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Abstract- A new short-term photovoltaic (PV) power forecasting technique based on a polynomial model is proposed in this 

paper. This technique has been compared with two forecasting methods. The first method is based on deep learning and uses a 

recurrent neural network (RNN) to extract features from a two-dimensional matrix of PV generation data. The second method 

employs the Steadysun solution, which was developed by a French company and gives forecasts for up to 30 minutes. The 

prediction is based on data from the University of Lille "RIZOMM" plant. The main objective of this study is to show the 

limits of each method and to validate the proposed technique. 

To select the best method, three-time levels were considered (10 min, 30 min, and 60 min). The results showed that the 

RNN has very high accuracy over all horizons, in particular for a 60 minutes time horizon with 6-step ahead where the 

forecasting accuracy can reach 97 %. 
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1. Introduction 

The development of renewable energies has made 

exceptional progress due to several factors: climate change [1], 

big cities, and air pollution [2]. With the progressive reduction 

of production costs for wind power and PV energy [3], the 

deployment of power plants based on renewable sources is now 

faster and cheaper than other power generation technologies [4]. 

PV is the fastest growing renewable technology in the world, 

with the highest investment [4]. PV power is a viable 

supplement to the depleting fossil-fuel-based grid [47]. PV 

production is growing at a high rate, necessitating production 

forecasting. PV production, on the other hand, is very variable, 

owing mostly to stochastic cloud development in the sky. 

Accurate meteorological data and field production 

measurements are required to anticipate PV production and 

optimize power plant performance [5]. This optimization has 

numerous advantages, particularly for commercial-industrial 

(C&I) and residential installations, because accurate forecasting 

maximizes self-consumption and thus reduces the cost of energy 

produced [6, 7]. Similarly, power forecasting may be used to 

improve electric car charging in an energy management system 

(EMS) [8]. However, when it comes to larger installations, PV 

plant managers use forecasting to optimize plant downtime for 

maintenance [9]. In addition, in countries with a day-ahead 

electricity market, forecasting models can optimize the timing of 

sales, minimizing penalties and revenue losses [10,11]. 

Moreover, credible forecasting are also required by 

Transmission System Operators (TSOs) and Distribution System 

Operators  (DSOs), to manage the unpredictability as well as the 

volatility of grid-connected distributed PV generators. DSOs and 

TSOs can manage the intermittent production of PV plants, 

minimize difficulties with balancing power output and load 

demand [12, 18], increase system stability, and decrease 

ancillary service costs [13, 14] with reliable forecasts.  

In addition, forecasting increases dependability and lowers 

costs by allowing for more efficient solar energy trading [15]. 
Also, it reduces the number of backup units and the operating 

costs of the power plant [16].  
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In recent years, several forecasting techniques have been 

developed in the literature. The authors in [45] performed a 

comparative study of solar irradiance and solar energy 

forecasting approaches, using the input data, forecast results, 

forecast model, forecast interval, and forecast accuracy. 

Different solar power prediction methods were investigated in 

[47] based on the input data, the number of training data 

datasets, recording intervals and testing intervals used. Although 

there are no commonly accepted categorization criteria [12, 14], 

the following classification is common: Long term (one to ten 

years), medium-term (one month to one year), short term (one 

hour to one week), and ultra-short-term (a few minutes) [14]. 

Each forecasting horizon is adapted to a particular objective 

[8,10]. For example, very short-term models can be used for 

power smoothing and dispatch in real-time. Thus, short-term 

forecasts are used for automated control of production, unit 

dispatch, energy management, and load balancing, long-term 

forecasts are used by utilities for unit commitment, load 

balancing, and scheduling. In addition, TSOs and DSOs design 

their infrastructure using short- and medium-term predictions as 

well as long-term horizons [14]. A different categorization 

depends on the prediction method employed. This categorization 

divides prediction approaches into three groups: statistical 

methods, physical methods, and hybrid methods. 

Statistical approaches use a series of measurements at 

different times for one or more variables. For example, we can 

cite (RNN) with.Long.Short-Term.Memory (LSTM).[19, 20], 

Support Vector Machine (SVM) [21], Naïve Bayes [46], Markov 

chain, Fourier Series (FS), regression method, polynomial 

approach [22]. These approaches depend only on previously 

collected data without any knowledge of the PV plant or the 

location of the PV plant. The most frequently used models are 

ANN models and regression models. The ANN-based prediction 

has been shown in several studies to be one of the most effective 

methods. ANNs can accomplish this feat because of their ability 

to recognize rapid changes in the input-output link due to 

changing environmental circumstances [14]. ANNs require a big 

quantity of data to train; employing a random dataset at the start 

may diminish the dependability of the findings. The model 

architecture (number of inputs, hidden layers, neurons, etc.) that 

is chosen can have an impact on the outcomes [12]. Auto-

regressive.moving.average. (ARMA) forecasts perform well 

when the data is stationary, but auto-

regressive.integrated.moving. average. (ARIMA) models 

perform better when the data is not stationary [23]. The 

limitation of ARIMA techniques comes from the necessity of 

more computing power than ARMA. According to [14], in terms 

of comparison, ANNs represent greater accuracy and flexibility 

under unpredictable weather circumstances than ARMAs and 

ARIMAs. In [48], the authors have developed multilayer 

perceptron models based on the gray wolf, lion, and whale 

optimization techniques for daily solar power prediction. On the 

other hand, a prediction based on statistical methods gives better 

results when the metrological conditions are classified according 

to day type (sunny day, cloudy day) [24,25,26]. The statistical 

technique is dominant when it comes to short-term and ultra-

short-term forecasts [12, 20, 27, 28]. 

Physical approaches are composed of mathematical 

equations that explain the physical state and dynamic motion of 

the environment [29]. They are mainly used in very short-term 

or long-term applications. These methods are mainly based on 

numerical weather prediction (NWP), cloud photography, and 

satellite photos [30]. They are classified into global or mesoscale 

physical approaches depending on the size of the simulated 

atmosphere, which may be global or cover only a limited region 

[29]. Since mesoscale models have a resolution of 16-50 km, it 

is advisable to use only mesoscale models to anticipate the 

power output of solar systems [31]. Furthermore, physicals 

methods have a lower accuracy when weather conditions are 

unstable [32] and perform better when weather conditions are 

stable [14]. 

Combining two or more of the preceding methods is known 

as a hybrid method. To improve prediction performance, a 

variety of models with distinct properties are combined [32, 33, 

34]. There is a general rise in computational complexity [12]. 

For example, the most typical examples combine ANN-based 

models [9, 35, 36, 37] with Seasonal Autoregressive Integrated 

Moving Average (SARIMA) [38]. Due to their interdependence 

with single-model performances, these hybrid models should be 

created for a given plant and region [29]. Excellent predictions 

have been obtained by using a combination of numerical weather 

predictions and historical data on weather variables. However, 

hybrid prediction methods have been a weakness: they perform 

less well when the weather is unstable [39]. LSTM-based 

models have been tested with other neural network PV power 

output techniques in [40]. These models can represent the 

underlying correlations between meteorological conditions and 

real PV energy generation on a daily, hourly, and seasonal basis. 

Contrasting the performance of weather prediction methods, 

in general, can be difficult because of the many different aspects 

affecting their effectiveness. These include factors such as 

historical weather information availability, weather prediction 

accuracy, temporal horizons, resolution as well as geographic 

location, and installation conditions. Preprocessing data (such as 

eliminating the night sample when no electricity is produced) is 

also crucial for statistical methods in order to obtain high 

performance and decreased computing costs [14]. The previous 

results in the literature provide some insight into the 

effectiveness and efficiency of the various methods, but their 

conclusions are more qualitative than quantitative. As a result of 

recent reviews [12, 14, 29] that compare the work of various 

authors, statistical mistakes are also included in the analysis. 

This is not a quantitative comparison because the conditions and 

measurements used in each study were different. 

The objective of this research is to examine three of the most 

successful and extensively used forecasting methodologies for 

PV power output. These three approaches are based respectively 

on RNN-LSTM, polynomial approach, and sky camera. 

Measurements and data from a PV installation (the RIZOMM - 

HEI) in Lille, France, were used to compare the different 

approaches. To validate the obtained results, three prediction 

horizons were examined.  

The main objective of this study is to develop and test the 

accuracy of three different forecasting algorithms from three 

different types of families. The tests will be performed over 

various forecast horizons.   

In contrast to the previous works in the literature, the 

proposed study is based on:  

➢ A new polynomial prediction algorithm. 

➢ Development of an RNN-LSTM model. 
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➢ A comparison with a commercial prediction 

method (Steadysun). 

➢ A variety of time horizons (ten minutes, thirty 

minutes, and sixty minutes). 

Exogenous inputs (such as air temperature, wind speed, 

cloud cover, etc) are not considered in our study since we only 

look at historical power data from the RIZOOM plant. 

Moreover, most of the presented models in the literature are 

primarily focused on hourly or daily one-step prediction, and to 

the best of our knowledge, very short-term prediction (a few 

minutes ahead) is not well considered, even though it plays a 

critical role in PV plant control applications and electric vehicle 

charging stations, which encouraged as to deal with such type of 

problem. 

The article is structured as follows: Section 2 presents the 

plant and data. The prediction methods are studied in section 3. 

Section 4 includes a comparison of the three methods: 

polynomial, RNN-LSTM, and Steadysun with the results. While 

section 5 is dedicated to conducting and perspective elements. 

 

2. Description of the Smart-grid Demonstrator 

 

The demonstrator is located in the north of France, at the 

Catholic University of Lille. It has two rooftop solar generators 

of 189 kWp and 28 kWp, a 250 kWh Eaton Li-ion battery, 

numerous electric vehicle charging stations with a charging 

capacity of 22 kW, and four service buildings. This network is 

further connected to the distribution grid via a 15kV/0.4kV 1 

MVA transformer (Figure 1).  

 

28 kWp 
PV system 

189 kWp 
PV system 

PV 
inverters

LVDB-RIZOMM

LVDB-HEI1

LVDB-HEI2

LVDB-HA

250 kWh 
Storage 
(80 kW)

Distribution grid

1 MVA, 15kV/0.41kV

PV 
inverters

*LVDB : Low Voltage Distribution Board

 
Fig. 1. Demonstrator of the Catholic University of Lille  

 

The JUNIA engineering school owns two buildings, HEI1 

and HEI2, while the Catholic University owns HA and 

RIZOMM. As the buildings are owned by two separate legal 

companies, French legislation prohibits the exchange of energy 

between the two. In our work, we considered data from the 189 

kWp PV system of the RIZOMM building. These data are from 

the PV production registered at 10-minutes time intervals 

between September 2018 and April 2021. Figure 2a represents 

the PV production throughout a week in March 2021. Figure 2b 

shows the distribution function of the PV power. 

 
Fig 2. a) PV power data (3-9 March 2021), b) Distribution of 

produced PV power data (3-9 March 2021). 

3. Prediction Techniques 

 

The three forecasting approaches used on the RIZOMM data 

are described in detail in this section. 

1.3 .Steadysun 

Steadysun has created a short-term solar prediction solution 

called Steadysun (Fig 3a). Steadysun has a camera oriented to 

the sky at 180° and can anticipate cloud movement over a 4 km² 

area with energy production predictions for up to 60 minutes 

using image processing techniques. 

The camera takes hemispherical images-sky (Fig 3b) at 

regular intervals, and cloud and shadow maps are constructed by 

the cloud detector and motion field sensors using the method 

developed by Steadysun. 

This data is combined with irradiance sensor data and analyzed 

by the Steadysun algorithm to produce PV power predictions. 

Local or on-site analysis and prediction are performed, and the 

tool may be used standalone or with an internet connection.  

The Steadysun is connected to the industrial control and data 

acquisition system (SCADA). The SCADA operates in real-

time, using a wide area network configured for an area with an 

Internet connection, at a download speed of 2 (Mbps). A 

location without a persistent internet connection will gather data 

from the Steadysun server and send it to the client SCADA using 

an interposed communication system. An X-series Super Wide 

(SW) lens camera, a pyranometer, a silicon cell reference, and a 

Steadysun data processor are among the components used.  

(a) (b) 
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Fig. 3. a) Imager steadysun b) Steadysun sky imager. 

 

For the data acquisition to SCADA, an IP or Modbus 

connection is used. Table 1 gives the details: 

Table 1. Steadysun features 

Description Capability 

Prediction aera 4 km² 

Temporal 

resolution 

10 s 

Spatial resolution Local area coverage 

Prediction horizon 60 min 

Components Camera SW lens, silicon cell reference, 

pyranometer, data processor 

 

Figure 4 depicts a block diagram for prediction generation: 

 

Fig. 4. Steadysun operation block diagram. 

2.3 .RNN-LSTM 

Figure 5 shows the RNN model’s structure, developed in 

[44]. At step , and  are the RNN’s input and output 

variables. The RNN model’s hidden state  is calculated using 

the input  at the current step  as well as the hidden state 

 at the step . RNN’s mathematical model is 

expressed as follows:  

 
(1) 

 
(2) 

 
(3) 

The weight matrix between the input and hidden layers is 

denoted by . The weight matrix between two hidden 

layers is . The weight matrix linking the hidden and 

output layers is  It should be observed that the 

parameter values of the weight matrices ,  and  are not 

modified in the different phases depicted in Fig 5. The values 

,  and  represent the number of neurons in the input, 

hidden, and output layers, respectively.  is the hidden layer 

state at step , and it serves as the RNN memory. Bias vectors 

are represented by the parameters  and .  is a temporary 

variable that is only decided by the RNN model’s hidden state 

.  

The hidden layer and output layer activation functions are 

 and , respectively. 

 

Fig. 5. Basic RNN structure. 

The Back Propagation Through Time (BPTT) technique is 

used in this study to determine the gradient of the parameters  

,  , ,  and  of the RNN model [41]. BPTT is an RNN 

back propagation training technique that is applicable to 

sequence data such as time series. The BPTT method works by 

unrolling all of the input time steps and computing and 

accumulating the sample errors of RNN at each time step. 

RNN's cost function may be configured as follows: 

 

(4) 

(a) 

(b) 
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where  is the total cost of all-time sequences. According to 

equation (4), the total cost is just the sum of the sub-costs at each 

time step. The observed and anticipated values are denoted by  

 and  respectively. Step t is hidden state gradient is defined 

as: 

 

(5) 

according to the RNN model,  is calculated by the sub-cost at 

the actual step  and the sub-cost at step . As a result,  is 

associated with the output temporary variable and the hidden 

layer state  

 

(6) 

Where  denotes the creation of a diagonal matrix 

from a specified vector. Because there are no more hidden states 

after the last step , the  is written as: 

 

(7) 

Back propagation is used to compute the gradient of the 

network parameters at step t, step by step. The gradient of U, V, 

W, b and c is illustrated by the following: 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

The final gradient of the network parameters is, the total of 

the subgradients at each time-step. Equations (2)-(4), (9), and 

(10) make the gradients of the network parameters. Therefore, 

the revised rule for these parameters is as follows: 

 

(13) 

 

(14) 

 

(15) 

 

(16) 

 

(17) 

Where  is the RNN learning rate and the superscript  

represents the BPTT iteration periods. Equations (14)–(16) may 

be used to calculate the partial derivatives of the cost function 

with respect to the disturbance of , , , W and . 

3.3 .Polynomial method 

The polynomial method is a forecasting approach based on 

polynomial modeling. Development, implementation and use of 

this approach is done in three steps: 

3.3.1 .Data preparation 

For this stage, we used the RIZOMM plant's PV production 

database, which was presented in the second section. Each day 

of production was represented by a vector denoted  with a 

length of 144 points, corresponding to 144 periods of 10-minutes 

per day. Figure 6 shows the dataset in a matrix form. Each 

vector  is decomposed into  sub-vectors of length , 

where  is the package number and  is the day. Since there is no 

PV power production in the early morning and late evening, the 

data for these two periods have been suppressed. 

 

Fig. 6. Vector representation:  days and   samples. 

3.1.2 .A learning process  

This part consists in creating a polynomial database from the 

PV power production data. The time period , withe , 

where  is fixed according to the prediction 

horizon. The transition function between  (the past) and 

 (the future) is calculated each time. The transition 

function is a polynomial function of order which allows to make 

the relation between the past and the future. This method has 

been applied on the whole database, all the transition functions 

have been stocked in the polynomial database. 

3.3.3 .Prediction PV Power 

Figure 7 shows an example of PV power data. The data to 

be predicted is represented in green by the interval 
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 corresponding to the future period. Data from 

the past is represented in orange in the interval . A 

prediction at a horizon h requires two steps. 

A. Stage 1: To forecast from interval  on a horizon 

, select the last package in the interval 

 and noted . 

B. Stage 2: After the selection of the package, it is 

question to identify the package , the most similar 

to , in the sense of the least squares error, in the 

database. It is necessary to retrieve the transition 

function  from the polynomial database, which 

creates the connection between  and , 

with period  . In order to make a 

prediction, the chosen pass function will be applied to 

the past data. 

The polynomial approach is influenced by several parameters, 

including the prediction horizon ( ), the selection method, and 

the order of the transition function. 

 

Fig. 7. The Sliding Window Modeling process. 

4. Results and Discussion  

In this comparison, three prediction approaches are 

considered, a RNN approach, a polynomial approach and an 

industrial Steadysun approach. A database containing PV power 

generation with 10-minutes samples from the RIZOMM power 

plant is used on all three methods. The data were divided into 

three parts: 80% for learning, 10% for validation, the remaining 

10% for testing. 

Three tests were performed, with different prediction 

horizons. The first test used 10 minutes, the second one 30 

minutes and the third test 60 minutes. The used camera is a black 

box, it only gives predictions of 30 minutes. So, it will be 

compared to the other methods in the second test. For the RNN-

LSTM, we considered the same parameters for all three tests, the 

number of inputs, hidden and output units (128,52,1), the same 

number of layers (3), output steps and database size. 

In order to compare the different prediction methods, several 

performance indexes were used. 

4.1 .Performance Index 

Several of the most commonly used index of error in 

research are used to evaluate the accuracy of forecasts. 

[29,42,43] were considered in this work. The  error is a 

popular error definition for evaluation, and it is defined as: 

 
(18) 

Where  is the median actual power in 10 minutes and  

represents the forecast obtained by one of the forecasting 

algorithms. In order to finely analyze our algorithms, we will 

consider five different performances indices. 

4.1.1 .Mean Absolute Error (MAE) 

 

MAE is derived by dividing the total number of absolute 

errors by the sample size. 

 

(19) 

 is the number of steps (10 minutes) considered in the 

examined period in all of these definitions (i.e. 7 days). 

4.1.2 .Mean Absolute Percentage Error MAPE(%) 

MAPE is a measure of the forecast accuracy of a forecasting 

method. It gives the accuracy in the form of a percentage defined 

by a formula: 

The MAPE(%) which was normalized to the measured 

power: 

 

(20) 

if ,  MAPE(%) it becomes the following: 

 

(21) 

4.1.3 .Root.Mean.Square.Error.(RMSE) 

The RMSE is defined as the square root of the second sample 

moment of discrepancies between anticipated and observed 

values, or the quadratic mean of these differences. 

 

(22) 

4.1.4 .Normalized.Root.Mean.Square.Error: nRMSE(%) 

The nRMSE is used to calculate the normalized mean square 

error as the absolute value between the forecasted and measured 

values. 

 

(23) 

4.1.5 .Coefficient of Determination (R²) 

R² is the percentage of variance in the dependent variable 

that can be forecast by the independent variable. 
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(24) 

Where  is the mean value of the  elements of . 

4.2 .Test 1: horizon 10 minutes  

Two methods have been considered: Polynomial and RNN-

LSTM. Referring to table 2, the coefficient of determination R² 

is in the range (0.96 % for RNN and 0.91 % for Polynomial) 

revealing a good correlation between the measured and 

forecasted PV power for the two models tested without 

considering night periods. When compared to the polynomial 

technique, the RNN-LSTM model produces the best MAE, 

RMSE, nRMSE and R2 results. However, in terms of MAPE the 

polynomial method present better results from table 2, we can 

easy see that. The developed RNN-LSTM model depicts the 

lowest errors and the smallest variations around the mean value. 

Moreover, the correlation between the measured and forecasted 

PV power with RNN-LSTM, depicted in Fig 8b, is R² = 0.96 % 

and with the polynomial method, shown in Fig 9b, is R² = 0.91 

%. 

Figures 8a and 9a show the PV power produced and 

predicted for the RNN-LSTM and Polynomial method 

respectively. It can be seen that for 10-minutes predictions the 

RNN-LSTM method shows good results. 

 

Fig. 8. a) forecasted and measured power, b) R² of measured vs 

forecasted. 

 

Fig. 9. a) forecasted and measured power for the Polynomial 

method, b) R² of measured vs forecasted. 

4.3 .Test 2: horizon 30 minutes 

In this part, the three methods were considered. RNN-LSTM 

shows the best results in terms of MAE, MAPE, RMSE, 

nRMSE, and R² compared to the other methods. Figures (10,11 

and 12) show the results obtained by Steadysun, RNN-LSTM, 

and the polynomial method respectively.    

From the obtained results in table 2 and Figures (10,11 and 

12), we can deduce that the polynomial method shows the least 

satisfactory results. 

 

Fig. 10. a) forecasted and measured power for Steadysun, b) R² 

of measured vs forecasted. 
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Fig. 11. a) forecasted and measured power, b) R² of measured vs 

forecasted. 

 Fig. 12. a) forecasted and measured power for the Polynomial 

method, b) R² of measured vs forecasted. 

4.4 .Test 3: horizon 60 minutes 

For this test, two methods were considered: polynomial and 

RNN-LSTM. The RNN-LSTM has the best results of MAE, 

MAPE, RMSE, nRMSE, and R² compared to the polynomial 

method. Figs (13 and 14) show the results obtained by the RNN-

LSTM and Polynomial methods respectively. In this case, for the 

60-minutes prediction, the RNN-LSTM method shows good 

results. 

 Fig. 13. a) forecasted and measured power, b) R² of measured 

vs forecasted. 

 Fig. 14. a) forecasted and measured power for the Polynomial 

method, b) R² of measured vs forecasted. 

 

 

 

 

 

 

 

Table 2. Prediction results of the three methods. 
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5. Conclusions 

Three approaches to forecast PV power output have 

been evaluated in this paper. Based on different time horizons 

(10 min, 30 min and 60 min), the outcomes of this study were 

summarized as follow: 

• The RNN-LSTM model has been developed for PV 

forecasts, excellent results have been obtained for a 60 min 

time horizon 𝑅² = 97%.  

• Steadysun also gives good results for 30 min forecasts, with: 

R2 = 91%. 

• The proposed polynomial approach is simple to implement 

and gives very similar results to the other two methods. For a 

60-minutes forecast horizon R2 = 90%. 

The proposed work has been verified by a comparative 

study between RNN-LSTMs, Steadysun and Polynomial. Based 

on the results, it can be concluded that the polynomial algorithm 

gives acceptable accuracy in cloudy days, but further 

improvements are needed to ensure effective planning and 

management of PV plants. 

To increase the accuracy of cloudy day predictions, the 

strategies should incorporate a mix of weather prediction data, 

sky images, clarity index, etc. On the other hand, the 

performance of the RNN-LSTMs tested in this study is sufficient 

for the construction of a smart energy management system for a 

microgrid including a PV generator, electrical storage, and an 

electric car charging station. In general, we believe that the basic 

RNN-LSTM models represent a sufficient.  

In the future, the polynomial approach will be extended to 

another modeling technique using state formalism. The 

advantage of the state-space model is that it allows expressing 

power data of the actual day according to power data from 

several other days. Moreover, in future work, the proposed 

strategies, used for short-term prediction, can be extended to 

medium and long-term prediction. 
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