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Abstract- This paper proposes a methodology for the optimal sizing of a complete green photovoltaic (PV)-battery stand-alone fast 

charging station for electric vehicles (FCSEVs) in Cairo, Egypt. The formulated optimization problem aims to minimize the total 

system cost and ensure the high reliability of the proposed system; by obtaining the optimal numbers of the utilized PV modules 

(NPV) and battery storage units (NB). At the same time, it aims to maximize the overall system profit; by selling the energy to electric 

vehicles (EVs). Also, a comparison among the proposed MATLAB-based snake optimization algorithm, which is simply called snake 

optimizer (SO), and some other meta-heuristic optimization algorithms, such as Grey Wolf Optimizer (GWO), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA), is conducted, in this work, to verify the feasibility of the proposed optimization 

algorithm in satisfying the desired ultimate goals of the sizing of the considered stand-alone system. In addition, a techno-economic 

study is conducted to assess the economic viability of the proposed optimum system over the project lifetime.  The obtained results 

showed that the proposed energy management strategy is effective in controlling the energy flow within the proposed system. In 

addition, they indicated that the proposed SO can give the best optimization results compared to the other considered algorithms. 

Finally, the obtained results showed, also, that the integration of the stand-alone PV-battery in FCSEVs is crucial and necessary to 

overcome the well-known problems of the conventional fossil fuel resources. 

Keywords: Photovoltaic; Battery storage system; Electric vehicles; Charging stations; Snake optimization. 

 

1. Introduction  

     Nowadays, the rapid development of electric vehicle (EV) 

technologies is due to rising environmental concerns and 

technological advancements in power electronics and energy 

storage. Large-scale deployment of EVs in the transportation 

sector has the potential to reduce greenhouse gas emissions 

and, also, to increase the contribution of renewable energy 

resources in the transportation sector, which in turn can reduce 

the overall dependance on fossil fuel resources [1-3]. Since 

EVs depend entirely on the electricity stored in their batteries, 

an increase in the availability of public EV charging stations 

(EVCSs) is crucial for the widespread utilization of these 

vehicles [1]. At the same time, these EVCSs must be widely 

distributed, so that EV owners can confidently travel long 

distances with easy access to recharging facilities whenever 

needed.  

     By 2025, it is expected that there will be over 10 million 

EVs on the roads worldwide [4, 5]. Also, it is expected to 

reach 1.3 million public EV chargers by 2025, and 2.9 million 

by 2030 [6].  
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Due to the depletion of fossil fuels, concerns about 

weather change, the importance of energy divergence, and the 

potential for the creation of jobs, many governments are 

embracing renewable energy as part of their energy portfolios. 

Considering the high-costs related with network expansion, 

the use of renewable energy technologies as self-sustaining 

energy systems would be economically feasible and 

affordable in many remote locations throughout the world [7]. 

     One reason for the recent spread of EVs in Egypt is the 

state's efforts to encourage citizens to buy EVs instead of 

internal combustion engine vehicles to reduce pollution. 

Noting that the current exemption of EVs from customs and 

taxes in Egypt, as well as the availability of their charging 

stations (CSs) will contribute to the growth of their owners in 

Egypt in the near future. In addition, the Egyptian government 

encourages this trend by putting an ambitious plan to build 

6000 public EV CSs in the near future.   

     The integration of renewable energy sources (RESs) such 

as photovoltaic (PV) with battery storage systems (BSSs) can 

mitigate the intermittence nature of RESs' output power and 

meet the requirements of charging the EVs with the required 

acceptable reliability [8-10]. With the BSS integration, the 

surplus power generated by the PV modules during the 

daytime can be stored. The BSS then releases the stored 

energy when the incident insolation on the PV modules is in 

sufficient or there is a deficit in the  PV output power (i.e., 

during the evenings) [11, 12].  

     The main challenges that face the adaptation of EVs are 

their limited driving range, their high battery replacement 

costs, and their long charging time [13]. The first two obstacles 

have been overcome by the developed technologies of lithium-

ion batteries that could provide the EVs’s owners with large 

storage capacities at reduced costs. Also, fast charging stations 

(FCS) have recently been used to overcome the last issue of 

long charging time. Where, the FCS can restore the charging 

of an EV to about 80% of its state of charge (SOC) within half 

an hour of its depletion [4]. However, the fast charging 

techniques require high power demand to reduce the long 

charging time.  

     The stand-alone CSs are not connected to the grid and their 

energy requirements are commonly met using distributed 

energy resources (DERs), which may include renewables, 

non-renewables [14], or a combination of them. These kinds 

of CSs are the best solution for remote areas that lack adequate 

connectivity to the power grid. Additionally, because stand-

alone CSs must meet load demand during operation, they 

require careful and comprehensive investigations [15, 16].  

     Currently, the optimal techno-economical design of stand-

alone PV-battery systems for charging EVs is essential for 

ensuring their economic viability, which necessitates the 

sizing of system components at the lowest cost. In reality, a 

well-designed stand-alone PV-battery system helps to avoid 

power outages, ensure the quality and security of the power 

supply, and achieve economic and environmental benefits 

[17].  

     Recently, many studies have been conducted on the sizing 

of stand-alone charging stations for EVs (CSEVs). In [15], a 

robust optimization technique was proposed for sizing a PV-

diesel-fuel cell stand-alone CS that would provide electricity 

to EVs and hydrogen to hydrogen vehicles (HVs). In [17], the 

technical and economic viability of a stand-alone PV-battery 

storage system for EVs charging in Madrid, Spain was 

analyzed and conducted by using HOMER software and by 

taking into account the principle of load shifting. The results 

indicated that the designed system was technically and 

economically viable and reliable. Also, they indicated that the 

designed system can significantly reduce air pollution and is 

profitable. A methodology for determining the optimal sizing 

of stand-alone PV-battery CSEV, that aims to reduce the 

system investment costs while achieving the CS's 

performance metrics, was presented in [18].  In [19], the 

optimal sizing of a PV-wind-battery stand-alone CSEV was 

presented using HOMER software. This system could 

produce an annual energy of 843.15 MWh with an electricity 

cost of 0.064 $/kWh.  

 Using Simulink design optimization, an optimal method 

for sizing a PV-wind-battery stand-alone microgrid (MG), 

that can transfer wireless power for electrical and 

hydrogen CSs of EVs and fuel cell-powered buses, 

respectively, on a highway, was proposed in [20].  

     Using a multi-objective PSO algorithm, the optimal sizing 

of the PV-wind-battery system in two different scenarios (i.e., 

with and without EV) was investigated in [21]. In the first 

scenario, (i.e., PV-wind-battery), the optimal number of 

system components and cost are determined at various levels 

of reliability (i.e., loss of power supply probability (LPSP)). 

Then, in the second scenario, an EV is added to the system 

(i.e., PV-wind-battery-EV) and the LPSP is recalculated 

under both deterministic and stochastic conditions. The 

outcomes proved that the design of both systems is feasible. 

However, the first system was more efficient as it utilized 

fewer wind turbines in a greater number of identical values of 

LPSP.  

 In order to obtain the optimal configuration and meet the 

daily charging demand, a techno-economic analysis of a novel 

RESs-based stand-alone CS is conducted in [22], by using 

HOMER software and by using the different geographical and 

metrological conditions of four Qatari cities. In each location, 
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a comprehensive economic criterion was used to compare the 

obtained optimal solution with the grid extension option. The 

findings indicated that the proposed optimization method can 

be used anywhere, given the site's metrological conditions.  

      The study in [23], proposed and thermos-dynamically 

assessed a stand-alone CSEV that comprises concentrated 

photovoltaic–thermal (CPV/T)-wind-biomass combustion-

based steam Rankine-cycle plant. Fuel cells-based hydrogen 

and ammonia are incorporated into the design to guarantee 

uninterrupted charging services during the night and in 

adverse climatic conditions. Based on the findings, 80 EVs 

can be fast charged daily with the power generated by RESs 

and fuel cells. 

     A method for joint capacity optimization of a PV-wind-

diesel-battery standalone system, including EV charging load, 

was presented in [24]. The optimization problem was solved 

to minimize the system cost, reduce the GHG emissions, and 

reduce the dumped energy. Also, the optimization problem 

was solved for different system combinations to determine the 

most effective and economical load-serving combination. 

This study may serve as a useful road map for decision-

makers, analysts, and policymakers. 

      In [25], a mixed-integer linear programming (MILP) 

algorithm was proposed to determine the optimal sizing of 

PV-battery in a stand-alone nanogrid. The formulated 

problem is solved using a robust optimization technique. Case 

studies illustrate the benefits of the proposed applications and 

validate the considered methodology. 

 In this paper, a SO optimization algorithm is used to 

optimally size a proposed stand-alone PV-battery FCSEVs. 

The main aims of the optimization technique are to minimize 

the total system cost and ensure the high reliability of the 

system. The utilized SO optimization algorithm is compared 

with other meta-heuristic algorithms to verify the robustness 

of the proposed algorithm over other algorithms in satisfying 

the desired ultimate goals of the sizing process. Additionally, 

a techno-economical analysis is conducted to assess the 

economic viability of the proposed system.  

 The rest of this paper is structured as follows: Section 2 

clarifies the structure of the proposed PV-battery stand-alone 

FCSEVs. Section 3 presents the metrological and load data 

used in this study. Section 4 is dedicated for the basic 

economic background. Section 5 presents the formulation of 

the optimization problem. Section 6 presents the life cycle 

cost estimation of the proposed FCSEVs. Section 7 provides 

the mathematical modelling of the proposed system. Section 

8 is dedicated for the proposed energy management strategy 

and system reliability of the proposed PV-battery stand-alone 

FCSEVs. Section 9 presents the optimization problem in its 

final form and SO algorithm. Section 10 illustrates the 

obtained results of this work. Finally, section 11 provides the 

concluding remarks.  

2. Structure of the PV-Battery Stand-Alone FCSEVS 

     The structure of the proposed PV-battery stand-alone 

FCSEVs is shown in Fig. 1, which comprises of a PV source, 

a battery storage, a conditioning DC-DC and DC-AC 

converters, and the total load of the station. The total load of 

the station comprises the base load of the station (e.g., 

lighting, PC, etc.) and the EVs load. The base load of the 

station is connected to the AC-side of the DC-AC converter 

of the system, whereas the EVs load is connected to the 

common DC bus of the system by using DC-DC converters.  

     The utilized boost DC‐DC converter that is attached to the 

PV array is to perform the array maximum power point 

tracking (MPPT). Also, the battery storage is used to grantee 

the continuity of supplying the station total load with 

electricity during nights and/or periods of deficit of the 

available PV energy. Where, the excess PV power that is 

generated during periods of high insolation levels can be 

stored in the battery storage for later use. Noting that each 

converter of the system has its own local control unit that can 

perform the required control task corresponding to its 

position. At the same time, the utilized central control unit is 

used to supervisory control and manage the overall system. 

 

 
Fig. 1. Structure of the proposed PV-battery stand-alone 

FCSEVs. 

3. Metrological and Load Data 

 The selected site for the proposed FCSEVs is the New 

Nozha, Cairo, Egypt. The considered site has a latitude of 30◦ 

5' N and a longitude of 31◦ 20' E. Figure 2 shows the long- 

term monthly average daily solar insolation data of the 
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considered site, which provided by NASA surface 

meteorology and solar energy database [26]. By using the 

HOMER Pro software, these data were converted into an 

hourly average form over one typical year. The annual 

average solar insolation of the selected site is 6.37 

kWh/m2/day.  

 
Fig. 2. Solar insolation data for a typical year on hourly 

basis. 

 
Fig. 3. The EVs load profile of a typical year.  

 

 
Fig. 4. The station base load profile of a typical year.  

 

 The considered EVs load and the station base load profiles 

during the 12 months of the year are shown, respectively, in 

Figs. 3 and 4. In this work, the EVs load profile is mainly 

formed based on the utilization of batteries for the EVs having 

a capacity of 50.7 kWh each. 

4. Basic Economical Background 

 Generally, there are some important common indicators 

that can be used to decide the economic feasibility of any 

renewable energy-based project. These indicators are the life 

cycle cost ( LCC ), levelized cost of energy ( ),LCOE  and 

payback period (
PBT ). The LCC parameter is commonly used 

to examine the financial impact of the project, i.e., it serves as 

a guide for selecting the optimal system configuration. The 

LCOE  parameter is used to determine the required cost of 

electrical energy generated from the project. Also, the 
PBT  is 

used to measure the profitability of the project [27]. 

 

4.1 Life Cycle Cost  

 The LCC (sometimes referred to as the net present cost 

( )NPC , net cash flow, or total system cost (
TC )) of a 

renewable energy-based project is the total cost of owning and 

operating all components of the project (i.e., the total capital 

cost of the project) minus all the revenues that are earned over 

the project lifetime expressed in today’s money. Therefore, 

generally, the LCC is the sum of the present worths (PWs) of 

all the costs included in the system (e.g., initial capital costs, 

replacement costs, operation and maintenance costs (O&M), 

fuel costs, emissions penalty costs, and costs of purchasing 

electrical energy from the grid) minus all the revenues of all 

salvage values and selling electrical energy to the grid and/or 

all different consumers.  

 Thus, for the considered PV-battery stand-alone FCSEVs, 

the LCC can be expressed as follows 

 

( )
1

K

k k PW k PW k PW EVs PW

k

LCC I R OM S C
=

= + + − −  (1) 

 

where K is the total number of components included in the 

system (i.e., PV, system battery storage, DC-DC converters, 

and DC-AC converter), 
kI  is the initial capital cost of 

component k , 
k PWR is the PW of the replacement cost of 

component k , 
k PWOM is the PW of the O&M cost of 

component k , and
k PWS  is the PW of the salvage value of 

component k  at the end of its lifetime, and
EVs PWC is the PW 

of the cost of the electrical energy sold to EVs. 
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 Equation (1) can be rewritten in the following form  

 

1

K

cap PW sav PW k PW

k

LCC C C S
=

= − −  (2) 

 

where 
cap PWC is the PW of the total capital cost of the system 

over the project lifetime, 
sav PWC is the PW of the total system 

savings (or the difference between the PWs of the total system 

income and the total system outcome) arising from the total 

operational costs of the system over the project lifetime. 

Where, 

 

( )
1

K

cap PW k i k PW k PW

k

C I R OM
=

= + +  (3) 

And  

sav PW EVs PWC C=  (4) 

 

 As Eq. (1) shows, there are PWs of some annual payments 

or revenues as well as of salvage values are needed. Thus, for 

a project lifetime of N years, a nominal interest rate 
nr , and 

an nominal inflation rate j (induced by prices increases), the 

PWs of the different costs can be calculated as follows [28]. 

 

4.2 Calculation of PW of Salvage Value  

 If the salvage value of a component k  at present is 
kS ($) 

(because it is reaching the end of its lifecycle), then it is 

expected that the salvage value of the component will be 

. 1( )N

kS j+ (i.e., N years from now, considering the 

component remains in service). Therefore, taking the interest 

rate into account, the PW of . 1 ,( )N

kS j+  is [28] 

 

1

1
. . 

1

N

k PW k k

n

j
S S S fac

r

 +
= = 

+ 
 (5) 

4.3 Calculation of PW of Annual Payments or Revenues 

    If the current value of any annual payment (e.g., O&M) or 

revenue (e.g., cost of electrical energy) is 
AP  ($/yr), then at 

year x  the value of the annual payment or revenue will be  

( )1.
x

AP es + and having a PW of 
1  

.
1  

P

x

n

A

es

r


 +
 

+ 
 [28]. 

Where, es is the escalation rate, that is not necessarily equal 

to the general inflation rate.   

 Accordingly, the summation of the PWs of all the annual 

payments or revenues is calculated as follows 

 

2

1

1  
.  . 

1  

x
N

PW

x n

AP AP AP

es
fac

r
C  

=

 +
= = 

+ 
  (6) 

 

4.4 Levelized Cost of Energy  

 The LCOE is the average cost of the unit electricity 

($/kWh) that the investors of the renewable energy-based 

projects must sell their production of electrical energy to the 

consumers at prices not lower than its value to earn a profit 

[28-30]. The value of the LCOE can be calculated using as 

follows [14, 29-31] 

 

1

_

K

cap PW k PW

k

LT served

C S

LCOE CRF
E

=

 
− 

 
= 


 (7) 

 

where 
_LT servedE  is the annual station total load served 

(kWh/yr), and CRF  is the capital recovery factor, which can 

be calculated as [9] 

 

(1 )

(1 ) -1

N

N

r r
CRF

r

+
=

+
 

(8) 

 

where r denotes the real interest rate, which is given by [22] 

 

1

nr j
r

j

−
=

+
 (9) 

 

4.5 Payback Period  

 The payback period is the parameter that determines the 

duration of time (yrs) that must elapse to recover the PW of 

the total capital cost of the system over the project lifetime 

(i.e., it is the time at which the total system cost will be zero) 

[32]. The shorter this period is, the more attractive the 

investment; since the project will be profitable after this 

period. This period can be estimated as [33] 
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cap PW

ann sav PW

PB

C
T

C
=  (10) 

 

where
ann sav PW

C  is the PW of the annual savings of the system, 

which can be given by 

 

  
ann sav PW sav PWC C CRF=   (11) 

 

5. Problem Formulation  

The primary concern during the design of PV-battery 

stand-alone FCSEVs is estimating the size of each component 

of the system so that the station total load can be met 

economically and reliably. Thus, the formulated objective 

function can be as follows 

 1. minimizing the LCC of the system (i.e., .min LCC ) 

 2. ensuring that the station annual total load (
LTE ) is 

served according to certain reliability criteria 

While minimizing the objective function ,LCC the 

constraints must be met in such a way that certain reliability 

criteria are met while serving the station's annual total load. 

The LPSP is used, here, to measure the system reliability, 

which is defined by the long-term average fraction of the total 

load that cannot be provided by the PV-battery stand-alone 

system. 

A LPSP of 1 indicates that the total load will never be 

satisfied, while a LPSP  of 0 indicates that the total load will 

always be satisfied. Therefore, the LPSP  constraint of the 

proposed system must be written in such a way that it remains 

lower than a certain preset value *LPSP  during the considered 

time period of T. This constraint can now be expressed as 

follows 

 

1

1

( )

( )

T

t

T

LT

t

LPS t

LPSP LPSP

E t

=

=

= 



 (12) 

 

where LPS(t) represents the loss of power supply at any given 

hour t. It also refers to the deficit in total load energy caused 

when the available generated energy from the PV arrays and 

the energy stored in batteries does not meet the total load 

demand ( )LTE t  during the hour .t In addition, T denotes the 

operation time (in this work, T = 8760 hr). 

6. LCC Estimation 

6.1 The PV Array 

     For the case of the PV array, if the design variable is the 

total number of the PV modules ( ),PVN then the total PW of 

the initial and replacement investments of the PV array is 

given by [28] 

 

_ 1  . . .PV PV moduPV le max VPW P PVI P N NR c+ ==  (13) 

 

where 
PV is the initial cost of the used PV module ($/WP), 

_  module maxP  is the rated power of the used PV module (295 

Wp), and
PVN is the total number of PV modules. It is worth 

mentioning here that the PV array lifetime is equal to the 

project lifetime, thus the replacement cost of the PV array is 

negligible ( . ., 0PV PWi e R = ). 

     Also, the total PW of the yearly O&M cost of the PV array 

would be 

 

2_   2  . .  . .PV PW PV OM module max PV PVOM P N f Ncac= =  (14) 

 

where 
PV OM  is the PV module yearly O&M cost ($/WP/yr). 

       In addition, the salvage value can be obtained by 

multiplying the total number of PV modules by the rated 

power of the utilized PV module and by the selling price per 

WP, and the total PW of the salvage value of the PV array 

would be 

 

1 3_  . .  . .PV PW PV module max PV PVS S P fac cN N==  (15) 

 

6.2 The Battery Storage 

 Since the storage battery lifetime BL
 is shorter than that 

of the PV modules, then it is needed to purchase additional 

storage batteries before the project lifetime comes to its end. 

Thus, the number of times, within N years, a battery storage 

is needed is  /B BX N L=  (rounded to the greater integer) [28]. 

If 
B is the initial price of the battery unit in $/Wh, the total 

PW of the initial and replacement investments in batteries is 

as follows 

( 1).

_

1

4

1
. . ..

1

B
B

x L
X

B B PW B B sys unit B

x n

es
I R N C c N

r

−

=

 +
+ =  = 

+ 
  (16) 
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where 
BN  denotes the total number of the system battery 

units, 
_sys unitC  denotes the used nominal capacity of the system 

battery unit (Wh).  

 If the yearly O&M cost of one watt-hour of battery storage 

is 
B OM  ($/Wh/yr), then the total yearly O&M cost of the 

battery storage would be 
_ ,. .B B OM sys unit BOM C N=  and the 

PW of all the yearly costs would be [28] 

 

_ 2 5. . .  .B PW B OM B sys unit BOM N C fa Ncc ==  (17) 

 

Noting, here, that the salvage value of the battery units is 

considered to be negligible ( .. )., 0B PWi e S =  

 

6.3 The Utilized Converters 

     The cost of the bidirectional DC-DC converter that is used 

for charging and discharging the system battery storage is 

given by  

 

_ _ _ _ _ max _ _ 6max, ( .. ( ))bi conv B bi conv B ch di bi DCsc DCC m cax P P  − ==  (18) 

 

where 
_ _bi conv B  denotes the cost of the utilized DC-DC 

converter in $/W, 
_ maxchP  denotes the maximum charging 

power of the system battery, 
_ maxdiscP  denotes the maximum 

discharging power of the system battery, and 
_bi DC DC −

is the 

utilized converter efficiency. Also, the cost of the DC-DC 

converters that are used to charge the EVs is given by 

 

_ _ 7_ _. . conv EV conv EV E chV ch PC P cN ==  (19) 

 

where 
_conv EV is the cost of the utilized converters in $/W 

and 
_EV chP  is the rated power of the EV charger. In addition, 

the cost of the DC-AC converter that is used to power the 

station base load is given by 

 

_ 8.inv inv inv r cC P= =  (20) 

 

where 
inv  is the cost of the utilized converter in $/W and 

_inv rP  is its rated power in Watt. It is worth mentioning here 

that the lifetimes of all the utilized converters are assumed to 

equal the project lifetime, i.e., the replacement costs of all the 

converters are negligible. Therefore, the PWs of all 

the converters costs are as indicated in Eqs. (18)-(20). 

 

6.4 The Energy Sold to EVs 

     The PW of the cost of the electricity sold to EVs can be 

calculated as follows 

 

2 9. .EVs PW EVs EVsC E fac c= =  (21) 

 where 
EVs  denotes the unit electricity cost of the energy 

sold to the EVs ($/Wh) and 
EVsE  denotes the annual energy 

sold to the EVs (Wh/yr).  

 

7. Mathematical Modeling of the Proposed System 

7.1 The PV Array 

    The electrical output power of the PV array depends on the 

solar insolation and the cell temperature as given by [34-36] 

 

( )module_max

( )
1  PV PV t c ref

ref

G t
P N P K T T

G

 
=    + − 

 
 

 
   (22) 

 

where ( )G t is the solar insolation in W/m2, 
refG  is the 

reference solar insolation of 1000 W/m2, Tc denotes the cell 

temperature in oC, Tref is the reference cell temperature of 25  

°C, and Kt is the temperature coefficient of the utilized PV 

module. 

 

7.2  Modeling of the System Battery 

     In the proposed FCSEVs, the battery storage can be 

charged or discharged to balance electricity supply and 

demand. The stored energy in battery storage at any time t can 

be given by [29] 

 

_

)
(

(
)  B sys un t

max

B i

SOC t
N C

S
E t

OC
=    (23) 

 

where ( )SOC t  denotes the state of charge of the battery any 

time t, and 
maxSOC denotes the maximum state of charge of 

the battery. It is worth mentioning here that the used batteries, 

in this work, are lithium-ion batteries of 25.6 V, 200 Ah each. 

 The battery SOC can be estimated at any time, during the 

charging and discharging process, by using the following 

equation [28, 37].  

 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. E. A. Omran et al., Vol.12, No.4, December 2022 

1776 

 

_

_( )  
( ) 1 1 )( ()

B

B sys unit

B

sys BP t
SOC t SOC t

C

t

N









= − −−  (24) 

 

where 
B  is the self-discharge rate of the battery storage, 

which is neglected in this work, t  is the simulation step time 

(which is set, in this work, to equal 1 hr), _sys B  is the charge 

efficiency of the system battery, and ( )BP t  is the battery 

charging/discharging power at any hour. Noting that during 

the charging process, the battery power 
BP  flows toward the 

battery ( i.e., 0BP  ) and during the discharging process, the 

battery power flows outside the battery ( i.e., 0BP  ).  

 To maintain the battery life, the battery should not be over-

charged or over-discharged. Thus, the SOC of the battery at 

any given hour t must adhere to the following constraint [28] 

 

SOCmin ≤ SOC (t) ≤ SOCmax                                                                                        (25) 

 

where SOCmin and SOCmax are the battery minimum and 

maximum permissible SOC, respectively. 

 

7.3 Daily EVs Power Load Demand 

     The energy consumption of an EV depends on the travelled 

distance, the battery capacity, and the driving mode. 

Assuming that an EV is charged once a day, the daily average 

power demand of an EV (PEV_avg) is the average power 

required to increase the SOC of the EV battery from its initial 

value (
iSOC ) to its final value (

fSOC ) over a daily charging 

period of time 
chT [38].  

     Consequently, the daily average maximum power 

demanded by a single EV battery in kW at the end of the given 

charging time 
chT  can be given by 

 

max

_

EV

EV avg

ch

C DOD
P

T


=  (26) 

 

where 
EVC  denotes the total nominal battery capacity of the 

EV in kWh, 
maxDOD  denotes the maximum permissible 

depth of discharge of the EV battery, and 
chT  denotes the daily 

charging time of the EV battery in hours. In this work, 
chT is 

set to equal half hour (i.e., to achieve the desired fast charging 

principle for the EV battery) and 
maxDOD to 70% [38]. 

 Thus, the daily average maximum power demanded by a 

number of EVs will be estimated as a function of time as 

follows 

 

_

_

( )
( )

ch P EV max

EVs avg

ch

N C DOD D t
P t

T

  
=  (27) 

where 
_ch PN  is the number of the charging points in the 

station and ( )D t is the daily time-dependent duty cycle of the 

station. 

 

8. Energy Management and System Reliability     

 Firstly, it is assumed, in this work, that the utilized DC-

DC converter for the MPPT and the distribution lines are ideal 

(i.e., they are lossless). Whereas, on the other hand, all the 

remaining DC-DC converters in this work, whether they are 

unidirectional or bidirectional, can be excluded from this 

assumption and are assumed to have equal and constant 

efficiencies (i.e., 
_ _bi DC DC uni DC DC DC DC  − − −= = ). Also, it 

is assumed, in this work, that the utilized DC-AC converter 

has constant efficiency equaling to 
DC AC −

. In addition, it is 

assumed that both the charge efficiency of the system battery 

( _sys B ) and that of the EV battery ( _EV B ) are, respectively, 

set to equal to their corresponding manufacturers’ round-trip 

efficiencies, and their discharging efficiencies are set to be 

100%. 

 Figure 5 illustrates the designed energy management 

strategy for the proposed PV-battery stand-alone FCSEVs. 

The primary goals of this strategy are to manage the energy 

flow within the considered system to serve the station total 

load reliably and to safely charge and discharge the system 

battery. 

 In this work, the only generated power of the proposed 

system at any hour t is the PV array output power (i.e., 

( )),PVP t whereas the storage system battery is used as a 

backup for this system. Therefore, the desired station total 

load demand at any given hour t may or may not be met based 

on the corresponding values of the generated PV power and 

the available battery ( )SOC t at that hour. 

 The desired station total load demand referred to the DC 

bus can be estimated at any hour t from 

 

_ _*

_

( )
)

(
(

)EVs avg base load

L

EV charging DC AC

P t P t
P t

  −

= +  (28) 
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where
_ ( )EVs avgP t  is the hourly average maximum power 

demand of the EVs, 
_ ( )base load tP  is the hourly average base 

load demand of the station, 
_EV charging is the total efficiency 

of the EVs charging path, which is given by the result of 

multiplying the efficiency of the DC-DC converter by that of 

a single EV battery (i.e., 
_DC DC EV B −  ).  

     The proposed energy management strategy of the PV-

battery stand-alone FCSEVs can be summarized in the 

following points: 

• If *( ( ) ( ))PV LP Pt t  and  ( )( 1)< ,maxSOC t SOC− then 

satisfy the  station total load and charge the system battery 

using Eq. (24) with the excess PV output power of Eq. (29). 

 
*[ –( ) ( ) ( )]B L PV DC DCP P tPt t  −=  (29) 

 

Afterwards, check if ( )  ( ),maxSOC t SOC  then stop system 

battery charging, set ( ) ,maxSOC t SOC=  and dump the 

surplus PV output power estimated by 

 

_

_*
( ) ( ) –

( -

[ ( ) (

)) ](   1 )

dump PV

sysB

L

DC DC sy

un

x

i

s

a

t

B

m

P t P t
N C

P t
t

SOC SOC t

 −

=
 

−


+ 

  (30) 

 

• If *( ( ) ( ))PV LP Pt t  and  ( 1) ,( )maxSOC t SOC−  then 

satisfy the station total load, stop charging of the system 

battery, set ( ) ,maxSOC t SOC=  and dump the surplus PV 

output power estimated by 

 
*( ) – (( )t)dump PV LP t P P t=  (31) 

 

• If *( ( ) ( )),PV LP Pt t=  then satisfy the station total load only. 

• If *( ( ) ( ))PV LP Pt t  and  ( 1)( ),minSOC t SOC−  then 

satisfy the station total load by discharging the system battery 

using Eq. (24) to cover the deficit in the station total load 

power. The discharging power of the system battery in this 

case will be estimated from  

 
*[ ( )( ( /]) )B L PV DC DCP t P t P t  −−=  (32) 

 

Afterwards, if ( )  ( ),minSOC t SOC then stop discharging of the 

system battery, set ( ) ,minSOC t SOC=  and estimate the 

deficit in the station total load power referred to the DC bus 

from 

 

_* – [ ( ) (

( 1  

( ) ( )

( ) ))]

B DC Dsys C

d

u

ef

ni

icit L PV

m

t

in

N C
P t P t P t

t

SOC t SOC

 − 
= + 



− −

 (33) 

 

• If  *( ( ) ( ))PV LP Pt t and ( ( )1 ,)minSOC t SOC−  then stop 

discharging of the system battery, set ( ) ,minSOC t SOC=  and 

calculate the deficit in the station total load power referred to 

the DC bus using Eq. (34). 

 
*( ) (t) ][ – ( )L PVdeficitP t P P t=  (34) 

 

According to the previous assumptions mentioned in this 

work, which were the simulation step time t  was set to 

equal 1 hr and all the considered system powers during t  

were constants, then any considered power of the system will 

numerically equal to its corresponding energy within t  

The LPSP  constraint of Eq. (35), which is a non-linear 

constraint of the variables
PVN and ,BN can now be 

formulated as follows 

 

1

*

1

( )

( )

T

t

T

L

t

deficitP t

LPSP

P t

t

t

=

=





=



 (35) 

 

The program that calculates the LPSP  of the proposed PV-

battery stand-alone system was written in MATLAB code in 

an M-file. The flowchart of the designed energy management 

is indicated in Fig. 5. The hourly average global solar 

insolation data (G) over one typical year, the hourly average 

maximum power demand of the EVs (
_EVs avgP ) over one 

typical year, and the hourly average base load demand of the 

station (
_base loadP ) over one typical year are the input data for 

this program. 

The sizes of the system components must be, also, adhered 

to the following two additional bounds, that are 

 

_0 PV PV maxN N   
(36) 

and 

_0 B B maxN N   (37) 

 

 The maximum number of PV modules 
_( )PV maxN  is 

originally restricted by the maximum available area for the PV 
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array, and it may be additionally restricted according to the 

preallocated budget of the PV modules. At the same time, the 

maximum number of units of the system battery 
_( )B maxN

(which can be calculated from Eq. (38)) is mainly restricted 

by the largest number of continuous cloudy days of the 

considered site ( )c maxN , and it may be additionally restricted 

 

Fig. 5. Proposed energy management of the PV-battery stand-alone FCSEVs. 

 

as well according to the preallocated budget of the system 

battery. 

 

( ) 

_ max

_ max

_EVs daily dc max base

B

sys unit DC DC

ailyN
N

C DOD

E E

 −

+
=

 
 (38) 

Where,
_EVs dailyE is the daily average maximum energy 

demanded by the EVs (Wh/day) and 
 db se ya ailE  is the daily 

average base load energy demand of the station (Wh/day). 

Noting, here, that the 
c maxN  for the considered location is 

about two days. 

9. Final Form and Snake Optimization 

 It is now possible to rewrite the optimization problem in 

its final form as follows 
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1. Minimize the cost function (also called objective 

function or fitness function) f LCC=    

 

( ) ( )1 2 3 4 5 6 7 8 9. .PV Bc c c c cN N c c cc+ − + + + + + −  (39) 

2.  Subject to 

 

*

_

_ max

0

0

PV PV max

B B

LPSP LPSP

N N

N N




  


  

 (40) 

   

 To solve the previous final form of the optimization 

problem, snake optimizer (SO) is utilized. This optimizer, 

which was developed by [39], is inspired by the snakes' 

mating behaviour. If there is an abundance of food and a low 

ambient temperature, snakes often fight to get the best 

partners. Otherwise, the snakes will only search for food or 

eat the exiting food. Therefore, the search process of the SO 

is based on two phases, which are exploration and 

exploitation. 

 The flowchart of the SO is shown in Fig. 6 [39]. It starts 

by generating a uniformly distributed random population. The 

initial population can be obtained from  

 

{1,2,..., }( ),i min max min PopX X rand X X i N= +  −   (41) 

 

where 
iX  refers to the individual at position i of the initially 

generated population for the optimization problem (this 

individual is actually a vector whose length equals the 

number of the independent variables of the problem), 

PopN  is the total number of the population individuals or 

may also called the problem swarm, rand is a uniformly 

distributed random number generated in the range between 0 

and 1, and 
minX and 

maxX denote the individuals lower and 

upper bounds of the problem variables, respectively.  

 Afterwards, the problem swarm is divided equally into 

two groups: males and females, as 

 

2

Pop

m

N
N   (42) 

 

f Pop mN N N= −  (43) 

 

where 
mN  and 

fN  are the numbers of individuals in the male 

and female groups, respectively.  

 The next step is to find the best individual in each group, 

i.e., to get the best male and best female individuals that 

correspond to the best or minimum objective function (
_m bestf  

and
_f bestf ) in each of the male and female groups, 

respectively. Afterwards, the ambient temperature (Temp ) 

and the quantity of food ( Q ), in the current iteration ( Iter ), 

can be computed, respectively, from 

 

max

Iter
Temp exp

Iter

 −
=  

 
 

 

(44) 

 
0.5 max

max

Iter Iter
Q exp

Iter


 −
=  

 
 (45) 

 

where
maxIter refers to the maximum number of 

iterations.  

 The common behaviour of snakes is to check for the 

available quantity of food (Q) at first. If the value of Q is 

found to be lower than or equal a certain threshold value (i.e., 

0.25Q  ), then the male and female snakes will search for 

food by updating the positions of their individuals randomly 

with respect to the food. This updating process is called the 

exploration phase and depends on the abilities of the 

individuals of each of the males and females to find food. The 

male and female abilities to find food can be found, 

respectively, from 

 

_

_

_  
m ran

m i

d

m i

pA
f

ex
f

 −
 

 

=


 (46) 

 

_

_

_

f rand

f

f

i

i

f
exA p

f

 −
 
 
 

=  (47) 

 

where
_m randf  is the fitness of the random male individual 

(
_m randX ), 

_m if is the fitness of the i th individual in the 

male group (
_m iX ), 

_f randf  is the fitness of the random 

female individual (
_f randX ), and 

_f if  is the fitness of the 

ith individual in the female group 
_( ).f iX  

 The randomly updated male and female individuals of 

position i, after carrying out this exploration phase, become 

 

_ _ _

max min min

( ) ( )

(

1

( ) )

m i m rand m iX I X I Fter t lag g A

X X

er

and Xr

= + 

+



 − 

+
 (48) 
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_ _ _

max min min

( 1) ( )

(( ) )

f i f rand f iX I X I Flag g A

X X

ter ter

a d Xr n

+ = + 

+



 − 
 (49) 

 

where 
_m randX  and 

_f randX  denote the male and female 

individuals of random positions, respectively, rand is a 

random number between 0 and 1, g is a constant (=0.05), 

and Flag is called the flag direction operator or diversity 

factor which is set randomly to either positive sign or negative 

sign; so as to increase the possibility of scanning all the 

possible directions in the given search space.  

 Whereas, on the other hand, if the food is available 

(i.e., 0.25Q  ), then this phase is called the exploitation 

phase, which includes many transition phases that lead 

to many updates for the individuals of the two groups. 

These many updates will increase the opportunity of the 

SO to converge to the optimum solution of the 

optimization problem instead of diverging from it. If, in 

this phase, the ambient temperature (Temp) is hot (i.e., 

0.6Temp  (, then the snakes will only focus on eating 

the available food. Consequently, the male and female 

snakes will move to food, depending on the ambient 

temperature, by updating the positions of their individuals 

randomly with respect to the available food. 

 The randomly updated male and female individuals of 

position i, after carrying out this process, can be given by 

 

_

1_ ( ) ( )

( ( )

1

)

food

f

m i

m iood

X ter X ter gI I Fla Temp rand

X X t r

g

I e

+ =  

 −

+ 
 

 

(50) 

_

1_ ( ) ( )

( ( )

1

)

food

f

f i

f iood

X ter X ter gI I Fla Temp rand

X X t r

g

I e

+ =  

 −

+ 
 (51) 

 

where 
foodX  is the best individual of the two groups with 

respect to the available food, and 
1g  is constant (= 2). 

 In addition, in this phase (i.e., 0.25Q  ), if the ambient 

temperature (Temp ) is cold (i.e., 0.6Temp  ), then the 

snakes will randomly decide to be either in fighting mode or 

mating mode. In the fighting mode, the snakes (male and 

female) individuals will update their positions randomly 

depending on the fighting abilities of individuals, the 

available food quantity, and the best individual in the other 

group.  

 The fighting abilities of the individuals in the male and 

female groups are given, respectively, by 

 

_

_

_

f best

m i

m i

f
F exp

f

 −
=  

 
 

 (52) 

_

_

_

 
m best

f i

f i

f
F exp

f

 −
=  

 
 

 (53) 

 

where 
_f bestf  and 

_m bestf are the fitness of the best 

individual in female and male groups, respectively. 

 The updated individuals of position i in the male and 

female groups, after fighting, can be given, respectively, by 

 

_ _

_

1 _

_

1( ) ( )

( ( )) 

m i

f best m

m i m i

i

ter ter g F rand

Q

X I X

X X te

I

I r

+ = +  
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 (54) 

 

_ _ 1 _

_ _

1

 

( ) ( )

( ( ))

f i f i f i

m best f i

X ter X ter g F rand

Q X X

I I

Iter

+ = +  

  −
 (55) 

 

where 
_f bestX  and _m bestX  are the best individual in the 

female group and male groups, respectively.  

 Whereas, in the mating mode, the snakes (males and 

females) individuals will update their positions randomly 

depending on the mating abilities of individuals, the available 

food quantity, and the corresponding individual in the other 

group.  

 The mating abilities of the individuals in the male and 

female groups are given, respectively, by 

 

_

_

_

f i

m i

m i

f
M exp

f

 −
=  

 
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 (56) 
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f i
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f
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(57) 

 

 The updated individuals of position i in the male and 

female groups, after mating, can be given, respectively, by 

 

_ _ 1 _

__

( )

( ( )

1 ( )

) ( )

m i

f

m i m

i

i

m i

X ter XI I

I
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Q X t Ier X ter

+ = +  

  −
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f i

f i

f i f i

m i

X ter X ter g M rand Q

X ter X

I I

tI erI
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 −
 (59) 

  

 After carrying out the mating process, the females lay 

eggs, which may randomly hatch or not hatch. If the eggs 
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do not hatch, the current individuals in the male and female 

groups are kept without change. On the other hand, if the 

eggs have hatched, the worst individual from each of the 

male and female groups will be replaced as follows 

 

_ ( 1) ( )m worst min max minX Iter X rand X X+ = +  −  (60) 

 

_ ( 1) ( )f worst min max minX Iter X rand X X+ = +  −  (61) 

 

where 
_m worstX  and 

_f worstX  are the worst individuals in the         

male and female groups, respectively. 

 Finally, all the current individuals in each of the male 

and female groups, which resulted from carrying out any  

one of the previous updates in the current iteration, must be 

checked and set to be within their upper and lower bounds 

(i.e.,
maxX and

minX ). After ensuring that all the final 

individuals of the current iteration are within their upper 

and lower bounds, they are utilized to constitute the initial 

population for the next iteration. All the previous processes 

will be repeated until the executed number of iterations 

equals the preset maximum limit (i.e., 
maxIter ). 

 

 

 

Fig. 6. Flowchart of SO.  
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10. Simulation Results and Economic Analysis 

     The formulated optimization problem of the considered 

PV-battery stand-alone FCSEVs is solved, in this work, by 

using the SO. The code of this SO was designed by using 

MATLAB software. The individual of the considered 

optimization problem, in this work, contains two variables, 

which are 
PVN  and 

BN . Also, the used population size and 

the maximum number of iterations are set to 50 and 200, 

respectively.  

 The utilized different techno-economic parameters of the 

proposed PV-battery stand-alone FCSEVs are given in Table 

1. This table shows that the lifetime of the storage battery is 

10 yrs. Therefore, the system battery must be replaced twice 

before the project comes to its end. It is to be noted, here, that 

the shown values of the interest, inflation, and escalation rates 

are for Egypt during Jan 2022 [32, 40, 41]. 

 

Table 1. The techno-economic parameters of the proposed 

PV-battery stand-alone FCSEVs. 

Parameter Value 

Initial capital cost of PV module ($/kW) 550 

O&M cost of PV ($/yr) 10 

Salvage value of PV ($/kW) 5 

PV lifetime (yrs) 25 

Initial capital cost of storage battery ($/kWh) 300 

O&M cost of storage battery ($/yr) 2.75 

 SOCmin 0.3 

SOCmax 0.9 

Round-trip efficiency of system battery (%) 98 

Storage battery lifetime (yrs) 10 

Initial capital cost of DC-DC converters ($/kW) 100 

Initial capital cost of DC-AC converter ($/kW) 100 

Efficiency of all converters (%) 96 

Lifetime of converters (yrs) 25 

Nominal interest rate (%) 8.25 

Nominal inflation rate (%) 7.3 

Escalation rate (%) 7 

  

 The resulted SO-based optimum sizes of the components 

of the PV-battery stand-alone system are found to be 

4068PVN =  and 497.1BN =  The corresponding fitness 

function optimization (i.e., minimization of the considered 

objective function, which equals the LCC of the system) along 

the successive iterations of the SO is shown in Fig. 7, which 

indicates that the system is optimized after just thirteen 

iterations only, i.e., the SO has high convergence capability. 

 

 
Fig. 7. Optimization of the fitness function using SO. 

 

 Table 2 illustrates the SO-based optimum and selected 

ratings and the corresponding initial capital costs of all 

components included in the PV-battery stand-alone FCSEVs. 

This table indicates that the optimal ratings of the PV and the 

storage battery are 1200.06 kWp and 2545.152 kWh, 

respectively. The shown optimum rating of the battery storage 

can satisfy the daily load for 7.61 hrs, i.e., it can provide 7.61 

autonomy hours per day. It is shown that the designed 

optimum rating of the DC-DC converter of the EVs is 70.98 

kW. However, it is well-known that the available higher 

standard rating of this converter is 100 kW [4, 42], thus the 

standard converter was selected to be used in this work, as 

indicated in Table 2.   

 Also, it is worth mentioning that the series configurations 

of the PV array and the storage battery can be decided 

according to the desired value of the system DC bus voltage 

and the selected suitable duty cycle of the corresponding DC-

DC converter, whereas the corresponding parallel 

configurations can be decided according to the total number 

of the PV modules and battery units and their corresponding 

selected series configurations.  

 In order to evaluate the robustness of the utilized SO in 

optimizing the formulated optimization problem of the 

considered PV-battery stand-alone FCSEVs, the SO 

algorithm should be compared to other common optimization 

algorithms, e.g., grey wolf optimization (GWO), particle 

swarm optimization (PSO), genetic algorithm (GA), ant 

colony optimization (ACO), etc. In this work, the utilized SO 

algorithm is compared with three common well-known 

algorithms: GWO, PSO, and GA. 

 For a desired * 0.02,LPSP =  Table 3 shows a comparison 

among the resulted different optimum key parameters of the 

considered optimization problem by using the considered 

different optimization algorithms. These results include the 

optimized number of PV modules (
PVN ), optimized number 

of system storage battery units (
BN ), the PW of the total 

capital cost of the system (
cap PWC ), the PW of the net profit  
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Table 2. Optimum and selected ratings and initial capital costs of all system components.  

Item 
Component  

rating & cost 
PV array Storage battery 

Bidirectional DC-

DC converter of 

the storage battery 

DC-DC 

converter(s) of 

EVs (5 units) 

DC-AC 

converter 

Optimal 

Rating 1200.06 kWp 2545.152 kWh 668.09 kW 5 70.98 kW 600 W 

Cost  
660033 $ 

(Including cost of MPPT) 
763545 $ 66809 $ 35490 $ 60 $ 

Selected 

Rating 

1200.06 kW 

(NPV = 4068, NPVs=12, 

NPVp=339, Pmax =295W) 

2549.76 kWh  

(NB = 496, NBs=16, NBp =          

31, Csys_unit = 5.12 kWh) 

700 kW 5 100 kW 700 W 

Cost  
660033 $ 

(Including cost of MPPT) 
761856 $ 70000 $ 50000 $ 70 $ 

 

Table 3. Comparison among different optimum key parameters of the optimization problem using different optimization 

algorithms. 

Algorithm 
No. of  

PV modules 

No. of battery 

units  

PW of total capital cost 

 ( 106 $) 

PW of net profit  

( 106 $) 

LCOE 

(¢/kWh) 

TPB (yr) 

SO 4068 497.1 3.2209 5.5022 8.19 8.2528 

GWO 4087.05 496.058 3.2210 5.50199 8.19 8.2531 

PSO 4000 501 3.2212 5.5018 8.19 8.2535 

GA 3945 504.3 3.2224 5.5002 8.20 8.2568 

of the system at the end of the project lifetime, the levelized 

cost of energy (LCOE), and the payback period (
PBT ). It is 

indicated, from this table, that the utilized SO algorithm gives 

the best optimization results compared to the other 

optimization algorithms, where it gives the lowest total capital 

cost, the highest net profit, the lowest LCOE, and the lowest 

payback period (
PBT ). 

 Table 4 illustrates the yearly energetic results of the 

designed (i.e., selected) system. It should be noted, during the 

derivation of this table, that two essential conditions have to 

be satisfied to adopt and ensure the validity of the results 

included in this table: 

 

1. The energy balance principle has to be satisfied at the DC 

bus, i.e., the sum of the generated PV energy and the 

energy discharged from the battery at the DC bus has to 

equal the sum of the station total load consumption and the 

excess PV energy. 

2. The excess PV energy has to equal the sum of the battery 

charged energy at the DC bus and the dumped energy. 

 This table shows that the total generated PV energy 

throughout a year is 2794.6 MWh/yr. Also, the yearly excess 

PV energy is 1490.4 MWh/yr with a percentage of 53.33 % 

relative to the yearly generated PV energy, whereas the yearly 

unmet load is 36.274 MWh/yr with a percentage of 2.02 % 

relative to the yearly desired station total load consumption of 

1793.4 MWh/yr. It is to be noted that the shown excess PV 

energy can be either stored in the battery storage or dissipated 

in the dump load; depending on the designed optimal energy 

management strategy. In addition, this table shows that the 

battery charged and discharged energy per year are 480.32 

MWh/yr and 471.82 MWh/yr, respectively. Thus, for the used 

bidirectional DC-DC converter of the system storage battery 

having an efficiency of 96%, the corresponding values of 

these energies at the DC bus will become 500.33 MWh/yr and 

452.95 MWh/yr, respectively. 

 Figure 8 shows the generated PV output power of the 

designed PV-battery stand-alone FCSEVs for every hour 

during the year. Also, Figs. 9 and 10 show the corresponding 

storage battery power and SOC, respectively. 
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Table 4. Yearly energetic results of the designed system. 

Generated PV 

energy 

(MWh/yr) 

Station total load 

consumption 

(MWh/yr) 

Excess PV 

energy 

(MWh/yr) 

Storage battery 

charged energy 

(MWh/yr) 

Storage battery 

discharged energy 

(MWh/yr) 

Dumped 

energy 

(MWh/yr) 

Unmet load 

(MWh/yr) 

2794.6 1757.2 1490.4 480.32 471.82 990.05 36.274 

Therefore, Fig. 8 shows that the PV output power varies in 

direct proportion to the incident solar insolation. Whereas, 

Figs. 9 shows that the system battery is in charging or 

discharging mode depending on the generated PV power, the 

desired station total load demand, and on the battery SOC. 

Noting, here, that the values of the battery power are 

preadjusted to be positive during discharging and negative 

during charging, which is indicated in Fig. 9. In addition, Fig. 

10 shows that the system storage battery is charged and 

discharged safely, because the battery SOC always stays 

within the preset designed minimum and maximum values of 

0.3 and 0.9, respectively.  

 The excess PV power, the dumped power, and the deficit 

in the station total load power are shown in Figs. 11, 12, and 

13, respectively. It is indicated from these figures that due to 

the long daylight hours during summer months and the 

corresponding high solar insolation intensity, there will be an 

excess in the generated PV power, which leads to a 

corresponding excess in the dumped power during these 

months, as shown in Figs. 11 and 12, respectively. Whereas, 

on the other hand, during the winter months, there will be 

short daylight hours and low solar insolation intensity. Thus, 

the generated PV power during these months will be lower 

than that of the summer months, which leads to a 

corresponding deficit in the station load power, as shown in 

Fig. 13. 

  Figure 14 illustrates the station total load served by the 

PV-battery stand-alone FCSEVs. Thus, this figure indicates 

that the load is fully satisfied during the summer months while 

it is partially satisfied during the winter months, as explained 

previously.  

 

 
Fig. 8. Generated PV output power. 

 

 

Fig. 9. Storage battery power.  

 

 

Fig. 10. SOC of the system battery.  

 

 
Fig. 11. Excess PV power. 

 

 
Fig. 12. Dumped power. 
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Fig. 13. Deficit in station total load power. 

 

 

Fig. 14. Station total load served. 

 

      The PWs of the accumulated annual cash flow of the 

designed PV-battery stand-alone FCSEVs over the project 

lifetime is shown in Fig. 15. This figure indicates that the PW 

of the accumulated annual total capital cost will be linearly 

increased due to the accumulation of the incurred annual 

O&M costs and has two upward steps due to the accumulation 

of the replacement costs of the utilized system storage battery. 

The final value of the PW of the accumulated annual total 

capital cost at the end of the project lifetime is called the PW 

of the total capital cost, which is the main required cost to 

establish the designed PV-battery stand-alone FCSEVs. 

 Also, this figure indicates that the PW of the accumulated 

annual saving of the system (which is the difference between 

the PW of the accumulated annual income minus the PW of 

the accumulated annual outcome) varies linearly downwards 

and has negative values, since there is no outcome from the 

designed system and also since the values of the annual 

income of the system (which is the annual income of the 

electrical energy sold to EVs) are fixed over all years. Thus, 

the PW of the accumulated annual saving of the system is 

shown to be linearly decreasing downwards and having a 

negative slope as shown in Fig. 15. Noting, here, that the value 

of this slope equals the value of the annual saving of the 

system.  

 At the same time, this figure indicates that the 

accumulated annual total system cost (which is the algebraic 

sum of the PW of the total capital cost of the system and the 

PW of the accumulated annual saving of the system) is shown 

to be decreasing linearly from positive values to negative 

values with a slope equals the PW of the annual total system 

cost. Noting, here, that the final value at this line (i.e., at the 

end of the project lifetime) is called the PW of the net profit 

of the project, as shown in Fig. 15. 

 Finally, Table 5 illustrates the main economic parameters 

of the designed PV-battery stand-alone FCSEVs that can be 

used to decide the financial impact and profitability of the 

project. It is shown that the designed PV-battery stand-alone 

FCSEVs has slightly lower values of the main economic 

parameters compared to the optimal PV-battery stand-alone 

FCSEVs of Table 3, except for the value of the PW of the net 

profit; due to using nearly one unit of storage battery lower 

than the optimal PV-battery stand-alone FCSEVs, which 

leads to a corresponding reduction in the battery O&M and 

replacement costs.  

 

Fig. 15. Accumulated cash flow of the designed PV-battery stand-alone FCSEVs over the project lifetime.  

 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. E. A. Omran et al., Vol.12, No.4, December 2022 

1786 

 

  

Table 5. Main economic parameters of the designed PV-battery stand-alone FCSEVs. 

PW of total capital cost ( 106 $) PW of net profit ( 106 $) LCOE (¢/kWh) TPB (yrs) 

3.2160 5.5049 8.18 8.2422 

11. Conclusions 

 In this paper, an optimization problem for sizing a 

proposed PV-battery stand-alone FCSEVs has been 

presented. The considered optimization problem has been 

formulated, in this work, to achieve a minimum total cost for 

the proposed system and to guarantee high reliability for the 

station total load. The reliability of the proposed system has 

been estimated in terms of the LPSP of the system during one 

typical year. The energy management strategy has been 

designed to optimally manage the energy flow within the 

considered system; so as to serve the station total load reliably 

and to safely charge and discharge the system battery.  

 A recent optimization algorithm, known as SO, has been 

utilized to solve the formulated optimization problem by 

using MATLAB software. The yielded results have indicated 

that the SO converges very well and it is feasible for sizing 

the proposed system. Also, the yielded results have indicated 

that the SO is more robust in satisfying the desired ultimate 

goals of the considered optimization problem compared to 

other common meta-heuristic algorithms. In addition, the 

economic viability of the designed PV-battery stand-alone 

FCSEVs has been decided based on carrying out a techno-

economical study for the considered system. Finally, it can be 

concluded that the investment in establishing PV-battery 

stand-alone fast charging stations for electric vehicles is 

encouraging and profitable. Thus, the Egyptian government 

should encourage and promote the establishment of such 

charging stations, especially along the highways that are far 

away from the utility grid. 
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