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Abstract- This article aims to integrate machine learning (ML) methodologies and Finite Element Analysis (FEA) to analyze 

wind turbine blades made of composite material. The methods for wind speed forecasting were examined in this article. A 

suitable technique was employed for creating synthetic wind speed over four years in Baghdad, Iraq, and applied to structural 

analysis. Composite materials were considered to simulate a small horizontal-axis wind turbine blade. Baghdad's long-term wind 

speed pattern was established after the machine learning forecasting models based on autoregressive integrated moving averages 

(ARIMA). This wind forecast prediction was then used to mimic the dynamic loads acting on the blade. The structural behavior 

of a wind turbine under various loads was modeled using ABAQUS software employing three composite wind blades with 

varied stacking sequences. Hashin's criterion determined the structure's failure modes and most vulnerable areas. The main 

objectives are identifying an integrated methodology requiring high accuracy in blade modeling and wind forecasting. Damage 

analysis has been developed for small horizontal-axis wind turbine blades to evaluate the optimum stacking sequences of 

composite materials. 

Keywords Failure analysis, Fault detection, composite materials, FEA, Hashin's criterion 

 

 1. Introduction  

Wind energy resources are one of the most rapidly 

expanding hi-technologies in the energy area since they are a 

renewable, green, and environmentally friendly source of 

electricity. It is well recognized that the rotor blades of wind 

turbines are the most crucial component of the entire wind 

turbine system [1-2]. Composite materials are widely used in 

fabricating wind turbine blades because of their unique 

properties, including high specific stiffness and specific 

strength, better designability, high anti-fatigue, and anti-

failure performance, ease of integral molding large-area parts, 

and excellent corrosion resistance. The development of 

immense power, low weight, and high-performance ratio wind 

turbine blades have resulted in large-scale wind turbine blades 

mainly built of reinforced material and thermosetting base 

resin. They were now produced using a layup process [3]. 

However, wind speed prediction is essential to the 

development of wind power generation as well as the design 

of power equipment such as turbines. Because wind speed is a 

variable that changes randomly, researchers are concentrating 

their efforts on constructing more robust statistical models that 

can rapidly handle vast volumes of environmental data and 

accurately anticipate wind speed patterns. Smith et al. [4] 

pointed out that this helps in properly expecting wind 

generation and reduces the facility's cost. The design of wind 
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turbine blades is also impacted by the precision with which 

wind parameter predictions can be made. According to [5-6], 

dynamic stall, wind turbulence, and unstable aerodynamic 

effects are caused by unexpected and nonlinear wind speed, 

which affects how much useful time the wind turbine blades 

have left. There has been extensive study done on the dynamic 

analysis of wind turbine blades. Important topics like 

aeroelastic analysis, stability and flutter, fatigue analysis, 

transient analysis, and delamination growth studies have 

received much attention throughout time [7]. 

 The construction of wind turbine blades (WTBs) was 

concentrated on the that the wind's kinetic Energy may be 

recovered and transformed into mechanical Energy, which can 

then be turned into electrical power with the assistance of a 

generator. WTBs experience a variety of aerodynamic, 

centrifugal, and gravitational loads while in use, which causes 

the moving rotor to experience significant fatigue stresses, 

especially at the blade transition zone [8]. For offshore wind 

turbine blades, endurance and rigidity are essential, given the 

upkeep requirements for renewable marine energies. 

 Within this framework, the development of wind energy 

conversion technologies will rely mainly on composite 

materials [9]. Because of their superior mechanical properties, 

composite materials were used in various applications, 

including Energy, aeronautics, and automotive. However, a 

lack of understanding of composite materials' impact and 

fatigue characteristics causes the structure to be over-

dimensioned, resulting in increased manufacturing costs [10-

12]. WTBs comprise glass and carbon fiber composite 

materials to provide strength and durability. They are 

constructed using adhesive bonding technology to meet their 

large size. However, the adhesive's thickness may impact the 

structural behavior. They have relatively low stiffness, which 

causes them to soften before displaying a visible crack. 

Therefore, the increased deformation can "hide" the fracture in 

areas that are not apparent. However, the adhesive has already 

been plastically distorted to the point where it can no longer 

prevent the crack from propagating [14]. Hu et al. [15] 

proposed a technique for assessing fatigue that involves 

modeling a random wind field, finite element stress analysis, 

aerodynamic analysis, and a simulation of fatigue damage. 

The accumulated damage to the composite blades of the wind 

turbine was calculated to achieve reliability-based design 

optimization, taking into account wind load unpredictability. 

Kong et al. designed, produced and evaluated a 750 kW 

medium-scale E-glass/epoxy composite blade. [16]. The 

authors devised a method for creating structures that included 

aerodynamic design, studying dynamic and static loads, 

designing and analyzing structures, and figuring out how long 

they would last due to wear and tear using the random load 

spectrum.  

Recently, numerous researchers have increasingly utilized 

machine learning (ML) algorithms to forecast wind energy. As 

wind speed is considered the primary factor that causes 

dynamic stresses on turbine blades, more research is being 

done on new techniques for forecasting wind speed. As 

machine learning techniques progress, artificial intelligence 

models like fuzzy logic and artificial neural networks (ANN) 

are being used more frequently.  

 Mehmet Yesilbudak et al. [17] developed and utilized a 

KNN classifier for short-term wind speed forecasting in 2-

dimensional input space. The suggested method used a 2-

dimensional input space to produce forecasts at 10-min 

intervals. Also, the same researcher with his group [18] 

suggested a new way to predict wind speed in the very short 

term using the KNN classification approach to predict wind 

speed parameters in n-tuples inputs and looks at how the input 

parameters and distance metrics affect wind speed prediction. 

The KNN classification model, which uses wind direction, air 

temperature, and atmospheric pressure as three-fold inputs, 

gave the worst wind speed prediction for k = 1 in the 

Minkowski distance metric.  

In another research, Wang et al. [19] suggested a hybrid 

model for daily wind forecasting based on Bayesian model 

averaging and ensemble learning (BMA-EL). This model can 

more accurately predict wind power under varying weather 

conditions. Ilhami Colak and colleagues [20] focus on multi-

time series and time-scale modeling in forecasting wind speed 

and wind power. Different statistical models are evaluated, 

rated, and judged over a wide range of periods. Multi-time 

series modeling, such as moving average (MA), weighted 

moving average (WMA), autoregressive moving average 

(ARMA), and autoregressive integrated moving average 

(ARIMA), were all used in multi-time series modeling. 

Erdem and Shi [21] predicted wind speed and direction 

using four autoregressive moving averages (ARMA) methods. 

As a measure of prediction quality, average absolute error 

(MAE) is used to compare the results. The component model 

predicted wind direction more accurately than the 

conventional ARMA model. In contrast, the opposite was 

observed for wind speed prediction. The ARMA model was 

used by Chen and Folly [22] to predict wind energy and wind 

speed for one hour. The accuracy of this model's wind speed 

and power predictions is lower than that of neural networks 

and neuro-fuzzy inference techniques. Sfetsos employed the 

autoregressive integrated moving average (ARIMA) in [23] 

for multi-step forecasting, averaging data from 10-minute 

intervals and then averaging again to provide mean hourly 

estimates. This model's output is superior to traditional 

methods considering historical mean hourly wind speeds. 

Kavasseri and Seetharaman [24] used the fractional-ARIMA 

model to forecast wind power for one and two days. Model 

flaws were calculated and contrasted with the persistence 

model. ANN and ANN-based hybrid model was developed by 

Cadenas and Rivera [25] for long-term wind forecasting.  

Another model accounts for several characteristics, 

including autocorrelation, non-Gaussian distribution, and 

diurnal non-stationarity [26] proposed two-hybrid wind speed 

prediction models: ARIMA-Kalman and ARIMA-ANN. Both 

models function well and may be applied to non-stationary 

wind speeds, as demonstrated by the results. Predicting wind 
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speed was made possible based on a hybrid model combining 

ANN, ARIMA, and the wavelet transform developed by De 

Alencar and De Mattos Affonso [27]. Therefore, it is important 

to utilize an integrated system that combines the power of 

machine learning algorithms, like ARIMA, for long-term 

forecasting of wind, taking into account numerous 

environmental parameters to calculate wind load.  

The literature review on wind modeling and wind turbine 

blade analysis reveals that although there are numerous studies 

on wind prediction methods and blade structural and fatigue 

analyses, there are very few studies for an integrated 

framework beginning with long-term wind forecasting, 

aerodynamic and structural analyses, and fatigue analysis of 

composite horizontal-axis wind turbine blades with limited or 

no raw wind data. In other words, a system that can combine 

the strength of ML algorithms like ARIMA will be developed 

in this research. This kind of system can be used to analyze the 

damage caused to long wind turbine blades by employing a 3D 

CAD and FE model with a high accuracy level. 

 The unique contribution of this study is that it compares 

the various machine learning wind forecasting models to select 

the best suitable for damage analysis applications. It develops 

long-term wind profile predictions for sites that do not have 

enough historical wind measurement data to a good level of 

accuracy;  it performs high-fidelity three-dimensional (3D) 

modeling and analysis considering random wind loads for 

damage  analysis.  The mean focus is on developing an 

integrated procedure incorporating long-term wind forecasting 

methods for blade damage analysis. The predicted long-term 

wind load is then used in the damage analysis, considering 

how the wind load changes at a chosen location in Baghdad, 

Iraq. 

The article's organization is as follows: the following 

section discusses the source from which the wind data were 

obtained. Section 3 deliberates the use of machine learning 

techniques for predicting wind speed. Sections 4 and 5 discuss 

the main blade design and the composite materials used. 

However, the considered failure criterion is presented in 

Section 6. After that, the blade modeling based on FEA is 

discussed in Section 7, and the results are presented in Section 

8. Finally, the article is wrapped up in Section 9. 

 

 2. Wind Data Source 

The current study adopted the wind speed dataset from the 

first of January/2016 to the first of January 2022 in Baghdad 

city/Iraq, from the OpenWeatherMap website. This data 

gave us the needed information to anticipate the wind speed 

profile [28]. A non-stationary time series, such as the one 

shown in Figure 1, would typically exhibit non-stationary 

features such as time-varying mean and variance. Non-

stationary time series information has some characteristics, 

such as the inability to rapidly infer the typical patterns from 

the signal and the need for careful attention when 

formulating forecasts using this data. Hence, the ARIMA 

modal will be utilized for wind prediction, which will be 

explained further in the next section. 

  

Fig. 1. Wind speed time series.  

3. Machine Learning Approach 

Machine learning is a branch of Artificial Intelligence (AI) 

that has grown out of pattern recognition. Machine learning 

(ML) is a subfield of computer science and a subdiscipline of 

artificial intelligence whose foundation is a set of statistical 

methods that focus on building predictive models using 

learning and training data. Widespread applications of 

machine learning techniques have previously been adopted to 

forecast wind speed distribution [29-30]. Due to their capacity 

to manage various variables through self-improvement without 

explicit instructions [31-32], machine learning models have 

attracted considerable interest. These algorithms are divided 

into four major classes: supervised learning, unsupervised 

learning, semi-supervised learning, and reinforcement 

learning. The most extensively used algorithms for prediction 

are supervised learning algorithms, which give a learning 

scheme with "labeled data" and are designed to classify fresh 

data sets [33].  

3.1. ARIMA Modal 

Autoregressive Integrated Moving Average (ARIMA) is 

one of the most straightforward and successful machine 

learning algorithms for forecasting time series; it combines 

autoregression and moving average steps [34]. The ARIMA 

technique's diagnostic control, identification, and estimation 

phases are divided into three steps [35]. In the first step, called 

diagnoses control, stationarity control is used on the time series 

data given. A stationary time series is one in which the mean, 

standard deviation, and covariance change over time. 

Stationarity is a prerequisite for the ARIMA model, which 

makes estimates accurate and helpful. Assume that the time 

series presented is not stationary. In this instance, the 

stationarity is reassessed once the requisite degree of 

difference (d) has been applied. Up until a consistent pattern is 

created, this is repeated many times. However, d is a positive 

number indicating the difference's magnitude. If the difference 

is measured d times, the model's ARIMA integration parameter 

is set to d. The identification technique is then applied to the 
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stationary data that was collected. The parameters p and q are 

not used in this procedure. The parameters (p) and (q) for the 

moving average (MA) and autoregressive (AR) transactions 

are discovered in this step. The ARIMA model is discussed 

using ARIMA parameters, which are p, d, and q [36]. Where p 

is the autoregressive model (AR) degree, d is the difference 

degree, and q lagged prediction, as shown in the following 

Equation: 

𝑦𝑡 =  ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ø𝑝𝑦𝑡−𝑝 + δ + a𝑡 − θ1𝑎𝑡−1 −

θ2 𝑎𝑡−2 . . 𝜃𝑞 𝑎𝑡−𝑞                              (1) 

  𝑦𝑡  , 𝑦𝑡−1 , 𝑦𝑡−𝑝 are d-order difference observations,  

ø1 , ø2, … ø𝑝 are coefficients of the order difference 

observations, δ is the constant value, 𝑎𝑡 , 𝑎𝑡−1, 𝑎𝑡−2 ,…, 𝑎𝑡−𝑞  

are error values, and θ1, θ2 ,..θ𝑝 are errors coefficients [37]. 

Here, 𝑦𝑡  is the data that has been linearized, and 𝑎𝑡−1 is the 

error in the moving average for time t.  

 To obtain the forecast data, you must first estimate p, q, 

and d. To do this, separate the data and look for a stationary 

trend in the partial autocorrelation function (PACF) and 

autocorrelation function (ACF) plots for p and q, respectively. 

So, the last lag after PAC stops is used to figure out the value 

of p, and the last lag after ACF stops is used to figure out the 

value of q. After the identification phase, the estimation phase 

finds ∅𝑝  and θ𝑝 Parameters using maximum likelihood 

estimation or back-casting methods. When the model is fit, the 

diagnostic checking on the residuals' autocorrelation plots is 

performed to check for any large autocorrelations. p and q are 

changed if they need to be. This is the last part of the diagnostic 

check. 

3.2. Model Accuracy Evaluation 

Root Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and Mean Absolute Error (MAE), 

are some of the most often utilized parameters to analyze the  

accuracy or certainty of the models developed for calculating 

wind velocity forecasts. The square root of the mean of the 

square of all the errors is called the root mean square error 

(RMSE). In both statistics and machine learning, RMSE in 

regression is highly popular and is regarded as a superior all-

purpose error metric for numerical predictions. A larger RMSE 

denotes significant differences between the expected and 

actual values. The fact that the errors are squared, which results 

in a much bigger weight ascribed to larger errors, is another 

significant characteristic of the RMSE [37]. 

Consequently, an error of 10 is 100-times worse than an 

error of 1. The MAE is the simple mean of absolute errors. 

Absolute error is the difference between the predicted value 

and the actual value. The MAE informs us about the average 

magnitude of the forecast error. 

They are using the MAE, and the error increases linearly. 

Therefore, a 10-point error is 10-times worse than a 1-point 

error. Since MAD is a relative measure, MAPE scales MAD to 

be expressed in percentage units rather than the variable's 

units. MAPE is a relative error metric that compares the 

forecast accuracy of time-series models by utilizing relative 

errors to prevent positive and negative errors from canceling 

one another out. However, RMSE, MAE, and MAPE are 

determined using the following equations [38]: 

   𝑅𝑀𝑆𝐸 = √(
1 ∑ (𝑦𝑡−𝑓𝑡)2𝑛

𝑡=1

𝑛
)                            (2) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡 − 𝑓𝑡|𝑛

𝑡=1                               (3) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑦𝑡−𝑓𝑡

𝑦𝑡
|𝑛

𝑡=1                              (4) 

Where n is the number of errors, yt is the actual value, and 

it is the forecasted value. As   seen in Equation (2), the primary 

objective of MAPE is to demonstrate whether or not the data 

are stable (i.e., whether or not the variance is significant). For 

this reason, MAPE is substantial in wind power prediction. It 

shows that RMSE is a quadratic scoring rule [38]. Forecast 

differences are squared, added, and averaged over the sample 

size. Then, the average square root is calculated.  

Akaike Information Criterion (AIC) is an information 

criterion commonly used for model selection. Also, the 

Bayesian Information Criterion (BIC) is a common criterion 

for choosing ARIMA-based models [39]. 

The wind speed data set was used as training data for 

building the ARIMA model. The Orange software was 

employed to build the ARIMA model to determine the wind's 

autocorrelation and partial autocorrelation plots. As shown in 

Table 1, the AR, MA, and integration parameters were 

discovered to be of the ARIMA (1,1,2) series using the Orange 

software function "estimate," which has lowermost AIC and 

BIC values when compared to the other trials. When choosing 

an ARIMA-based model, AIC and BIC criteria are often used. 

The parameters of the ARIMA (1,1,2) model are shown in 

Table 1, illustrating how well it matches the data. Figure2 

depicts the ARIMA wind speed prediction for the upcoming 

five years.  

  Table 1. ARIMA models' comparison. 

 ARIMA (p,d,q) RMSE MAE MAPE R2 AIC BIC 

ARIMA(1,0,0) 1.25  0.71 0.282 0.225 204.7 211 

ARIMA(1,1,1) 1.297 0.797 0.293 0.198 206.8 215.1 

ARIMA(1,1,2) 1.209 0.806 0.279 0.303 201 211.4 

ARIMA(2,1,1) 1.295 0.897 0.291 0.201 208.5 218.8 

ARIMA(2,1,2) 1.251 0.885 0.291 0.254 206.8 219.3 

ARIMA(2,1,3) 1.203 0.823 0.278 0.31 204.6 219.2 
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Fig.2. Wind speed forecasting by ARIMA 

 

4. Blade Structure and Design  

The most critical part of an Airfoil is the material of choice 

when constructing wind turbine blades, as the whole blade 

consists of airfoil sections. The rotation of the blade is caused 

by the lift created by this airfoil at each segment. The airfoil 

shape of the blade was generated using the Blade Element 

Momentum (BEM) theory and the Qblade program, free 

software dedicated to the simulation and design of wind 

turbines. This profile includes coordinates for the profile's 

points. These coordinates can create a SOLIDWORKS profile 

of the NACA 4412 standard. Figure (3-4). illustrates the airfoil 

section and the model, respectively. The model studied in this 

article has been considered here to  develop a blade of 400 

mm in length for a small horizontal axis wind turbine of 600W 

power output [40]. 

 

Fig.3. 4412 airfoil section 

 

Fig.4. The WTB model 

5. Blade Material 

Composite materials, particularly wind Energy, provide 

new prospects because of their enhanced mechanical 

properties. Nevertheless, their behavior can be very different 

because of flaws made or caused by them in service [41-44]. 

The bulk of wind turbine components was manufactured of 

GFRP (glass-fiber-reinforced polymer), which is easy to work 

with, does not require advanced technology reasonably priced, 

and has suitable elastic properties. Glass fibers have primarily 

replaced steel in recent years, as they are stronger and lighter. 

Furthermore, fatigue resistance is significantly more crucial 

[45-48]. However, a lack of knowledge of the behavior of 

composite materials causes significant extra costs related to the 

manufacturing of structures. The structural design demands 

materials with a high strength-to-weight ratio, a high stiffness-

to-weight ratio, high fatigue resistance, and a low density. The 

purpose of this section is to evaluate the behavior of the blade 

when different fiber orientations are considered, such as 

[45/0/-45]s, [0/±45/90]s, and [0/90]s. For the remainder of this 

investigation, the three composites codes will be referred to as 

S1, S2, and S3, respectively, for [45/0/-45], [0/±45/90], and 

[0/90], respectively, as shown in Figure 2. The material 

parameters are stated in Table 2. 

Table 2. Mechanical properties of the materials used in 

the analysis of wind turbine blades [49] 

Parameter    GFRP 

(E-glass/Epoxy) 

Density ρ (kg/m3) 1800 

Longitudinal modulus, 

E11 (GPa) 

143 

Transverse moduli, E22 

(GPa)=E33 (GPa) 

97.2 

Principal Poisson’s ratio, 

υ12 

0.28 

Principal Poisson’s ratio, 

υ23= υ13 

0.23 

Shear moduli, G12 (GPa) 3.6 

Shear moduli, G23 = G13 

(GPa) 

5.6 

 

 

Fig. 4. The material cod of three samples in this study 
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6. Hashin Failure Criterion 

The Hashin failure theory was used to develop a damage 

evaluation for glass-fiber-reinforced polymer (GFRP) 

composite blades. The damage behaviors were described using 

common failure mechanisms such as fiber tension and 

compression and matrix tension and compression. The 

occurrence of damage in a composite material is referred to as 

damage initiation [50]. The several failure mechanisms are 

examined using Hashin's criterion, which uses many constraint 

components. Hashin's (1980) [51] criterion's failure modes are 

connected to matrix and fiber failure modes. They involve four 

distinct damage initiation processes for composite materials: 

matrix failure (HSNFCCRT), fiber failure (HSNFCCRT), and 

fiber compression (HSNFTCRT) (HSNFCCRT). The tension 

between (HSNMTCRT) and (HSNMCCRT) (HSNMTCRT). 

According to [50], the "Hashin's criteria" for fiber-reinforced 

composites integrated into ABAQUS are based on Hashin. 

Hashin and Rotem's (1973) [50] proposed four forms of 

equations for failure, presented in Table 3, which are 

represented by 𝑓1, 𝑓2, 𝑓3, and 𝑓4. The material properties that 

appeared in these equations can be found in Table 2.  

 

Table 3. Hashin's failure criteria [50] 

Failure mode and 

condition Failure 

criteria 

Failure mode and condition      

Failure criteria 

Tensile fiber failure 

for 𝝈𝟏𝟏⩾0 𝒇𝟏 ≥1 
(

𝜎11

𝑋𝑇
)

2

+ 𝛼 ∗ (
𝜎12

𝑆𝐿𝑇
)

2

= 𝑓1 𝑤ℎ𝑒𝑟𝑒 0
≤ 𝛼 ≤ 1 

Compressive fiber 

failure for   𝝈𝟏𝟏<0 𝒇𝟐                     
(

𝜎11

𝑋𝑐
)

2

= 𝑓2 

Tensile matrix failure 

for 𝝈𝟏𝟏+𝝈𝟑𝟑>0 𝒇𝟑    ≥1 
(

𝜎22

𝑌𝑇
)

2

+ (
𝜎12

𝑆𝐿𝑇
)

2

 = 𝑓3 

 

Compressive matrix 

failure for 𝝈𝟐𝟐+𝝈𝟑𝟑<0 

𝒇𝟒 ≥1 

        (
 𝜎22

 2𝑆𝑇𝑇
)

2

+ [(
𝑌𝑐

2𝑆𝑇𝑇
)

2

− 1] ∗

𝜎22

𝑌𝐶
+ (

𝜎12

𝑆𝐿𝑇
)

2

= 𝑓4 

In the above equations, the XT is the longitudinal tensile 

strength. Xc  is the compressive, tensile stress, YT  and Yc  are 

the transverse tensile and compressive strength, respectively, 

and STT and SLT represent the ply's longitudinal and transverse 

shear strength. σ11, σ22, and σ12 define the components of an 

effective stress tensor, and α is the contribution of shear stress 

to the fiber. 

7. Modeling Using the Finite Element Method. 

ABAQUS, an FEA software, has investigated the 

structure's loads, deformation, and damage initiation. The 

boundary conditions of the "Encastre" type are applied to the 

composite blade at the root region in the investigation findings 

of the numerical study acquired by fixing the root of the rotor 

blade and leaving the tip of the rotor, where the blade is fixed 

where u1 = u2 = u3 = ur1 = ur2 = ur3 = 0, as shown in figure 

3. 

 

Fig. 5. The boundary condition applied to the blade 

 

7.1. Loads Applied On the Blade 

For estimation of the dynamic load applied on the blade, 
the predicted wind speeds obtained for five years based on the 

developed ARIMA model in Section 11 are utilized to compute 

the dynamic loads using the BEM method. According to [52-

53], the flatwise and edgewise load caused by the wind is the 

primary source of dynamic loading on the blade that causes 

damage. The drag and lift forces are calculated using Equations 

(4) and (5), which are as follows: 

𝐹𝑑𝑟𝑎𝑔 =  
1

2
𝜌 𝑉2𝐴 𝐶𝑑                        (5) 

𝐹𝑙𝑖𝑓𝑡 =  
1

2
𝜌 𝑉2𝐴 𝐶𝑙                          (6) 

𝐹𝑟𝑒𝑠𝑢𝑙𝑡 =  √(𝐹𝑑𝑟𝑎𝑔)2+(𝐹𝑙𝑖𝑓𝑡)2              (7) 

𝐹𝑐 =  0.5𝑚𝑅𝜔2                               (8) 

𝐹𝑑𝑟𝑎𝑔 and 𝐹𝑙𝑖𝑓𝑡 are the drag and lift forces operating on the 

blade, as depicted in Figure 6b. V stands for wind velocity and 

air density, A for the rotor's swept area, and 𝐶𝑑 and 𝐶𝑙 for the 

blade profile's drag and lift coefficient (0.86 and 0.0126, 

respectively) for the airfoil considering the angle of attack at 

4.1°and a Reynolds number of 1 million, as referred from   

[54]. The mass of the blade, m, equals the force of gravity, Fg, 

and the centrifugal force 𝐹𝑐 , equals to 𝑚𝑅𝜔2 where R is the 

blade span's radius and angular rotor speed. Displays the 

critical variables affecting the dynamic loads on the present 

blade. The loads applied on the blade are calculated from the 

above equations. And then, the pressure was estimated on the 

13 blade sections and used the blade's pressure in ABAQUS 

finite element analysis software, as shown in Figure (6).  

For validation purposes, the obtained results in this 

research were compared to the aerodynamic analysis used by 

researchers, such as [55-56] for dynamic blade load 

calculation. Their similarity was very close. 
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Fig. 6. A) Aerodynamic forces on the blade [52] B) 

Distribution of aerodynamic load    

 7.2. Mesh Analysis 

The finite element method (FEM) is based on dividing the 

blade geometry into tiny domains according to the kind of 

mesh used to solve the problem. The higher and more precise 

the FEM solution, the finer the mesh size used to achieve it. 

The present model employs shell elements of type SC8R with 

a mesh size of 20 mm throughout the whole geometry. Figure 

7 shows the mesh size of the blade. The shell elements provide 

the same level of precision as solid elements at a lower cost of 

calculation than solid elements. According to [57], it is better 

to use solid components because of their flexibility. 

  

 

                           Fig. 7. The mesh of the blade 

 

 

 

 

 

8. Results and Discussion 

In this study, the Hashin failure criterion has been chosen 

to describe the progression of damage to the blade 

(occurrence). Comparing the outcomes of the three composite 

blades subjected to various loads, Figure (8) illustrates the 

fundamental displacement values that the blade with three 

stacking sequences of glass fibers exhibits at its tip. When 

comparing the findings of the two composite blades (S2 and S3) 

under the same load conditions, it is clear from Figure (8-9) 

that the blade (S2) has fundamental displacement values at its 

tip and exhibits great resistance to damage and displacement.  

 

Fig. 8. Deformation of the blade tip  

For Hashin's damage failure criterion result, Figures 

(10,11, and 12) illustrate the damage to composite blades (S1, 

S2, and S3) during the same wind storm. The damage modes 

are localized and rely on the composite material employed and 

the wind speed. Each material group has equal damage. The 

damage values for both materials are virtually comparable at 

the same velocity. The model displays fiber and matrix modes 

damage happens in places with much stress, like near the 

blade's root and the level of the spars. Because of the 

simulation's findings, we can identify and forecast the zones 

susceptible to damage and failure and estimate the Influence 

that the stacking sequence parameters have. On a microscopic 

scale, the damage manifests as cracking in the matrix, 

disruption of the contact between the fibers and the matrix, 

delamination, and failure of the fibers. The internal plies 

around the blade's root and at the spar level are the high-stress 

concentration zones where the damage takes place. The 

investigation came to the following conclusion A thickness 

transition between those zones causes the damage that appears 

in the area of blade assembly with the hub. 
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Fig. 9. Deformation at the tip of the blade (mm) 

 

 

Fig.10. Hashin’s damage criterion of wind turbine bladeS1 

 

 

Fig.11. Hashin’s damage criterion of wind turbine bladeS2 
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5. Conclusion 

 This work proves that numerical simulation may be a 

powerful technique for reproducing the experimental 

approach; it allows for predicting failure modes and 

identifying sensitive zones on WTBs using the finite element 

method. Firstly, the wind pattern for the city of Baghdad in 

Iraq was predicted utilizing the machine learning modal based 

on ARIMA using Orange software. These models were created 

based on the mean wind speed and Weibull distribution 

statistics available for Baghdad city. Accordingly, the ARIMA 

machine learning (ML) methodology was chosen because of 

its high level of precision, and the wind loads for five years 

were calculated for the predicted wind pattern. After the load 

prediction step, it is divided on the blade surface area to 

convert it to pressure and fed to the ABAQUS software for 

simulation purposes. The simulation findings enable us to 

detect and anticipate the vulnerable zones to damage and 

failure and estimate the Influence of the stacking sequence 

parameters. The damage occurs at the microscopic scale with 

matrix cracking, breaking the fibers–matrix interface, 

delamination, and fiber failure. The Hashin criteria for failure 

mode calculating results and experience are used for the three 

types of fiber layup systems. The optimal layup schema S2 was 

determined through Hashin failure analysis of various 

structures. 
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Table of Acronyms 

 

Acronyms Meaning 

machine learning ML 

Finite Element Analysis  FEA 

wind turbine blades  WTBs 

Autoregressive Integrated Moving 

Average  

ARIMA 

Root Mean Square Error, and  RMSE 

Mean Absolute Percentage Error  MAPE 

Mean Absolute Error  MAE 

Akaike information Criterion   AIC 

BayesianInformation Criterion  BIC 

Glass-fiber-reinforced polymer GFRP 

HSNFTCRT Fibertensile initiation criterion 

HSNFCCRT Fiber compressive initiation criterion. 

HSNMTCRT 

 

Matrix tensile initiation criterion. 

HSNMCCRT Matrix compressive initiation criterion 

 

 

 

 

 

  


