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Abstract-For an effective battery management system (BMS), accurate estimation of the state of charge (SoC) is essential, 

which signifies the residual charge in the battery. In addition, SoC estimation relies on aspects such as appropriate battery 

modelling, battery age, ambient temperature, and many unknown parameters. Thus, the research focuses on developing an 

accurate battery cell model which includes these non-linearities and ageing effects. Existing mathematical models emphasize 

reflecting non-linearities such as diffusion and hysteresis effect, but they fail to incorporate the capacity fading effect model. 

Since the total capacity of the battery degrades concerning ageing. Including the capacity fading model in the battery cell 

model is critical. This work is on developing a mathematical model for the capacity fading effect. The capacity degradation 

model has been developed based on the temperature rate dependency and the number of cycles utilized for SoC estimation. 

The proposed model has been employed and given as input for the state estimation technique to obtain accurate SoC. Capacity 

loss for the sample battery cell is modelled up to 1000 cycles.Further, the effectiveness of the proposed model is validated and 

simulated using the SPKF algorithm in MATLAB/Octave environment. Throughout the evaluation procedure, SPKF achieved 

an estimation error of less than 1%. The proposed capacity fading model and estimation approach based on SPKF may thus 

provide high robustness and accurate SoC estimation. 

 

KeywordsLi-ion battery, SoC estimation, battery model, Capacity fading, Degradation, Kalman Filter. 

 

1. Introduction 

Nowadays, the global automotive industry is undergoing 

a substantial electrification transformation as governments 

increasingly pay attention to energy and environmental 

challenges. Lithium-ion battery-powered battery electric 

vehicles (BEVs) are increasingly becoming dominant in the 

automotive sector [1]. The power battery system, as the 

primary energy source in BEVs, directly impacts the 

vehicle's overall performance [2]. However, as the time 

frame advances, lithium-ion batteries experience significant 

ageing, resulting in a reduction in energy and power output 

[3]. It will also result in an inaccurate assessment of battery 

conditions, such as SoC and capacity, which reflect 

imprecise energy and power limits. Significant roadblocks to 

BEV adoption and widespread use. Proper battery control 

and management are required to ensure that the battery 

pack's performance is maintained and that its life is extended. 

To manage a rechargeable battery pack, a BMS is an 

electrical system that monitors its states and characteristics 

[4]. These include cell voltage, current, temperature, state of 

charge (SoC), state of health (SoH), state of power (SoP), 

and other battery states. The BMS monitors these states, 

capable of making decisions on when to charge and turn off 

the battery based on the usage to avoid dangerous operating 

conditions of overcharging/discharging. SoC estimate is a 

critical component of a BMS that impactsvarious other 

functions. Other computations, such as SoH, cell balance, 

and power calculations, use the SoC value as an input. SoC is 
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used to calculate the remaining battery's capacity, which has 

a significant relationship with its performance. 

Furthermore, effectively maintaining batteries and 

identifying their power distribution strategy in EVs requires 

an accurate computation of the battery's SoC. Due to the 

battery's sophisticated electrochemical process and different 

effect considerations for practical applications such as 

battery ageing, ambient temperature, and 

charging/discharging current rate, measuring the SoC 

directly is difficult. As a result, estimating the SOC on board 

requires a reliable and time-saving technique [5]. 

Because the battery cell is complicated and associated 

with an electrochemically closed approach, evaluation of 

inherent reactions of electrochemical nature and its state 

parameters doesn't happen straightforward. A comparable 

battery model has to develop for output state estimation. 

Depending on how extensive the research work is directed on 

the intrinsic configuration of the battery cell, the method 

associated with modelling has been categorized into (1) 

White box model based on the battery laws and mechanisms; 

(2) Black-box model which emphasizes bulky dataset and 

white model's framework and calculation is far more 

complicated, whereas the black model is simply a data-

driven technique, with output values acquired by various 

samples and training methods being significantly varied. (3) 

Grey box model is attributed to large datasets and vague 

knowledge of detailed system laws; the most common 

models of the Li-ion battery are the equivalent circuit model 

(ECM), Impedance model (IM), and electrochemical-based 

equivalent circuit model (EECM) [6]. As a result, they are 

challenging to implement in real-world vehicle operations. 

Overall, ECM configuration is straightforward and the most 

practical method for vehicular deployment. Regardless, the 

issue has yet to be remedied [7]. Because of the system's 

complex non-linearity and time-variability, modelling a 

battery that considers all conceivable parameters may be 

impossible. In consequence, a prognostic battery model is 

constructed by analyzing essential variables from a particular 

experiment cycle, such as voltage (V), current (I), battery 

temperature (T), and operation time (t). This method can 

provide precise battery health information, but it has 

drawbacks when utilized online. Furthermore, the ambient 

environment (pressure, temperature etc.) may contain too 

many external uncertainties that alter the battery's intrinsic 

characteristics of electrochemical. 

Data-driven based SOC estimating algorithms have a lot 

of interest since they have a lot of computational capacity 

and can handle any complex non-linear function for the 

reasons stated above. Due to technical improvements, fast 

computer processors, big data availability, and high-capacity 

storage devices, more research and development is going into 

estimation techniques of type data-driven based SoC 

assessment. Model-based SoC estimate algorithms can be 

robust and precise since they rely on a comprehensive 

understanding of the system rather than dependency on 

datasets. A model-based approach is required for many 

problems in engineering and physics. However, developing 

the perfect model of any system raises both practical and 

theoretical concerns [8]. The main issue in LIB SoC 

estimation is to enhance the algorithm's accuracy, 

productivity, and robustness despite retaining the algorithm's 

minimal computational complexity so that low-cost BMS 

hardware can be implemented [9]. The main goal of the 

research is to develop an efficient SoC method that strikes a 

balance between accuracy and compactional complexity. 

Due to uncalibrated sensors of current and voltage, an initial 

SoC, an inaccurate battery model, and a capacity fading 

model can cause SoC errors [10]. 

Nonetheless, in the preceding literature reviews, battery 

cell SoC and capacity have been calculated individually. 

Nevertheless, there isn't much research evaluating a battery 

pack's SoC and capacity combined. As a result, a low-SoC-

error-cause technique must be established. 

This work proposes a combined Li-ion battery model 

that addresses hysteresis, operating temperature, and ageing 

procedure concerns. Eventually, the simulation results from 

MATLAB/Octave environment are utilized to validate and 

verify the proposed method's efficacy. The following are the 

article's primary contributions, taking into account the points 

mentioned earlier: 

1) To develop an improved Li-ion battery model 

considering the impacts of hysteresis, operating temperature, 

self-discharge, and ageing. 

2) To introduce an advanced and simple method for 

estimating the battery's degraded capacity, further assisting 

in accurate SoC estimation.  

The rest of the article has been structured as stated: The 

related works on battery modelling and state estimation are 

discussed in Section II. The structure of the battery model 

chosen for this study is described in Section III. The 

robustness of the model based SoC estimators is investigated 

in Section IV. It indicates that when model uncertainties are 

considered, such SoC estimators are fundamentally 

problematic in terms of robustness. Section IV discusses 

capacity and SoC estimation analysis, including the 

degradation mechanism. Section V identifies and 

demonstrates the properties of the proposed algorithm 

convergence. Section VI is followed by results and analysis 

of SoC estimation. Section VII concludes with the 

significance of the proposed SoC estimator, which combines 

the system model with SoC and capacity estimation. 

2. Related Works 

Through tests and theoretical/numerical investigations, a 

lot of effort has gone into studying capacity fading [11]. 

Xiong, Rui and Yongzhi Zhang [12] presented the Li-ion 

battery prognostics based on a real battery management 

systems in EV application. The experimentation categorized 

the capacity loss into three groups: primary and secondary 

active material losses, rate capability loss, and total capacity 

loss. However, they did not create a model to describe the 

capacity loss caused by diverse processes quantitatively. 

Safari and Morcrette [13] projected a multimodal associated 

physics-based ageing model for Li-ion batteries to anticipate 

a capacity decrease. Also, hypothesized about the direction in 

which capacity fading is being driven by anode SEI growth 

leading to the Li-ion depletion or utilization in the course of 
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SEI growth stood as the principal driver for the cycling 

degradation process [14] [15] [16]. 

Due to the coupling relationship, joint capacity 

estimation along with additional battery states includes 

sequential estimation over SoC and battery capacity. Due to 

their reasonable precision and robustness, some joint 

algorithms are drawing attention to these estimation 

quantities. With the assistance of specific advanced 

estimation techniques which incorporate the concept of 

filtering, the battery states and model parameters are 

subjected to joint estimation. The advanced techniques are PI 

observer , H  filter [17], Luenberger observer, particle filter 

(PF), Kalman filter (KF), Extended Kalman Filter (EKF), 

Unscented Kalman Filter (UKF), Cubature Kalman filter 

(CKF); all these conceptually work under the prerequisite 

condition of accurate ECM model. Wei, Zhongbao, Jiyun 

Meng and Jinhao [18] has been implemented simplief model-

based for the SoC estimation with battery model of 2nd order 

resistance-capacitance (RC) ECM considering the non-

linearities. Meanwhile, the evolutionary algorithm recognizes 

capacity as an important element in the model (GA). Chen, 

Cheng, Rui Xiong, and Weixiang Shen [17] proposes a 

multiscale dual H-infinity filter for real-time estimation of 

SoC and capacity under various timeframes correlating to 

gently varying power capability and fast varying battery 

conditions. [19] provides a combined methodology for 

predicting SoC and capacity that combines KF with the 

recursive least square (RLS) method, through the adaptative 

update of model parameters employing the novel vector 

grouping under RLS to account for the model parameter 

fluctuation rates. The goal is to improve estimation precision. 

Rezaei and Habibifar [20] provides a consecutively 

associated model of battery pack dependent on second-order 

RC ECM Li-ion. Single-cell capacity, SoC, and model 

parameters in battery packs are then precisely estimated 

using a multiscale extended KF algorithm. 

On the other hand, deterioration of Li-ion rechargeable 

battery remains sequential as well as often entails cycles of a 

certain range (100-1000), with the subsequent development 

of degradation being tightly tied to the earlier information of 

degradation or fading all over operations conducted under the 

charge/discharge cycle [21]. Furthermore, specific beneficial 

qualities are derived through patterns linked with charging 

and discharging that appear with individual age-related 

fluctuation development. Certain variables tend to be viewed 

progressively with time-series signals, with the quantity of 

current being related to historical values over time. The 

traditional approach of data-driven like Fuzzy logic (FL), 

support vector machine (SVM), Neural network (NN) and 

genetic algorithm (GA), on the other hand, are ineffective at 

learning long-term dependencies, making superior in 

achieving accurate estimation for extended-time capacity 

forecast problematic. 

According to some researchers [22], a deeper depth of 

discharge (DoD) promotes capacity fading, which correlates 

with the established logarithmic distribution of conversion 

efficiency as a factor of the battery's DoD. The Department 

of Defense, according to other researchers, does not seek to 

accelerate capacity weakening [23]. A higher starting 

outcome of SoC stemmed from a faster rate of capacity 

fading during the cycling process, although opposite results 

were recorded for storage cells. Furthermore, a high SoC has 

been proven for a considerable effect on fading effect not 

influenced by calendar loss. When it comes to temperature, 

there are no contradicting findings. According to 

experimental observations [24], extreme temperature rate as 

a weight component that might be described using the 

Arrhenius equation, a temperature dependency with relation 

to chemical reaction. Overcharge/discharge, and superior C-

rates have all been studied towards the acceleration of 

capacity fading [25]. Real-world EV operation conditions 

will be used to mimic capacity fading. Because this 

represents the capacity that has been irreversibly degraded in 

the cell, merely accurate capacity fading has been measured. 

With a reduced current, capacity fading owing to rate 

capability loss can be rectified [26]. If the cell impedance 

increase is known, rate capability losses can be calculated 

numerically. Consequently, primary cycle losses have been 

recognized, with calendar losses remaining unaccounted for. 

When compared to cycling losses, Li-ion cells have 

relatively low calendar losses, only a few percentage points 

per year, and hence have no impact on capacity fading. 

It is critical to precisely calculate the model parameters 

before using the battery model in a vehicle system. These 

characteristics are frequently determined through time-

consuming and resource-intensive, prior domain knowledge, 

and error-prone, cumbersome experiments [27]. Conducting 

such costly and time-consuming experiments to evaluate the 

performance characteristics of various types of batteries is 

not feasible. Furthermore, capacity losses are not considered 

in the existing battery models. As a result, a mathematical 

model for Li-Ion batteries has been suggested that accounts 

for capacity losses and further estimation is carried out. 

Thus, accurate modelling and estimation be capable of 

accelerating the vehicle performance to a greater extent and 

improving the driving range of the EV. 

3. Li-ion Battery Modelling  

In this section, first, we will discuss the Li-ion battery 

model subjected to different non-linearities and then address 

the capacity degradation model.  

3.1 Enhanced Battery Model 

To attain an accurate estimation of SoC and battery pack 

capacity, the core criterion is modelling of battery accurately 

which describes all non-linear characteristics such as 

diffusion, hysteresis, and capacity fading effect [27] [28]. 

The enhanced self-correcting battery model (ECM) has been 

broadly utilized in real-time applications for exemplifying 

the dynamic characteristics of the battery and serves as the 

source for the design and control of the battery. Figure 1 

depicts the schematic arrangement of the enhanced self-

correcting battery model. Compared with other 

electrochemistry models, this ECM has the finest advantages 

of high precision and low computational complexity. The 

model which is developed is now being utilized in the 

grouping of state estimation algorithms and adaptive filters. 
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Fig. 1.    Enhanced Self-correcting Battery Model

The model considers the parameters meant for ohmic 

resistance, open-circuit voltage (OCV) as a function of SoC, 

diffusion, and hysteresis effect. With the help of an 

equivalent circuit, the discrete form of equations can be 

approximated as: 

The state equation below defines all the dynamic 

properties, 

  (1) 

=  + 

 (2) 

Where Z represents the state of charge (SOC), 

   (3) 

In discrete time, the current is assumed constant 

throughout the sampling interval of  is the initial state of 

charge, is the instantaneous current discharged from the 

battery, indicates the coulombic efficiency, and available 

capacity is denoted with. 

The output equation below computes battery terminal 

voltage, 

 (4) 

(5) 

Here,  represents battery current,  represents the current 

flowing through R1, Q represents rated capacity,   denotes 

coulombic efficiency, , , , ,  are the 

arbitrary constants, and  forces stability for both 

dis/charge scenarios. 

3.2 Degraded Capacity Model 

From the SoC formula given in Equation (3), the 

quantity Q denotes the total capacity, which is not a static 

quantity: as the cell ages, it gradually decreases [29]. Due to 

aging, total capacity will degrade which deteriorates the 

battery performance. In Li-ion cells, the main cause of 

battery ageing is the loss of useable lithium ions, together 

with the formation, origination and thickening of the solid 

electrolyte interface (SEI) film caused by undesirable side 

reactions that occur regularly during the chemical process 

[13] [14]. The factors affecting these sources of ageing are 

SoC, temperature, C-rate, and depth of discharge (DOD 

subjecting to ageing enhancement. Also, there exist various 

physics-based degradation mechanisms such as surface 

cracking, pore-clogging, active material dissolution, 

diffusion into SEI, Lithium plating, and electron tunnelling 

when considered give more accuracy. Besides, it requires 

domain knowledge of spectrum analysis and single particle 

battery model (P2D), instead of the traditional 

electrochemical model that was developed. The above 

degradation mechanism occurs due to these degradation 

procedures like calendar ageing (resting cell for a long time), 

cycle ageing (constantly charging and discharging), and drive 

cycle (constantly repeating with a certain current profile) 

[30].  

With reasonable accuracy and reduced model complexity, the 

aging effect can be incorporated using the temperature and 

power-law relation [31] [32]. The loss of lithium ions is 

usually caused by the formation and thickening of the SEI 

film. It is widely accepted that the film thickness is 

proportional to the square root of time, i.e. t1/2, and so is the 

capacity loss, especially for the calendar life. Here consider 

the main aging mechanism is the lithium ion loss, the 

capacity loss would be considered to follow a power law 
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relation with the cycle times. And it is widely accepted that, 

for most chemical process, the influence of temperature on 

the reaction rate follows the Arrhenius law. Thus, the 

influence of temperature on capacity loss could also be 

modeled by this Arrhenius law. 

 The mathematical model for capacity loss is developed 

by using a combination of the Arrhenius equation and power-

law relation. As per theArrhenius equation, at the 

corresponding temperature for every charge/discharge cycle, 

the capacity loss is given by the following Equation (6), 

                            (6) 

Where,  is the relative capacity loss, A is the pre-

exponential factor, T is absolute temperature,  is the 

activation energy, and R is the gas constant. If N denotes the 

number of charge/discharge cycles to be considered, the 

capacity loss can be determined using a power-law 

relationship with N times the power of the adjustable factor 

(z). 

      (7) 

 is the relative capacity loss at the Nth cycle, N is the 

number of cycles, and z is the power law factor. Therefore, 

with the developed battery and capacity degradation model, 

the BMS could produce an accurate battery capacity 

estimation and gain the precise SoC and SoH of the battery.  

For the battery cycling under an unchanged working 

conditions, the model parameters A, Ea/R and z are directly 

obtained by curve fitting. 

Table 1&2 listed below shows the battery specifications 

and parameter values of the mathematical model for the 

determination of capacity loss. 

Table 1.Specifications of the battery cell 

Parameter Content 

Type  LiNMC 

Nominal Capacity 24Ah 

Nominal Voltage 3.6 V 

Upper/Lower cut off 

voltage 

4.2/2.5 V 

 

Table 2.Parameter values of capacity degradation model 

A 
/R 

z 

0.3687 1472 0.6405 

From the open source platform available (http://mocha-

java.uccs.edu/BMS1/CH02/ESCtoolbox.zip), the ESC tool 

box-dataset has been utilised for developing the SoC 

estimation process. 

4. General concept of State Estimation Techniques 

Since SoC is not a measuring quantity unlike voltage, 

current, and temperature measurements. It can only be 

estimated with the support of state estimation techniques. 

There exist various state estimation techniques for battery 

SoC estimation. In which, voltage-based/look-up table and 

current-based/coulomb counting approaches are the 

conventional techniques [33]. Whereas, model-based and 

data-driven are the advanced estimation techniques which 

predominantly drawn the researcher's attention in the past 

times. Model-based approaches, on the other hand, produce 

more accurate long-term results than current and voltage-

based methods, which fail to deliver accurate estimation due 

to flaws such as open-loop computation, initial SoC 

variation, and uncertainty disruption in real-time applications 

[34,35,36]. In general, model-based state estimators combine 

voltage, and current measurements, using a cell model to do 

so, to produce better state estimates [37]. Thus, it is a widely 

accepted concept that considers battery model and filter. The 

applied filtering technique is the Kalman filter (KF) 

algorithm, which develops with state-space equations. Figure 

2 below depicts the overall structure of implementing the 

model-based state estimation technique in addition to the 

battery model. 

Consider the non-linear state-space model as follows,  

   (8) 

    (9) 

Where,  is state equation, is output equation,  is 

input signal,  denotes sensor-noise random input,  

denotes process random noise. These model-based estimation 

techniques work on the concept of a 2-step estimation 

problem, i.e., state prediction, and measurement update. 

 

The flowchart of the KF is demonstrated below in Figure 3. 

Initially, the estimator is given with an initial guess of state 

and covariance (uncertainty) at time zero and then following 

the 2-step problem. At every time step, the output of the 

estimator is state estimate and error covariance. Hence, this 

is a recursive process.  
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Fig. 2.Overview of model-based  state estimation  technique

 
Under certain conditions of probability that consider zero-

mean Gaussian environment for inclusion of process noise 

and measurement/sensor noise, KF implements minimum 

mean square error, optimal state estimator, for a linear 

system. Because KF is largely concerned with stochastic 

systems, it is preferable to such estimating problems. But this 

technique fails for non-linear cases [38, 39-41]. Since battery 

cells are non-linear devices, models that describe battery 

cells ought to be non-linear. The correlation between 

the output terminal voltage and SoC in a rechargeable battery 

is non-linear, hence distribution might not consider the 

Gaussian environment. In such an instance, the KF perhaps 

incorrectly estimate the system's condition [42]. As a result, 
non-linear Kalman filters, namely the extended Kalman filter 

(EKF) and the Unscented/ Sigma point Kalman filter 

(UKF/SPKF) are being used to generalize the method. The 

non-linear system is linearized using piecewise linearization 

about each interval and then KF is applied [43, 44]. To come 

up with equations that are a linear approximation to the 

actual non-linear model, implementation of math function is 

required using derivatives, which in-depth required lot of 

approximations use to the digital process and thus increases 

the error rate, thus leading to huge loss in estimation 

accuracy [45, 46].  

 
 

Fig.3.Implementtaion flowchart of KF, EKF algorithm 
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Table 3.Illustrates the comparison among various model-based methods for SoC estimation [38]. 

 
Method Model Assumptions Complexity Estimate 

accuracy 

Response 

Time 

LKF Linear • Linear function 

• Model error & measurement 

error (noises) must be 

Gaussian with zero mean 

Low Low 

 

Low 

EKF Slightly 

Non-linear 

•  

• Taylor-series expansion to 

linearize system equations for 

covariances 

Medium High 

 

High 

UKF/SPKF Highly 

Non-linear 

• 2L+1 Sigma points 

 

High Very High 

 

High 

To overcome the drawbacks of EKF, the new estimation 

technique; SPKF or UKF is recommended since it is a 

derivative less non-linear Kalman filter. In Sigma point 

Kalman filtering technique, only one point. i.e., mean to 

approximate a new non-linear function for a non-linear 

function [47]. Therefore, a group of points including the 

mean is considered and then approximates around those 

multiple points in the source gaussian and finally 

transformed and approximated. Moreover, there is a trade-off 

relation between the number of points and approximated 

precision. A comparison of various model-based adaptive 

filtering methods has been studied and listed in Table 3. 

 

5. Implementation of Sigma Point Kalman Filter 

SPKF [48] utilizes the sigma-point method to propagate the 

uncertainty of input RV to the output of the model's 

(possibly) non-linear state and output equations. As a result, 

the state estimation problem is approached using the sigma-

point strategy of propagating data through a non-linear 

function. These sigma points must model all randomness 

together: Process noise, sensor noise, and state uncertainty. 

Applying this procedure to generic-probabilistic-inference 

solution yields SPKF steps. It is a convenient way to store all 

the sigma points in Matrices and vectors, and then compute 

the means and covariances from the sigma points. The 

framework of SPKF is described in Figure 4. 

5.1 Central Principle of Sigma-Point Methods 

Illustrating the statistics of a non-linear function, 

1. Group of  sigma points have been selected such as 

the weighted values of mean and covariance of 

sigma points precisely correlate with the prior RV 

mean  and covariance  that is being developed 

(input given to function). 

2. Propagating these points through the non-linear 

function, thus developing a group of transformed 

sigma points . 

3. Approximating the posterior mean  and 

covariance  through statistical analysis under 

mean and covariance for transformed points of . 

 
 

Fig. 4.Framework of  sigma point kalman filter
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5.2 Approximating the Uncertain variables to sigma points 

For the input random variable , and ; 

where  or  is mean and  is covariance, then p+1=2L+1 

(L=Dimension of the system) sigma points are generated 

with the matrix set elements of  

 

 or    (10) 

For i=1……., n 

 (11) 

For i=1…….,2n 

 (12) 

Therefore, the sigma points as a group generated as follows, 

 (13) 

Values assigned for the weights have been listed in Table 4 

for computing the weighted mean and covariance 

( ) can be employed based on two different 

methods that include Central Difference Kalman Filter 

(CDKF) and the Unscented Kalman Filter (UKF). 

 

 

Table 4. Weighing factors for different SPKF/UKF methods 

Where, , within the range of 

 and . 

For the random variable of Gaussian probability density 

function, the value chosen for tuning parameters; =2, and 

h= . 

Weighted mean, the covariance of  equivalent to the actual 

with added weights of ; (  are 

real scalar quantities) is computed as 

 and    (14) 

  (15) 

Following Figure 5 indicates the framework of the sigma 

point Kalman filter. 

Method 
     

SPKF/UKF 
 

    

CDKF h 
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Fig. 5. Flow diagram of SPKF/UKF algorithm

So, certain points carried on source gaussian for mapping 

them on target gaussian later propagating it through non-

linear function for computing the mean and covariance of 

transformed gaussian. Such transformation is termed 

unscented transformation. Moreover, the SPKF 

implementation is independent of the model used. Hence, 

implementation is easier. 

 

6. Simulation results and Analysis of Capacity and SoC 

estimation  

The robust SoC estimation with the SPKF algorithm for Li-

ion batteries is accomplished against core problems such as 

unknown initial SOC, current noise, aging, and temperature 

effects is studied and the results are shown in the figure. The 

SOC estimation result will be more accurate because the 

capacity estimation result is relatively accurate. It is observed 

from the result that the rate of capability loss obtained is 

proportional to the increased number of cycles.  

The performance of the proposed SoC estimator has been 

assessed based on the measurement system, and the values 

obtained have been tabulated in Table 5. From Figure 6, it is 

found that after 1000 cycles, the amount of capacity faded to 

20.5 Ah. Consistently, the major sources of capacity loss 

were noticed as a function of cycle count and temperature. 

To evaluate the SoC estimator performance, the three metric 

criteria preferred are maximum error (MAX), root mean 

square error (RMSE) and mean absolute error (MAE). 

Evaluation of RMSE is to check the robustness of the SoC 

estimation; MAX exemplifies SoC value in the abnormal 

system response; MAE indicates the accuracy of the SoC 

estimation.  
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Fig. 6. Capacity degradation of Li-ion cell after 1000 cycles 

RMS   (16) 

MAE    (17) 

MAX    (18) 

 

Additionally, it should be observed that the result obtained is 

based on the accurate model parameters. Consequently, the 

error never converges to zero, but it stays within the 

predicted bounds. For the reason that the actual system is 

constantly being excited by the process noise and the 

measurements, we make are going to constantly have the 

additive sensor noise on them. So, the error lies within the 

bounds seems correct operation of the Kalman filter. For 

illuminating the robustness of the proposed approach, the 

algorithm implements the full SPKF using the combined 

battery model in Octave for SOC estimation. It shows 

excellent stability and high precision rate under the combined 

battery and capacity model with dynamic conditions and 

aging stresses. 

 

Generally, the estimation error bounds lie under the range of 

 (3 sigma bounds) for 99% assurance of 

estimate's accuracy. 

 

 

 

Table 5. Robustness evaluation of SoC estimation using SPKF algorithm 

 

Performance Metrics Error in % 

RMS 0.5101 

MAE 0.3754 

MAX 1.0029 
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Fig. 7(a) 

 

Fig. 7(b) 

Fig. 7 (a) & (b). SoC Estimation with consideration of battery ageing effect using SPKF algorithm 

 

From the simulation results depicted in Figure 7 and Table 5, 

the RMSE value of the SoC estimation error obtained is 

0.5101%, and the Percent of time error outside bounds is 0%. 

Thus, to work under the highly non-linear case, the SPKF 

approach provides better accuracy and robustness under 

accuracte modelling of Li-ion battery sondiering the model 

uncertainties, capacity fading and temperature effect. Hence, 

it is concluded that SPKF performs effectively as an SoC 

estimator using the ESC model.  

 

Table 6: Performance Analysis 

Method Estimation 

Accuracy % (MAX) 

Run Time 

(Iterations) 

EKF 0.899 35560 

SPKF 1 46535 

 

Table 6 signifies the quantitative comparison for the 

estimation accuracy and response time for the state 

estimation techniques. To make the comparison sensible, 

only non-linear KFs are considered. 
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7. Conclusion 

 

To understand the performance characteristics of Li-ion 

rechargeable batteries, a thorough investigation of modelling, 

estimation, and prognostics was examined. Furthermore, 

modelling the capacity degradation effect explains the 

uncertainty of determining capacity loss as the battery's life 

expectancy is reduced under the influence of specific charge 

and discharge cycles. Given this, capacity loss has been 

defined as a proportion of the cycle count. The study 

predicted and demonstrated the battery's capacity fading after 

1000 cycles. With an estimation error of less than 1%, the 

proposed SPKF approach effectively evaluated the capacity 

values, providing improved convergence, precision, and 

stability. This technique is better for BMS of EV applications 

because it has a lower error rate. This method's main 

strengths are real-time estimation, suitability for various LIB 

chemistries, and robust and accurate SoC estimation. 

This research provides numerous recommendations for 

achieving accurate and reliable SOC estimation to solve the 

issues currently faced in real-time EV applications. 

Conversely, the approach's drawback is that a rigorous study 

of an experimental dataset is necessary to comprehend and 

identify input parameters for various battery chemistries. 

Different datasets through real-world electric vehicle driving 

patterns, running at various temperatures and with high-

current discharge circumstances, are necessary. To construct 

a model-based and data-driven SOC estimate technique, the 

appropriate quantity of battery model parameters and 

hyperparameters must be set with precision. Extensive 

research needs to be done to construct an electrochemical 

battery model that includes thermal and mechanical wear and 

inner reaction kinetics. In real-time execution, substantial 

research is required into advanced SoC estimation 

methodologies (such as cubature Kalman filter (CKF), a non-

derivative estimator and highly effective and operative 

numerical integration technique that diminishes 

computational load) using the prototype of a BMS embedded 

system. Eventually, our subsequent research focuses on 

the dual or co-estimation of SoC and SoH for Li-ion 

rechargeable batteries throughout their complete lifecycle. 

According to the authors, these proposals will significantly 

contribute to the future advancement of the SOC estimate 

algorithm. 
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