

circuit causes thermal runaway. Large-capacity cells are more 

prone to undergo thermal runaway in the event of an internal 

short circuit than smaller-capacity cells (17). When tabs are 

coupled via a path with low resistance, an external short circuit 

is often the consequence. Moreover, gas generation from side 

reactions during overcharging may cause the cells to swell, 

resulting in electrolyte leakage (18). Alternatively, water 

immersion or collision might cause deformation. An electrical 

connection is established between the positive and negative 

electrodes when an external heat-conducting material contacts 

both terminals simultaneously (19). Li-ion diffusion limits 

current flow at the negative electrode when an external short 

circuit is present (18). But thermal runaway is caused by the 

heat released during electrolyte breakdown at the positive 

electrode. When a cell is subjected to a short circuit, the stored 

energy can release rapidly [19,20].  

2.1.6. Thermal Runaway 

A battery may experience thermal runaway owing to any 

of the above concerns. The extreme charging currents and high 

charging temperatures may also contribute to this issue. It is 

conceivable that a solid reaction occurs when the temperature 

is near the melting point of a Li-ion battery (20). As indicated 

in the preceding section, limited air circulation is an additional 

factor for the occurrence known as thermal runaway (21). 
Based on their observations, Galushkin et al. (22) determined 

that the likelihood of thermal runaway increased with each 
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charge/discharge cycle. Researchers have also connected 

several exothermic battery activities to thermal runaway. 

Table 1.  Comparison of internal battery fault diagnosis 

2.2. External Faults in Lithium-Ion battery 

External battery failures can substantially impact the 

BMS's other operations and induce internal battery problems. 

External defects include various losses in temperature, 

voltage, current sensors, battery cell connections, and cooling 

units. The failure of the cooling unit is the most disastrous 

because it produces a thermal loss, especially thermal 

runaway, owing to the system's inability to create sufficient 

cooling (27). Therefore, External faults in a Li-ion battery are 

classified as illustrated in Fig 6. 

 

Fig. 6. Classification of External Faults in Lithium-ion 

Batteries 

 

 

 

 

 

 

2.2.1. Sensor Faults 

A dependable sensor-failure diagnosis system is 

necessary for safe and efficient battery operation. It also 

prevents internal defects, thermal runaway, overcharging, 

over-discharging, overheating, and both external and internal 

short circuits. Faulty sensors fail to monitor temperature, 

voltage, or current accurately. Numerous sensor failures can 

be attributed to physical causes, including vibration, impact, 

and electrolyte leakage. Corrosion around the battery sensor 

or faulty connections can also occur. A malfunctioning sensor 

may speed the deterioration of a battery, impede BMS 

operations owing to erroneous status evaluation, and cause 

other difficulties inside the battery itself. Providing accurate 

temperature data to the BMS is crucial to its ability to manage 

battery performance, making the temperature sensor an 

essential component of the Li-ion battery system. A defective 

temperature sensor might result in the BMS obtaining 

inaccurate data due to poor thermal management. 

Temperature sensor failure results in ageing at high 

temperatures, overheating, degradation due to high 

temperatures, short-circuiting, and thermal runaway. The 

battery lifespan may be dramatically reduced because of the 

extreme precision of the BMS temperature-control function. 

The voltage sensor checks the condition of each battery cell. 

A battery may fail internally because of overcharging and 

draining caused by a malfunctioning voltage sensor that 

results in inaccurate SOC and SOH calculations. The current 

sensor detects the amount of current entering and exiting the 

Author Citations Fault parameters Faults in Battery Technique Achievements 

Amardeep 

et al. 

(23) Battery model 

parameters 

Detecting 

overcharge and 

over-discharge 

faults 

Extended 

Kalman filter 

This model efficiently detects 

the overcharge and over-

discharge faults in real time. 

Yang et al.  

(24) 

Fault parameters 

for abnormal 

voltages 

Identifying the Li-

ion battery faults 

Artificial 

Neural 

Networks 

(ANN) 

A complete battery fault 

diagnostics model for abnormal 

voltages is built based on 

extensive data regulation. 

Jinget al. (25) Increasing 

temperature and 

decreasing voltage 

Detecting 

overcharge faults 

Ruled-

based 

method 

This model is efficient in 

detecting overcharge faults and 

alerts the users early 

Vinay et al. (26) Fault parameters 

from Soc, 

temperature, and 

voltage 

Li-ion battery 

overcharging 

and over-

discharging 

Fuzzy logic This approach efficiently and 

precisely identifies overcharge 

and over-discharge issues in Li-

ion batteries. 
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battery and provides this information to the battery 

management system. The urgent identification of the cause of 

a defective current sensor is required to avoid further issues. 

Current sensor problems might cause the cell to overcharge, 

over-discharge, or overheat, resulting in erroneous SOCs and 

other metric sizes that can affect the BMS's control operation. 

2.2.2.  Cooling System 

The cooling system in a Li-ion battery helps to maintain a 

healthy temperature and eliminates the extra heat from the 

battery pack to maintain the ideal temperature. When the 

motor or fan of the cooling system stops working, it is often 

due to malfunctioning temperature sensors, fan wiring, or a 

blown fuse. The temperature sensor and cooling system faults 

have the same temperature dependence and cannot be 

distinguished from one another. Moreover, overheating of a 

battery may result in thermal runaway and failure, which can 

cause the cooling system to fail. Therefore, prompt diagnosis 

is essential. 

2.2.3.  Cell Connection 

Vibrations induced by impurities may weaken the 

connections between cell terminals, leading to inadequate 

electrical connections and battery or cell connection issues. 

This problem may cause a substantial increase in cell 

resistance owing to insufficient current flow or overheating of 

the damaged cell. Voltage and temperature sensors facilitate 

the detection of this breakdown; however, if it is not resolved, 

more critical problems may occur, such as external short 

circuits or thermal runaway. Table 2 illustrates a comparison 

of different external faults in BMS. 

 

Fig. 7. Overview of Lithium-ion Battery Faults

 
Table 2. Comparison of external battery fault diagnosis 

 

Author 

 

Citations 

 

Fault parameters 

 

Faults in 

Battery 

 

Techniques 

 

Achievements 

Xia et 

al. 

(28,29) Voltage 

measurement 

Detecting sensor 

and cells faults 

Fault-tolerant voltage 

monitoring technique 

for a series-connected 

battery pack 

Sensor faults can be 

isolated without any hard 

ware setup 

Lombard

iet al. 

(30) Relationship 

between voltage 

sensor measurement 

and current sensor 

measurement 

Identifying the 

sensor faults 

of Lithium-ion 

battery 

Kirchhoff's law Finished Lithium-

ion Battery Fault 

Detection and 

Isolation of Current 

and Voltage Sensors 

Liu et 

al. 

(31,32) Residues from the 

structural analysis 

theory generated 

based on the EKF 

method 

Detecting the 

sensor faults 

Structural analysis 

theory 

Used for reducing the 

noise but also increased  

the computational cost 

Liu et 

al. 

(33) Fault parameters 

from SOC, 

temperature, and 

voltage 

Estimating the 

output voltage 

of faulty 

voltage  

EKF In accurate initial noise 

and robustness. 
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3. Role of Battery Management System (BMS) in Fault 

Diagnosis 

A battery management system (BMS) is responsible for 

mitigating the hazards associated with Li-ion batteries to 

ensure the safety of the battery and its users. Faults cause the 

most dangerous situations, and the BMS should reduce their 

frequency and severity. Insulation, sensors, and contractors 

are battery safety precautions. In addition, sensors connected 

to the cells regulate voltage, current, and temperature working 

limits. Nonetheless, these safeguards are often insufficient 

since battery concerns may get more complicated with more 

modern hardware and software implementation of the BMS. 

Consequently, BMS requires fault diagnostic techniques. 

These algorithms aim to identify defects early and conduct 

rapid repair actions for the battery and its users. 

BMS includes the battery system's diagnostic subsystems 

and algorithms; it plays a crucial role in diagnosing issues. It 

employs sensors and estimated system status to monitor the 

battery system and then models or analyses the data to identify 

abnormal behaviour (34). 

 

Fig. 8. BMS working 

The fault diagnostic procedure of the BMS has depicted 

Several Internal and environmental factors that make it 

challenging to do this function without difficulty. Once a 

problem is identified, the appropriate action must be taken 

which involves the coordinated use of several defect 

detection methods. Insufficient data storage and processing 

capacity of the BMS's failure detection algorithms. Moreover, 

these defect detection methods must be precise and 

dependable while requiring little processing effort (31) due 

to the enormous number of cells in specific battery systems. 

Following is an overview of the most recent research and 

development efforts for Li-ion battery defect detection 

techniques.  

4. Different Techniques for Fault Diagnosis 

There have been various research performed on detecting 

techniques. As illustrated in Fig.9 defines the fault diagnostic 

techniques as knowledge-based, data-driven, and model-

based. 

 

Fig. 9. Classification of fault diagnosis 

4.1. Knowledge-based Method 

Knowledge-based methods are suitable for complicated 

and nonlinear systems such as Li-ion batteries since they don’t 

require mathematical modelling and can be applied to existing 

knowledge or observations. The working principles and 

diagnostic results of these systems are simple, but further 

studies of knowledge acquisition and representation, and Li-

ion’s fault mechanisms will be required when they are applied 

to Li-ion’s fault diagnosis. There are several knowledge-based 

methods, but the most widely used are fuzzy logic-based, 

expert system-based, and graph theory-based. The basic block 

diagram of BMS with Fuzzy logic is shown in Fig 10. A 

battery series is connected with fuzzy logic control and SOC 

estimation unit, which is further connected to the PWM 

inverter and DC-DC converter via electronic switches. Each 

battery SOC is measured and transferred the data to the fuzzy 

logic controller, usually designed by using the Mamdani fuzzy 

interface system. This controller starts generating a suitable 

switching pattern to switch on the batteries for discharging and 

charging inputs operations. The fuzzy logic controller has the 

same number of outputs, and their operation is compared 

based on the batteries charging and discharging cycles. 
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Fig. 10. BMS using fuzzy logic control 

Specifically, a fault diagnostic network based on fault 

propagation relationships can be developed based on graph 

theory, including directed signed graphs, failure mode, effect 

analysis (25), and fault tree analysis (35) Subsequently, using 

an appropriate search strategy, a defect may be discovered. 

Expert systems are computer programs that model human 

thinking and decision-making (36). Information and norms 

were developed using a historical database and the vast 

knowledge of subject specialists. Fuzzy logic, which 

corresponds to human thinking processes and aids in 

processing qualitative information, can be used to diagnose 

faults by employing, fuzzy models, and fuzzy parameters. 

Table 3 illustrates the comparison of Knowledge-based 

methods. 

Table 3 compares knowledge-based diagnostic 

procedures regarding their necessary technologies, merits, and 

demerits. The causal link in graph theory is clear and the 

diagnostic results are simple to interpret. However, 

complicated defect processes in battery systems make it hard 

to create diagnostic networks accurately. This method may 

experience several battery issues, such as sensor and actuator 

faults. An expert system technology doesn't use a physics-

based model. Although, when used in battery systems, it also 

has various drawbacks, including difficulties in information 

acquisition and inaccurate knowledge representation. 

Anomalies detect that rapid SOC reduction, increased heat 

generation, and increased voltage variations can define battery 

failure states. The fuzzy-logic approach can be used to handle 

these fuzzy parameters. However, the implementation of 

effective regulations remains a significant challenge. 

 

Table 3. A comparison of knowledge-based diagnosis method

 

4.2. Model-based Method 

Model-based fault diagnostics acquire residual signals by 

comparing measured signals with model signals (37). A 

subsequent analysis will evaluate the residuals to determine 

the diagnostic results (38). The detection of model-based 

batteries involves developing a high-fidelity model (39), 

which includes electrical, thermal, and multi-physics models. 

In addition to the dynamic behaviour of batteries, these 

approaches can not only detect but also locate and evaluate the 

magnitude of defects. As a result, they have quickly become 

the standard method for Li-ions failure diagnosis. It should be 

emphasized that model uncertainty may affect these strategies. 

Noise- and interference-model-based approaches are 

classified into four types: parity space, structural analysis, 

state and parameter estimation. 

Knowledge-

based 

methods 

Technology Advantages Disadvantages 

 

Graph theory 

methods 

Network for diagnostics; 

Relationship between fault 

propagation; Strategy Search 

There is a clear connection; 

The outcomes of the 

diagnostic and analyzing 

qualitative are simple to 

understand. 

A detailed knowledge of the fault 

mechanism is required and not 

appropriate for high-complexity 

systems. 

Expert system 

methods 

Acquisition and representation of 

knowledge base; The Rule Base 

There is no requirement for a 

mathematical model, and the 

diagnostic results are straight 

forward. 

Difficulty in acquiring and 

representing information; 

excessive reliance on the 

representativeness of knowledge 

and its integrity. 

Fuzzy-logic 

methods 

Fuzzy; The membership 

function 

Perfect for controlling 

qualitative logic and 

understanding 

Creating effective regulations is 

difficult due to the lack of self-

learning potential. 
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Using an observer or filter makes it familiar for state 

estimation techniques to restore or estimate internal battery 

states, including SOC and internal temperature. When the 

predicted signals are compared with the sensor data, residuals, 

including defect information, can be calculated. For fault 

detection, model parameters need to be estimated based on the 

fact that failures affect the physical process of the system 

(40,41). Therefore, Li-ion batteries' electrical and thermal 

model parameters can be monitored to detect and isolate faults 

(FDI). Battery system dynamic models determine the 

correlation between the inputs and outputs of variables. The 

parity-space approach can validate this correlation by 

examining the inputs and outputs of a battery system [47], 

[48].  In structural evaluation theory, structural over-

determination is discovered and employed followed by the 

analysis of fault detection and isolation [49–51]. 

These model-based approaches are compared in Table 4. 

Several methods have been employed, including Kalman 

filters, extended Kalman filters, unscented Kalman filters, 

particle filters, Lunberger observers, and adaptive observers to 

diagnose the faults in Li-ion batteries. With high real-time 

fault detection capabilities, state estimation may improve 

BMS status monitoring. Using parameter estimation 

techniques such as filtering will help discover specific Li-ion 

battery problems in combination with other methods [52–58]. 

Therefore, improved battery model accuracy and appropriate 

current excitation are needed (54). A simple method to isolate 

faults in sensors and actuators within Li-ion batteries can be 

accomplished by using different subsets of predicted no-faulty 

inputs and outputs. Structured analysis theory can conduct 

fault detection and isolate ability analysis regardless of Li-ion 

battery parameters, thereby reducing the time and effort 

associated with generating residuals for fault isolation. 

4.2.1.1. Kalman Filtering 

The approach involves measuring and evaluating the 

battery's input and output data, including current, internal 

resistance, voltage, and temperature. This information enables 

the creation of an electrical model of a battery, simulation of 

its behaviour under various operating conditions, and 

determination of the level of charging it requires with the help 

of this Kalman filtering. 

This procedure involved two main steps: first, we entered 

the input data into a model and then used mathematical 

equations to illustrate how a battery works. As a result, 

theoretical calculations are made about the behaviour of the 

battery and its output data. 

The algorithm then optimises or rectifies the model to 

minimise potential deviations by measuring the proper battery 

parameters, like voltage and current, and comparing the actual 

values to the predicted values. KFs can monitor a battery's 

complete discharge and charge cycles, indicating the state of 

charge (SOC) at every iteration while continuously reducing 

error margins. 

The KF estimator is one of the most sophisticated and 

accurate estimators used by current battery management 

systems. It was sufficient to repeat the previous iteration of the 

battery management system to determine its current state. A 

system with linear ordinary differential equations will be 

consistent if the electrical model is accurate, including 

mathematical equations. A parameter set of Kalman filters can 

be used for these equations. Fig 11 shows different 

classifications of Kalman filters. 

 

Fig. 11. Overview of Kalman filter 

4.2.1.2. Alternative SOC Estimation Methods 

SOC can be calculated using several alternative methods. 

While some are now in use, others are still in the research 

phase or are just concepts. The following techniques can be 

used when researching SOC determination options. 

4.2.1.3. Thermal Voltage Method 

This technique involves monitoring the battery's terminal 

voltage as it decreases during discharge. The SOC is 

determined based on the proportional relationships between a 

terminal voltage, the battery's electromotive force (EMF), and 

the state of charge. Due to a sudden reduction in terminal 

voltage towards the conclusion of discharge, there may be 

significant distortion in the estimations. 

4.2.1.4. Impedance Method 

The measurements of a battery's internal impedance, 

which varies overcharge and discharge cycles, are the base for 

this method. Here, measuring impedance while the battery is 

operating and obtaining accurate results while considering 

temperature provides the most problems. 
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4.2.1.5. Neural Networks 

This network can calculate the SOC by learning from a lot 

of input data from a battery, including temperature, voltage 

and current and recreating the non-linear relations between 

these variables. 

4.2.1.6. Fuzzy Logic 

The maximum reliability of a microcontroller is a crucial 

requirement for both fuzzy logic and neural networks. To 

create a fuzzy logic model, any battery data can be used, which 

is imprecise. After evaluating the data, the model can identify 

battery attributes, such as the status of the charge. 

4.2.1.7. Ultrasonic Detection 

Wave signals can be used to assess a battery's capacity and 

sensitivity to help understand the internal structure of the 

battery. Wave signals can determine a battery's capacity and 

sensitivity to understand its internal structure. This technique 

involves calculating SOC using ultrasonography-guided wave 

technology. It will take a lot of time and work to implement 

this approach. 

A single-SOC estimation approach has rarely been 

applied in modern battery management systems, combining 

several hybrid methods to enhance the results. For example, 

Coulomb counting can evaluate accuracy more accurately 

than the existing integration approach when paired with fuzzy 

logic or Kalman filtering. 

4.2.1.8. Columb Counting 

The battery current integration method is another term 

used in the coulomb counting technique. In this approach, the 

quantity of energy remaining in the battery is determined by 

measuring and integrating the discharging/charging current 

I(p). This approach measures the state of charge (SOC) at the 

previous time step SOC(p-1) and compares it with the amount 

of energy lost or added at the current time step to determine 

the energy in the battery

Table 4. Comparison of Model-based diagnosis 

Model-based 

methods 

Technology Advantages Disadvantages 

State estimation 

methods 

 

Restore the system state 

using Observers or filters 

Excellent real-time 

performance; There is no 

requirement for a vast quantity 

of input signals 

It is difficult to establish the 

fault's position and the 

damage's extent. 

Parameter 

estimation methods 

Evaluate a system parameter 

or Parameter for fault 
Conductive isolation of faults. 

High modelling precision and 

sufficient input excitations are 

required. 

Parity space 

methods 

The relationship that is 

equivalent to variables 

for input and output 

represent during the 

system model 

Simple and quick; Ideal for 

isolating the faults. 

The accuracy of the model and 

noise have an impact. 

Structural analysis 

theory methods 

System structural analysis 

the dynamic equations 
It is simple to evaluate fault 

detection rate and isolability; 

the work load associated with 

selecting residual generators 

decreases. 

The redundant is strongly 

dependent on System model 

information. 

The SOC estimation in the coulomb counting method is 

done using the below equation, 

SOC(p) = SOC(p-1) ∗ ∫
𝐼𝑝∗𝜂

𝐽𝑛
∗ 𝑑𝑡

𝑝

𝑝−1
 -------- (1) 

SOC(p-1) = SOC at the previous time step 

𝜂 = Efficiency 

p = Current time step 

p-1 = Previous time step 

J = Charge capacity of the battery 

This method is more accurate and reliable than the voltage 

translational method but does not consider the discharge rate, 

temperature, hysteresis, battery age, etc. 
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The method used by a BMS to estimate the SOC is 

described above in a generalized version. Various parameters 

are input to the BMS, depending on the technique utilized for 

SOC estimation. These parameters are then  

 
Fig. 12. SOC estimation 

4.3. Data-driven Method 

In contrast to relying on accurate analytical models and 

expert knowledge, data-driven methods evaluate and interpret 

running information directly. The fault diagnosis domain has 

been extensively characterized by processing the data signals, 

the use of machine learning, and the combination of 

information using fusion methods. Li-ion battery fault 

diagnosis is simplified by ignoring complex failure 

mechanisms of system structures, particularly for thermal 

runaway and battery degradation that is influenced by several 

unclear, coupled variables. It is challenging to evaluate and 

explain faults with these techniques in no-fault mechanisms 

exist. It is, however, necessary to preprocess raw data for Li-

ion batteries when applying this approach. Moreover, many 

data-driven strategies have intrinsic constraints, such as the 

requirement for considerable historical information, which is 

associated with high computing costs and training complexity 

(55). Analyzing fault characteristics involving deviations, 

variances, entropies, and correlation coefficients, signal 

processing-based fault diagnosis often uses various signal 

processing techniques. Afterwards, the readings are compared 

to those under normal conditions to determine whether or not 

the situation is failing. 

4.3.1. Machine Learning 

Machine learning is a broad subject with many 

applications [61] presenting a detailed machine learning 

classification, explaining its various techniques. This article 

aims to provide a detailed type of machine learning approach 

used in BMS applications, as illustrated in Figure 12. There 

are three basic categories of machine learning methods: 

unsupervised learning, supervised learning, and reinforcement 

learning. Here is a concise overview of ML in BMS and a 

classification of each group: 

4.3.1.1. Supervised Learning  

Artificial Neural Networks are built based on biological 

neural networks (BNNs). These neural networks are divided 

into Classic NN and Modern NN. It uses several activation 

functions, including Sigmoid functions, to connect its nodes 

and sum their weights. A stochastic gradient descent approach 

is used to train neural networks using backpropagation (57). 

In data regression and classification analysis, support vector 

machines (SVM) are mainly used (58). In this paper, we 

present a kernel regression technique that has been applied to 

a wide range of linear and non-linear regression techniques, 

including relevance vectors (RVM) and support vectors 

(SVR)(59). 

4.3.1.2. Unsupervised Learning  

A key goal of this group is the clustering of data by 

similarity and dimensionality reduction (60), these methods 

are used in multi applications to compress data while 

maintaining its structure. The Gaussian process regression 

(GPR), kernel density, Boltzmann machine, and isometric 

feature mapping (ISOMAP) are among the methods in this 

category.  

4.3.1.3. Reinforcement Learning 

In Reinforcement learning, an agent performs actions and 

observes their effects to learn how to behave in an 

environment. RL serves primarily as a reward, policy, 

environmental model, and value function, which are essential 

for solving problems [66–68]. 

4.3.2. ML methods used for fault diagnosis 

Some key challenges in the BMS include over-current and 

under/over protection, prevalent fault types in battery systems 

(64). The battery experiences irreversible chemical processes 

in charge/discharge mode, which might impact Li-plating and 

dendrite growth, especially at low temperatures. Furthermore, 

the production of dendrites as a result of anode-cathode 

interpolation might result in an internal short circuit, affecting 

battery safety and performance. Ignoring this essential issue 

may result in catastrophic failures due to thermal runaways. 

As a result, considerable investment has been made in fault 

detection and safety management for battery protection, 

utilizing model-based and ML methods (65). 

Various efforts on diagnosis have been created in recent 

years using model-based methodologies. On the other hand, 

only a few research that leverages machine learning 

methodologies such as SVR [58], ANN [38], [57], and GPR 

(66) have been proposed. A data-driven technique for 

incorporating fault diagnostics of battery health using an SVM 
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is proposed in (67).  Hong et al. used RNN-LSTM to build a 

new deep-learning strategy for accurately predicting multi-

forward-step voltage for battery systems. According to the 

investigation results, the proposed technique has a high 

predictive capability for battery voltage. Comparisons of 

different hyper-parameters [56] validate this technique's 

accuracy and stability. 

 
 

Fig. 13.  Overview of ML in the Battery management system 

Short-circuit (SC) battery abnormality can be diagnosed 

on-board using a robust and reliable algorithm presented [61]. 

Power management integrated circuits (PMICs) record 

voltages and currents from battery terminals for use by the 

likelihood algorithm. 

In [62], supervised learning methods investigate the 

classification efficiency of ML approaches. The techniques 

considered for battery cell diagnosis are logistic regression 

(LR), k-nearest neighbours (k-NN), Gaussian naïve Bayes 

(GNB) and neural network (NN), and kernel space vector 

machine (KSVM). These non-linear and linear approaches 

have been shown to categorize unbalanced and damaged Ni-

MH battery cells. LR algorithm is the simplest to set up and 

has excellent performance. Since the classification curve edge 

of the K-NN method is not smooth, it has a low classification 

efficiency when comparing KSVM with radial bias kernel. 

The classification performance is good in KSVM, where the 

functions of the radial bias kernel were better suited for 

properly functioning battery cells. In GNB, smooth curve 

classifiers are generated based on the probability of the 

occurrence of events, allowing for greater accuracy. It should 

be observed that NN provides a higher evaluation score with 

correctly identified data. However, some zones in their 

classification areas do not match the data pattern. As a result, 

to improve its efficiency, this technique needs a large amount 

of training data. In detail, a brief explanation of some of the 

machine learning algorithms in terms of fault diagnostic 

algorithms is given below. 

4.3.3. Artificial Neural Networking 

A highly nonlinear system's dynamics can be accurately 

captured by ANN. It is best suitable for Li-ion batteries due to 

all of these features as well as its very complicated and 

nonlinear stochastic properties. Its fundamental approach is to 

construct a nonlinear black box of an ANN-based fault 

diagnosis model by learning rules from recognized 

combinations of actual input and output data and then testing 

the actual input and output data that are undetermined to the 

model to validate the model. Usually, the training takes place 

offline. The ANN model is properly trained with enough data 

if it can successfully differentiate between the abnormal and 

normal situations of the battery system. There are numerous 

ANN variants, which can be broadly divided into two classes. 

A combination of these techniques is frequently combined 

in Battery management system applications for long short-

term memory networks (LSTM) and RNN-LSTM. In this 

instance, RNN and CNN are extended by LSTM, while RNN-

LSTM is created by combining RNN and LSTM. Additional 

ANN variations exist, which S. Walczak [37] covered in 

detail. For fault diagnosis of Li-ion battery, however, only 

fundamental ANN, RNN, LSTM, RNN-LSTM, and a few 

other hybrid algorithms were used so far. 

To assess the onset of battery faults and reduce the risk of 

fire, the long short-term memory recurrent neural network 

(LSTM-RNN) was used for multi-forward-step voltage 

prediction using the deep learning-enabled fault diagnostics 

technique [56]. To ensure model robustness and prediction 

accuracy, researchers used a sizable amount of actual 

operational data information from battery-powered cabs. 

Along with performance, consideration was given to how the 

environment as well as the driver's actions affected the Li-ion 

batteries. Cross-validation and comparison to actual 

operational data were used to evaluate the model's efficacy, 

dependability, and robustness. Because each LSTM model has 

a variety of structure parameters, parameter optimization, 

despite producing excellent accuracy, is a challenging and 

time-consuming process. It takes time to determine a battery's 

properties because of operational and environmental 

uncertainties, and training the LSTM model with a small 

sample size can affect how well it predicts. 

As a result, building a model that can predict the status of 

a group of battery metrics in the face of battery ageing, 

changing road conditions, changing driver behaviour, and 

other environmental and operational variables is more 

difficult. S. Ortiz et al. [51] conducted a comparative analysis 

to determine the efficiency of five frequently employed 

algorithms: NN, Gaussian Naive Bayes (GNB), LR, KSVM, 

and k-nearest neighbours (k-NN). The objective was to 

classify the damaged and unbalanced Ni-MH battery cells. 

Even though LIB cells were not examined, this study showed 

that the NN-based diagnostic tool delivers a good evaluation 

score with accurate classified data. 
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4.3.4. Support Vector Machine (SVM) 

Classification and regression-related problems are the 

main ones that SVM is used to solve. When used with 

regression, SVM is referred to as Support Vector Regression. 

In nonlinear systems like Li-ion batteries, this method has 

improved as a tool for regression analysis. For effective 

analysis, SVR turns into a linear model from the nonlinear 

model using a variety of kernel functions and regression 

techniques. The kernel space vector machine (KSVM) is an 

additional SVM variant, and [48] provides a more thorough 

explanation of SVM. It is not necessary to use an equivalent 

battery model for SVM-based fault diagnostic methods. 

Yao et al. [59] utilized SVM in 2021 for determining the 

kind and severity of errors. The technique can only be used for 

situations requiring online fault diagnosis because the study 

indicates that 167 s is the least amount of time needed. The 

effects of battery ageing and temperature variation on cell 

parameters were not taken into account when recording the 

experimental results. Because LIB is subjected to a variety of 

environmental conditions and cell ageing is unavoidable, an 

incorrect forecast will result in real life. According to the 

study, the GS-fault SVM achieved a diagnostic accuracy rate 

of 95%. A machine learning parameter estimator (MLPE) that 

combines SVM and GPR was used to estimate the ECM 

parameters of LIB, the method of locating faults that closely 

resembles earlier ECM-based fault detection methods, such as 

residual generation and comparison with normal operating 

states, in a different study by Hashemi et al. [60]. In this study, 

SVM was not used specifically for defect diagnosis. The Li-

ion battery overcharge (OC) and over-discharge (OD) fault 

scenarios were looked at in this multiple-model adaptive 

estimation (MMAE). Only the OC and UD faults of the Li-ion 

battery were examined in this work; however, various 

additional fault states may also be very severe in actual 

implementations. 

Two additional support vector variants—KSVM and 

relevance vector machine (RVM)—have also been reported in 

the specialized domain. According to the author Ortiz et al. 

[51], who used it to classify defective and healthy battery cells, 

the KSVM method outperforms conventional SVM in data 

classification. This is particularly true given that the function 

and properties of the battery cell have been developed in an 

advanced manner thanks to the role played by the radial base 

kernel. More research is needed, as the effectiveness of the 

KSVM-based approach for Li-ion batteries was not assessed. 

Although Li-ion battery RUL is frequently predicted using 

RVM [61–63], LIB faults have not yet been identified using 

RVM. 

 

4.3.5. Gaussian Process Regression 

The Gaussian process regression aims to compress the 

data by reducing its dimensionality while preserving its 

structure and usage and clustering the data into groups. 

Furthermore, GPR uses kernel-based ML methods to identify 

diagnoses using the Bayesian model's historical data. The 

variance around the system's mean prediction is then used to 

calculate the behaviour's level of uncertainty. 

Tagade et al. [64] used GPR to determine the Li-ion 

battery degradation mode. Ortiz et al. [51] investigated the 

classification accuracy of five various supervised machine 

learning approaches using Gaussian nave Bayes (GNB) as one 

of the techniques for Li-ion battery defect identification. Each 

technique has advantages over the others, according to the 

research, with GNB demonstrating a remarkable degree of 

precision in identifying damaged and unbalanced battery cells. 

The GNB-based classifier's core idea is to create a non-linear 

smooth curve that classifies healthy and defective cells 

according to the likelihood that events will occur. Zhang et al. 

[65] demonstrated the efficacy of GPR in terms of diagnosis 

and prediction in Li-ion batteries. To precisely assess the 

capacity and estimate the RUL, which appear to be key 

markers of battery SOH, GPR was used. More than 20,000 

electrochemical impedance spectra (EIS) were used to analyse 

degradation patterns. GPR is not used in this study to 

immediately identify or diagnose Li-ion battery system issues. 

Additionally, acquiring training data for ML models using EIS 

is a difficult procedure that takes a lot of time and the 

assistance of technical experts. In either case, a GPR-based 

fault detection model for the Li-ion battery system needs to be 

built first, which will take a lot more research. 

4.3.6. Logistic Regression (LR) 

This method uses predetermined criteria to categorise the 

observed data. This approach works well in both linear and 

nonlinear regression, as seen in the application of LR for Li-

ion battery system fault identification and diagnosis [51], 

making it the most straightforward for two-class 

classification. 

For the first time, logistic regression was applied to 

identify battery system flaws Ardeshiri et al. [34]. The authors 

demonstrated that the LR technique has the highest accuracy 

and is the simplest algorithm to set up when compared to the 

above ML-based fault detection strategies, including k-NN, 

KSVM, NN and GNB. 

When acquiring model training and testing data for this 

work, consideration for the effects of various uncertainties in 

real-world applications was not made. Despite the researchers' 

claims of high accuracy and simplicity, much more study and 
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improvement must be done before the proposed LR-based 

technique can be put to use in real-world applications. 

There are several data-driven diagnostic approaches 

presented in Table 5. Detecting faults with signal processing 

is easy and efficient in Li-ion batteries dynamics are ignored; 

however, faults cannot be identified directly when there are 

multiple Li-ion batteries coupling. Machine learning 

algorithms can adapt the training set by adjusting their 

parameters and gaining knowledge from the present training 

samples. It is theoretically possible to improve the EM and 

ECM of batteries using a black-box model based on an ANN. 

However, insufficient Li-ion battery fault data may result in 

overfitting. An ANN that does not have a high generalization 

capacity may generate false warnings about the Li-ion 

batteries issue that is undesirable. In addition to having a 

greater generalization capacity than ANN, SVM can handle 

small samples [73-78], making it a handy tool for Li-ion 

batteries with limited fault data.

Table 5. Comparison of Data-driven diagnosis method 

Data-driven 

based 

methods 

Practical Applicability Advantages Disadvantages 

 

Signal processing 

Signal processing methods that are 

appropriate. 

Implementable; 

Systematic and non-

systematic applications 

are both possible. 

Minor defects are challenging 

to detect and immediately 

identify; they are not suited 

for systems with a large 

number of interconnected 

components. 

Artificial NN. 

So far, the most common ML 

technique used to find LIB faults is. 

With enough fault data and further 

development, ANN-based methods 

could be used in real-world 

situations. 

Sample-based self-learning; 

high flexibility, parallel 

processing 

There is a need for a lengthy 

training phase and a 

significant amount of 

historical data; generalization 

ability is poor, and overfitting 

problems exist. 

Support 

vector 

machine 

With enough modelling skills and a 

good quality and quantity of 

training data, including data on 

errors, this method could be used in 

real life. 

Excellent generalization 

abilities; Only applicable to 

limited sample sizes. 

It is challenging to choose 

the best kernel function; 

large-scale training sets are 

inefficient. 

Information 

fusion 

Information fusion methods that 

are appropriate. 

More precise diagnostic 

outcome. 

It isn't easy to choose 

appropriate fusion 

algorithms. 

GPR 

Since only a small number of 

studies have been performed and 

GPR is not yet routinely employed 

in fault diagnosis, it is premature to 

draw any conclusions about its 

potential usefulness. 

Accuracy, as well as 

flexibility, is good 

Covariance is provided to 

generate uncertainty levels. 

Computational complexity is 

high 

Sensitive in selecting kernel 

functions which are complex 

LR 

It's too soon to say how well the 

model works in the real world 

because it hasn't been tested for 

adaptability, generalization, 

accuracy, and reliability.  

Accuracy is good. 

Implementation is easy. 

The challenging task is to 

accommodate a large number 

of the feature vector. 

Detecting faults accurately in Li-ion batteries requires an 

effective fusion method to fully utilize Li-ion batteries' current 

multi-source information. Selection of the best kernel function 

is the most crucial step in SVM. 
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4.3.7. Future Challenges and Limitations of LI-

ion battery fault diagnosis 

Fault diagnostic algorithms have improved the safety of 

the Lithium-ion battery. Even though they have a few 

limitations as follows:  

➢ Model-based approaches can quickly identify 

and isolate faults in real-time but require highly 

accurate prediction models. These models 

require high computation time to identify the 

faults. 

➢ Fault diagnostic models depended on threshold 

and sensitivity needs to be considered.  

➢ Signal processing methods have good dynamic 

performance but are sensitive to measurement 

errors and unable to identify faults as early.  

➢ Knowledge-based approaches like expert 

systems need good rules to detect faults 

accurately.  

➢ Complex knowledge-based methods like 

machine learning are accurate and compatible 

with nonlinear systems like the Li-ion battery, 

but data processing requires high computation 

time  

➢ Even though model-based solutions are 

becoming widespread, battery model accuracy 

remains challenging, especially during the 

battery's lifespan.  

➢ Data-driven, non-model-based strategies can 

help model developers to predict battery 

behaviour as it decreases.  

The challenges of Lithium-ion battery fault diagnosis 

methods are as follows: 

➢ Current methods assume that other system 

components are working normally to prevent 

isolating and identifying errors.  

➢ After fault detection, the isolation of the faults 

from the main system is highly challenging. 

➢ Due to a lack of understanding of the problem 

behaviour, fixing effective fault thresholds for 

early and accurate detection is difficult.  

➢ Because physical faults are impractical and 

dangerous, fault simulation techniques require to 

capture battery failure behaviour.  

➢ Thus, well-designed experiments are needed to 

study fault behaviour for modelling and 

simulation.  

➢ Finally, more complicated methods that improve 

fault diagnostic accuracy require BMS 

computational capability enhancement. 

5. Conclusion 

EVs have gained popularity in the present scenario for 

several reasons to decrease the crisis of fossil fuels, eco-

friendly etc., as well as a rapid rise of research in this area, 

especially on battery systems. In the overall structure of an 

EV, the main important component is the battery, where the 

BMS monitors the battery's complete operation. It is essential 

to enhance the performance of the battery, it is mandatory to 

go through several algorithms to study in detail for mitigating 

the faults. In this paper, we present an overall explanation of 

fault diagnosis techniques in Li-ion batteries and a detailed 

review of various classifications and comparisons of fault 

diagnostics techniques and their implementation in the battery 

management system. 

It is possible to classify fault diagnostic approaches into 

knowledge-based, model-based, and data-driven approaches. 

The qualitative analysis in knowledge-based methods is quite 

simple, but these methods are unsuitable for high-complexity 

systems. Model-based methods are simple to evaluate fault 

detection, but the accuracy is less. Data-driven approaches are 

easy to implement in linear and non-linear systems. They have 

high flexibility and self-learning attributes. Even though there 

are several methods to detect and isolate the fault, there are 

various difficulties in Li-ion battery failure detection, 

including fault threshold selection, assumption-free fault 

isolation and BMS hardware constraints. Researchers will use 

the summary of the algorithms offered in this study to develop 

improved methods of fault diagnosis for Li-ion battery 

systems. 
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