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Abstract- This paper aims to examine the effect of the electric vehicle charging station (EVCS) loads on an unbalanced radial 

distribution system (URDS) voltage profile and losses. Further, to determine the optimal placement of EVCSs & Distribution 

Generator (DG) for mitigating the losses & improving the voltage profile Harris Hawk Optimization (HHO) algorithm proposes. 

HHO is a widespread swarm-based, gradient-free optimization technique based on the supportive action & hunting characteristic 

of Harris hawks in nature with numerous energetic phases of exploration & exploitation. The active, reactive power limits and 

different operational constraints of URDS consider while minimizing the losses. It observed that the unbalanced radial 

distribution network could survive the deployment of EVCSs at the vital buses up to a certain extent. However, the allocation of 

EVCSs at the weak buses of the network prevents the power system's stable operation. The analysis performs on the IEEE 25 

bus Unbalanced radial distribution network for the placement of EVCS & DG.  In addition, HHO's superiority in terms of 

convergence characteristics compares to other modern heuristic algorithms. 

Keywords- electric vehicle; charging station; distributed generator; optimal placement; Harris Hawk Optimization; unbalanced 

radial distribution system. 

1. Introduction 

Overuse of fossil fuels, such as crude oil and gas in the 

transportation sector, leads to a drastic increase in temperature 

and excessive carbon release, resulting in the degradation of 

the environment. Global warming impacts the atmosphere by 

erratic rains and increasing temperatures. Many countries are 

encouraging the transportation industry by promoting battery-

fed vehicles to reduce the emissions in their region. 

Electrification can be effectively applied in the transport 

sector by developing a solid infrastructure for efficient 

charging stations for electric vehicles. Adding an EV charging 

station to the system will consume more power, impacting the 

bus voltage & thermal stability [1]. To overcome the 

challenges faced by the utility and the customer, the charging 

infrastructure requires optimal allocation of the electric 

vehicle charging stations, Distributed Generation units (DGs) 

in the distribution network and optimal scheduling of EVs 

charging.  

Mohsenzadeh et al. [2] used a Genetic algorithm for 

optimal planning of plug-in electric vehicle parking lots at 

different levels to improve system reliability and minimize the 

power loss and voltage drop. The algorithm is tested on a 33-

bus radial distribution system (RDS). Ramana et al. [3] 

presented a methodology based on voltage index analysis & 

variational algorithm for solving the best location and size of 

DG in URDS. The practicality of the proposed method is 

confirmed by applied on IEEE 25 & 37 node URDS test 

feeders. Janamala et al. [4] proposed a future search algorithm 

for determining the optimal allocation of DG & EV fleets 

concurrently by considering techno environmental aspects of 

RDS. Sanjay et al. [5] used a hybrid grey wolf optimization 

algorithm for optimal placement and DG size. This algorithm 

is employed on IEEE 33, 69 & Indian 85 bus RDS to minimize 

the losses. Quadri et al. [6] introduced a comprehensive 

teaching learning-based optimization (CTLBO) to optimize 

the allotment of distributed generators in radial distribution 

systems for power savings and network loss reduction. 

Kayalvizhi & Vinod [7] anticipated a hybrid Grid-based 
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Multi-objective Harmony Search technique for optimum 

location of DG in RDS. Ali Jabbary & Hossein Shayeghi [8] 

proposed a firefly nonlinear innovative algorithm to optimize 

a distribution network's technical & financial indexes in the 

existence of different types of DGs. With the migration to 

PHVs, the electric grid's limits, such as voltage constraints, 

losses are examined for a practical RDS in Ontario, Canada 

[9]. Modelling EVCS in an RDS can be used to investigate the 

consequence of EVCS on the electrical grid [10]. EVCS does 

not charge EVs the entire day, which is more involved during 

peak hours & planned according to the user's needs. These 

preliminary charging stations (CS) schedules in the RDS 

influence the power grid is easily assessed [11]. Using particle 

swarm optimization (PSO), an approach is provided in [12] to 

determine the best location of EVCS and the optimal capacity 

of EVCSs for URDS. M. Dixit & R. Roy [13] proposed a 

method based on the Particle Swarm Optimization with the 

Constriction Factor technique for optimal EV placement to 

minimize the power losses and enhance the voltage profiles. 

Gurappa et al. [14] recommended the ideal location of EVCSs 

& DGs in RDS to reduce EV user charge, network power 

losses, station development cost, & DG investment. A multi-

objective hybrid shuffled frog leap-teaching learning-based 

optimization algorithm was proposed by Battapothula et al. 

[15] for optimal location & sizing of FCSs to minimize voltage 

deviation, Cost of DG, Power losses. MSK Reddy & 

K.Selvajyothi [16] presented a method to identify optimal 

locations of the charging stations to minimize the real power 

losses & improve the voltage profile and reconfigure the RDS 

using the PSO algorithm. Ermis et al. [17] proposed artificial 

bee colony, wind-driven optimization & gravitational search 

algorithms to address the optimal power flow problem. The 

suggested optimization algorithms are evaluated on a 

conventional IEEE 9-bus power system with voltage deviation 

reduction, active power loss minimization, and fuel cost 

minimization as objective functions. M. Yesilbudak & A. 

Colak [18]  presented the constituents, benefits, risks, projects, 

and standards of smart grids briefly and showed a complete 

literature survey on the challenges and the solutions 

encountered due to the addition of renewable energy sources, 

electric vehicles & demand-side initiatives.  

According to the literature, most researchers focus on 

improving the placement of EVCSs/DGs for balanced RDSs. 

However, because the demand is dynamic, it is necessary to 

investigate the size and capacity of DG and the position of 

EVCS in URDS. In this study, the authors employed the HHO 

technique to identify the optimal placement and size of DG 

and the optimal location of EVCS in URDS. The efficiency of 

HHO is compared with particle swarm optimization (PSO), 

flower pollination algorithm (FPA), teaching-learning-based 

optimization (TLBO), Elephant Herding Optimization (EFO), 

Grasshopper Optimization Algorithm (GOA) & cuckoo 

search algorithm (CSA). A multi objective planning 

framework is designed to determine optimal placement and 

sizing of EVCSs & DGs to minimize the power losses and 

improve the voltage profile. The simulations are performed on 

a standard IEEE 25-bus unbalanced test system.  

2. Problem Formulation 

2.1 Objective Function 

 The real & reactive losses are computed employing the 

load flow study by incorporating EVCS at optimum positions. 

P𝐿(i) = ∑(
(𝑃𝑒𝑓𝑓𝑎

2[𝑖]+𝑄𝑒𝑓𝑓𝑎
2[𝑖])∗𝑅𝑎𝑎𝑖

𝑉𝑖𝑎
2 +

(𝑃𝑒𝑓𝑓𝑏
2[𝑖]+𝑄𝑒𝑓𝑓𝑏

2[𝑖])∗𝑅𝑎𝑏𝑖

𝑉𝑖𝑏
2 +

(𝑃𝑒𝑓𝑓𝑐
2[𝑖]+𝑄𝑒𝑓𝑓𝑐

2[𝑖])∗𝑅𝑐𝑎𝑖

𝑉𝑖𝑐
2 )                                                    (1)    [19] 

𝑄𝐿(𝑖) = ∑(
(𝑃𝑒𝑓𝑓𝑎

2[𝑖]+𝑄𝑒𝑓𝑓𝑎
2[𝑖])∗𝑋𝑎𝑎𝑖

𝑉𝑖𝑎
2 +

(𝑃𝑒𝑓𝑓𝑏
2[𝑖]+𝑄𝑒𝑓𝑓𝑏

2[𝑖])∗𝑋𝑎𝑏𝑖

𝑉𝑖𝑏
2 +

(𝑃𝑒𝑓𝑓𝑐
2[𝑖]+𝑄𝑒𝑓𝑓𝑐

2[𝑖])∗𝑋𝑐𝑎𝑖

𝑉𝑖𝑐
2 )                                                   (2)    [19] 

Where, Peff[q]=Active power distributed beyond the bus ‘q’. 

 Qeff[q]=Reactive power distributed beyond the bus ‘q’.  

2.2 Constraints 

𝑃𝑠𝑢𝑝𝑝𝑙𝑦 + ∑ 𝑃𝐺𝑘
𝑁𝐺
𝑘=1 − 𝑃𝐿 = 𝑃𝑑                                              (3) 

𝑃𝐺𝑘
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑘 ≤  𝑃𝐺𝑘

𝑚𝑎𝑥                                                (4) 

𝑇𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤  𝑇𝑘

𝑚𝑎𝑥 , k = 1,2,3 … … . , 𝑛𝑏𝑢𝑠                  (5)     

0.95 ≤  𝑉𝐺𝑘 ≤ 1.05, k = 1,2,3 … … . , 𝑛𝑏𝑢𝑠                (6) 

𝑆𝐿𝑘 ≤  𝑆𝐿𝑘
𝑚𝑎𝑥 , k = 1,2,3 … … . , 𝑛𝑏𝑢𝑠                            (7) 

Where, Psupply & Qsupply
 are active & reactive power supplied 

PGk are the active & reactive power injection from DG unit at 

bus ‘k’ 

Pd & Qd are the active & reactive power of load demand 

PL & QL are the acive & reactive power losses 

Tk is the transformer tap position 

VGk is the voltage at bus ‘k’ 

SL is the apparent power losses. 

NG is the number of generators 

𝑃𝐺𝑘
𝑚𝑖𝑛 , 𝑃𝐺𝑘

𝑚𝑎𝑥  are the active power output limits of DG. 

𝑇𝑘
𝑚𝑖𝑛 , 𝑇𝑘

𝑚𝑎𝑥  are the limits of the transformer tap position. 

𝑆𝐿𝑘
𝑚𝑎𝑥 is the maximum apparent power 

3. HHO for EVCS & DG Simultaneous Optimal Placement 

The "surprise pounce" is the Harris hawk's primary 

method of catching prey. Several hawks strike from many 

directions while focusing on an imagined rabbit external 

shield. The attack can be completed quickly by grabbing an 

unsuspecting object in a few seconds, however depending on 

the target ability to flee and habits, the "surprise pounce" may 
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require many short-length, fast dives around the object more 

than a few minutes. 

When the finest hawk bows down to target & becomes 

lost, the party members swap tactics, and one of them 

continues the hunt. The benefit of these supportive techniques 

is that the Harris hawks may chase the identified rabbit until it 

is exhausted, increasing its vulnerability. It will not regain its 

self-protective powers by distracting the escaping object. In 

general, HHO is divided into phases based on the 

“exploration” & “exploitation” of prey by Harris hawks, as 

well as surprise pounces and various attacking techniques. 

3.1 Exploration Phase 

A random position determines the hawk's position and 

several other hawks & is provided by eq.8. [20]. 

𝑃(𝑡 + 1) =

{
𝑃𝑘(𝑡) − 𝑎1|𝑃𝑘(𝑡) − 2𝑎2𝑃(𝑡)|𝑥 ≥ 0.5                          

(𝑃𝑥(𝑡) − 𝑃𝑚(𝑡)) − 𝑎3(𝑙𝑏 + 𝑎4(𝑢𝑝𝑙𝑖𝑚 − 𝑙𝑜𝑙𝑖𝑚))𝑥 < 0.5
  

                                                                                             (8) 

Where P is hawk's location, Pk is the random location of 

a selected hawk, Px is the point of an object, uplim & lolim are 

the upper & lower boundaries of the study zone, a1, a2, a3, a4, 

and x are the arbitrary numbers in between 0 and 1. The Pm is 

a mean point of the current hawk’s group & calculated by 

using eq.9. 

𝑃𝑚(𝑡) =
1

𝑊
∑ 𝑃𝑞(𝑡)𝑊

𝑞=1                                                           (9) 

Where Pq is qth hawk in the group & W is number of 

hawks. 

3.2 Exploration to Exploitation 

The nature of exploration may be shifted based on the 

intensity of the prey's escape. The intensity of the target's 

desire to leave can be calculated as 

𝑆 = 2𝑆0(1 −
𝑡

𝐼
)                                                                   (10) 

𝑆0 = 2𝑛 − 1                                                                       (11) 

Where I is maximum no of iterations, S0 is initial intensity 

created random in between 0 & 1, and n is a random number 

in between 0 & 1. When S > 1, the hawks to search in different 

parts. Otherwise, HHO appeared to promote local searches for 

the finest alternatives in the area. 

 

3.3 Exploitation Phase 

The hawk's position is modified based on the following 

scenarios in this state. 

3.3.1 Soft Besiege 

This can be noticed once q ≥ 0.5 & |S| ≥ 0.5. The hawk 

changes its location by using eq.12. 

𝑃(𝑡 + 1) = ∆P(𝑡) − 𝑆|𝑒𝑃𝑞(𝑡) − P(𝑡)|                              (12) 

Where S is the target's absconding intensity, Pq is the 

location of prey, ΔP is the modification in the target location 

& current hawk location, and e is the diving energy. The e & 

ΔP are calculate by using eqs.13 & 14. 

∆𝑃(𝑡) = 𝑃𝑞(𝑡) − 𝑃(𝑡)                                                       (13) 

𝑒 = 2(1 − 𝑎5)                                                                    (14) 

Where a5 is a arbitrary number between 0 & 1. 

3.3.2 Hard Besiege 

This can be seen as soon as q ≥ 0.5 & |S| < 0.5. The hawk 

changes its location by using eq.15. 

𝑃(t + 1) = 𝑃𝑞(𝑡) − 𝑆|∆P(𝑡)|                                            (15) 

3.3.3 Soft Besiege with Progressive Rapid Dives 

This stage is take place after q<0.5 & |S|≥0.5 and hawk's 

new location is formed as  

A = Pq(t) − S|ϑPq(t) − P(t)|                                            (16) 

C = Y +  z ∗ Func(M)                                                        (17)  

Where A & C are two freshly created hawks, ϑ is jumping 

strength, z is an M dimension arbitrary vector & Func is the 

flight function and may be calculated as 

𝐿𝑒𝑣𝑦(𝑚) = 0.01 ∗
𝜂∗𝜏

|𝜗|1/𝛽                                                    (18) 

Where η, ϑ are two arbitrary numbers and τ is defined as:  

𝜏 =  (
𝛤(1+ϓ)∗sin(

𝜋ϓ

2
)

𝛤(
1+ϓ

2
)∗ϓ∗2

(
ϓ−1

2 )
)

1

𝛽

                                                     (19) 

Where ϓ is equal to 1.5. The location of hawk is altered 

during eq 20 in this stage. 

𝑃(𝑡 + 1) = {
A     𝐼𝑓𝐹(𝐴) < 𝐹(𝑃(𝑡))

𝐶     𝐼𝑓𝐹(𝐶) < 𝐹(P(𝑡))
                                (20) 

Where F is the objective function, A & C are two results 

obtained from eqs16 & 17. 

 

3.3.4 Hard Besiege with Progressive Rapid Dives                  

This can be seen once q<0.5 & |S|<0.5 and the succeeding 

new results are generated as 
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A =  Pq(t) − S|ϑPq(t) − Pm(t)|                                        (21) 

C =  Y +  z ∗ Func(M)                                                       (22)                    

Where Pm is the median location of the hawks in present 

group. The status of the hawk is consequently transformed as 

P(t + 1) = {
A     If F(𝐴) < 𝐹(𝑃(t))

C    If F(C) < 𝐹(𝑃(t))
                                  (23) 

3.4 Flow Chart 

This section shows the chronological stages involved in 

determining the optimal allocation of EVCS & DGs utilizing 

the HHO algorithm in Figure 1 [21]. 

4. Results & Discussions 

The proposed optimization algorithm has been evaluated 

using the MATLAB program, implemented in a PC with Intel 

Core i5-4210U processor, up to 1.7 GHz and 8 GB of RAM. 

The simulations are performed on IEEE 25-bus unbalanced 

test system. The minimum and maximum limits of active 

power injection by a DG are 250kW & 400kW per phase with 

unity power factor, respectively. The limits of active & 

reactive power losses are taken as ±2.5% of the total load. The 

total power demand of EVCSs is mainly dependent on the 

number of charging points (CP) and their type. In this study, 

depending upon the type of the electric vehicle (EV) model 

and the number of CPs, the power demand of EVCSs is 

determined. The design features of CPs such as types of EVs 

that can charge at a time in a particular EVCS and their power 

ratings in kW, the minimum and maximum number of CPs for 

different EVs, and correspondingly the minimum and 

maximum power rating of CS. The details are given in Table 

1. 

This article offers the following summaries to address the 

impact of EVCSs and DGs on the system. 

Case1: URDS without integrating DGs and EVCSs. 

Case2: URDS with min & max CPs operated in EVCS & 

without integrating the DGs. 

Case3: URDS with optimal integration of EVCSs with min & 

max CPs operated. 

Case4: URDS with simultaneous allocation of DG & EVCS 

with min CPs operated. 

Case5: URDS with simultaneous allocation of DG & EVCS 

with max CPs operated. 

Table 1: Design features of EVCSs for the simulation [22]. 

EV Type EV power rating (kW)  
No. of CPs Rating of CS (kW) 

Min Max Min Max 

Chevrolet VOLT 2.2 6 15 13.2 33 

CHANG-AN YIDONG 3.75 6 15 22.5 56.25 

Tesla Model X 13 6 15 78 195 

BMW i3 44 6 15 264 660 

SAE J1772 Standard 7 6 15 42 105 

Total power rating of CS (kW) 30 75 419.7 1049.25 

 

4.1 Case 1: URDS without integrating DGs and EVCSs  

Line and load data of 3-ϕ 25 bus URDS are given in [23]. 

A Single-line diagram of 3-ϕ 25 bus URDS is presented in 

Figure 2. The base load of the system in a, b & c phases are 

1073.3+j792 kVA, 1083.3+j801 kVA & 1083.3+j800 kVA, 

correspondingly. The minimum voltage appeared is 0.9371, 

0.9381 & 0.9442 pu at bus 12, the total real power losses are 

43.5924, 45.6421 & 34.3261 kW and the total reactive power 

losses are 49.9860, 45.5825 & 48.5777 kVAr in a, b & c 

phases respectively. The test system performance is given in 

Figure 3 & Table 2. 
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Figure 1. Flowchart of HHO Algorithm 

 

 

Figure 2. Single line diagram of 25 bus URDS 
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Figure 3. Bus Voltages, Real & Reactive power losses of 25 bus URDS without integrating DGs and EVCSs 

4.2 Case2: URDS with min & max CPs operated in EVCS & 

without integrating the DGs  

The total power demand when EVCS is operated with the 

minimum number of charging points is increased by 419.7 kW 

and when operated with the maximum number of charging 

points, it is increased by 1049.25 kW.  

When minimum number of Charging Points operated in 

EVCS, the real power losses are increased to 54.2458, 56.7018 

& 42.6423 kW, the reactive power losses are increased to 

62.1327, 56.5319 & 60.2263 kVAr and the minimum voltages 

are decreased to 0.9305, 0.9313 & 0.9389 p.u in phase a, b & 

c respectively at bus 12. The test system performance is given 

in Table 2. When maximum number of Charging Points 

operated in EVCS, the real power losses are increased to 

73.4256, 76.6128 & 57.5937 kW, the reactive power losses 

are increased to 83.9727, 76.2019 & 81.1367 kVAr and the 

minimum voltages are decreased to 0.9207, 0.9212 & 0.9310 

p.u in phase a, b & c respectively at bus 12. The test system 

performance is given in Table 2. 

4.3 Case3: URDS with optimal integration of EVCSs with min 

& max CPs operated 

The optimal location is 2. The real power losses are 

decreased to 47.6703 kW, 49.9648 kW & 37.1916 kW, the 

reactive power losses are reduced to 55.7925 kVAr, 50.7819 

kVAr & 54.1339 kVAr and the minimum voltage is raised to 

0.9353, 0.9363 & 0.9430 p.u in phases a, b & c respectively 

when minimum charging points are operated at EVCS. The 

minimum voltage appears at bus number 12. Similarly, for the 

maximum number of Charging Points operated, the real power 

losses are decreased to 54.7319, 57.4194 & 42.1552 kW, the 

reactive power losses are reduced to 65.8439, 59.7626 & 

63.7137 kVAr and the minimum voltage is raised to 0.9327, 

0.9335 & 0.9412 p.u in phase a, b & c respectively. The 

minimum voltage appears at bus number 12. The test system 

performance is given in Table 2. 

Table 2: System performance with minimum & maximum EVCSs & without integrating the DGs. 

Case No. Loading 

Condition 

Ploss (kW) Qloss (kVAr) Vmin (p.u) 

A-Ph B-Ph C-Ph A-Ph B-Ph C-Ph A-Ph B-Ph C-Ph 

1. Without EVCS 

load 
43.5924 45.6421 34.3261 49.9860 45.5825 48.5777 0.9371 0.9381 0.9442 

2(a). With minimum 

EVCS load (without 

optimal placement) 

54.2458 56.7018 42.6423 62.1327 56.5319 60.2263 0.9305 0.9313 0.9389 

2(b). With maximum 

EVCS load (without 

optimal placement) 

73.4256 76.6128 57.5937 83.9727 76.2019 81.1367 0.9207 0.9212 0.9310 

3(a).  Optimal 

integration of EVCS 

load at bus no 2 With 

minimum EVCS load 

47.6703 49.9648 37.1916 55.7925 50.7819 54.1339 0.9353 0.9363 0.9430 

3(b).  Optimal 

integration of EVCS 

load at bus no 2 With 

maximum EVCS load 

54.7319 57.4194 42.1552 65.8439 59.7626 63.7137 0.9327 0.9335 0.9412 
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4.4 Case4: URDS with simultaneous allocation of DG & 

EVCS with min CPs operated  

The optimum location of the EVCS is 2, whereas DG is 

13. The DG size is 275.4839, 272.6971 & 281.2739 kW, the 

real power losses are 34.3016, 36.1581 & 26.6349 kW and the 

reactive power losses are 40.7973, 37.5192 & 39.4162 kVAr 

in phases a, b & c respectively. The minimum voltages are 

identified as 0.9522, 0.9547 & 0.9584 per unit in phases a, b 

& c correspondingly. The test system performance is given in 

Table 3 & Figure 4.

 

 

Figure 4. Bus Voltages, Real & Reactive power losses of 25 bus URDS with simultaneous allocation of DG & EVCS with 

minimum CPs operated 

4.5 Case5: URDS with simultaneous allocation of DG & 

EVCS with max CPs operated.  

The optimum location of the EVCS is 2, whereas DG is 

13. The DG size is 388.9737, 380.2428 & 383.5937 kW , the 

real power losses are 38.2326, 40.3281 & 29.6954 kW and the 

reactive power losses are 45.2218, 41.8251 & 44.0279 kVAr,  

minimum voltages are identified as 0.9510, 0.9533 & 0.9575 

pu in phases a, b & c respectively. The test system 

performance is given in Table 3 & Figure 5. 

Table 3: System performance with optimal integration of DG & EVCS With min & max CPs operated 

Description 
Case-4 Case-5 

Ph-A Ph-B Ph-C Ph-A Ph-B Ph-C 

DG Size(kW) 275.4839 272.6971 281.2739 388.9737 380.2428 383.5937 

Total DG Size(kW) 829.4549 1152.8102 

DG place (Bus Number) 13 13 

EVCS location 2 2 

Real Power Loss (kW) 34.3016 36.1581 26.6349 38.2326 40.3281 29.6954 

Total Real Power Losses (kW) 97.0946 108.2561 

Reactive Power Loss (kVAr) 40.7973 37.5192 39.4162 45.2218 41.8251 44.0279 

Total Reactive Power Losses (kVAr) 117.7327 131.0748 

Minimum Voltage 0.9522 0.9547 0.9584 0.951 0.9533 0.9575 

 

 

Figure 5. Bus Voltages, Real & Reactive power losses of 25 bus URDS with simultaneous allocation of DG & EVCS with 

maximum CPs operated 
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5. Comparison of HHO algorithm with other 

metaheuristic algorithms 

The outcomes of HHO for Case-5 are related with other 

metaheuristic algorithms, like, PSO [24], FPA [25], TLBO 

[26], EFO [27], GOA [28] & CSA [29]. In HHO the number 

of hawk’s i.e. population size, is set to 10. During a run in 

PSO, the inertia factor's range is reduced linearly from 0.8 to 

0.5. The social & cognitive coefficients are treated equally. 

The switching parameter in CSA is fixed at 0.8. The teaching 

factor in TLBO can be either 1 or 2 at random. In EHO, α=0.5, 

β=0.1, popsize=100, Maxgen=60. For GOA, strength of 

attraction & the gauge distance are 0.6 & 1.6. For all methods, 

number of iterations = 100, search variables = 9 (i.e., 1DG 

location, 1DG size &1 EVCS for each phase). The lower & 

upper boundaries for location = (2, n bus) & DG sizes = 

(0,400). 

To test the resilience of HHO in addressing optimization 

issues, each method was simulated for 50 separate runs for 

Case 5. HHO can be considered a more reliable & effective 

procedure than other commonly used procedures. Table 4 

shows the comparative investigation of losses & voltages for 

the cases considered, while Table 5 shows the best result 

produced by all methods after 50 separate run simulations and 

the average computing time. Figure 6 depicts the convergence 

features of multiple methods for case 4.

Table 4: Comparative investigation of losses & voltages of 25 bus URDS for different cases considered 

Scenarios 
Active power losses(kW) Reactive power losses(kVAr) Min.Voltage(pu) 

A B C A B C A B C 

Case-1: Without integrating 

DGs and EVCSs 
43.5924 45.6421 34.3261 49.9860 45.5825 48.5777 0.9371 0.9381 0.9442 

Case-2(a) : Minimum CPs 

operated in EVCS (without 

DG) 
54.2458 56.7018 42.6423 62.1327 56.5319 60.2263 0.9305 0.9313 0.9389 

% Increase (↑)/ Decrease 

(↓) w.r.t base case 
↑24.44 ↑24.23 ↑24.23 ↑24.30 ↑24.02 ↑23.98 ↓0.70 ↓0.72 ↓0.56 

Case-2(b): Maximum CPs 

operated in EVCS (without 

DG) 
73.4256 76.6128 57.5937 83.9727 76.2019 81.1367 0.9207 0.9212 0.9310 

% Increase (↑)/ Decrease 

(↓) w.r.t base case 
↑68.44 ↑67.86 ↑67.78 ↑67.99 ↑67.17 ↑67.02 ↓1.75 ↓1.80 ↓1.40 

Case-3(a): Optimal 

integration of EVCS with 

minimum CPs operated 

(without DG) 

47.6703 49.9648 37.1916 55.7925 50.7819 54.1339 0.9353 0.9363 0.9430 

% Increase (↑)/ Decrease 

(↓) w.r.t case-2(a) 
↓12.12 ↓11.88 ↓12.78 ↓10.20 ↓10.17 ↓10.11 ↑0.52 ↑0.54 ↑0.44 

Case-3(b): Optimal 

integration of EVCS with 

maximum CPs operated 

(without DG) 

54.7319 57.4194 42.1552 65.8439 59.7626 63.7137 0.9327 0.9335 0.9412 

% Increase(↑)/ Decrease 

(↓) w.r.t case-2(b) 
↓25.46 ↓25.05 ↓26.81 ↓21.59 ↓21.57 ↓21.47 ↑1.30 ↑1.34 ↑1.09 

Case-4: Simultaneous 

allocation of DG & EVCS 

with minimum CPs 

operated 

34.3016 36.1581 26.6349 40.7973 37.5192 39.4162 0.9522 0.9547 0.9584 

% Increase (↑)/ Decrease 

(↓) w.r.t case-2(a) 
↓36.77 ↓36.23 ↓37.54 ↓34.34 ↓33.63 ↓34.55 ↑2.33 ↑2.51 ↑2.08 

Case-5: Simultaneous 

allocation of DG & EVCS 

with maximum CPs 

operated 

38.2326 40.3281 29.6954 45.2218 41.8251 44.0279 0.9510 0.9533 0.9575 

% Increase (↑)/ Decrease 

(↓) w.r.t case-2(b) 
↓47.93 ↓47.36 ↓48.44 ↓46.15 ↓45.11 ↓45.74 ↑3.29 ↑3.48 ↑2.85 
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Table 5: Evaluation of best solution obtained by metaheuristic algorithms for case 5 

Algorithm Phase 

DG Size in 

kW, bus 

EVCS 

location Ploss(kW) Qloss(kVAr) Vmin(pu) Time(s) 

HHO 

A 388.9737, 13 2 38.2326 45.2218 0.951 

1.1752 B 380.2428, 13 2 40.3281 41.8251 0.9533 

C 383.5937, 13 2 29.6954 44.0279 0.9575 

PSO 

A 410.8975, 13 2 40.1258 46.5721 0.9483 

1.6549 B 421.5671, 13 2 42.1985 42.5423 0.9493 

C 398.2687, 13 2 30.2547 44.8549 0.9569 

FPA 

A 408.2369, 13 3 39.2567 46.4268 0.9496 

1.5942 B 410.2374, 13 3 41.9546 42.1472 0.9511 

C 395.6421, 13 3 30.1157 44.3571 0.9569 

TLBO 

A 398.2387, 13 2 39.8425 46.3265 0.9497 

1.2987 B 389.2567, 13 2 40.9624 41.9953 0.9521 

C 388.3486, 13 2 29.8869 44.0863 0.9572 

EFO 

A 401.8934, 14 2 39.1204 46.4934 0.9484 

1.3281 B 399.9986, 14 2 41.0251 42.0048 0.9528 

C 392.1574, 14 2 30.2347 44.1473 0.9567 

GOA 

A 411.8532, 13 2 39.0215 46.4856 0.9489 

1.2874 B 419.3286, 13 2 40.9698 42.3172 0.9517 

C 396.2381, 13 2 30.4783 44.1937 0.9571 

CSA 

A 399.9832, 13 2 38.9569 45.5124 0.9504 

1.2175 B 388.2314, 13 2 40.4587 41.8998 0.9514 

C 380.9856, 13 2 29.9967 44.0863 0.9568 

 

Figure 6. Convergence characteristics of various algorithms for case-5 in the 25-bus URDS 
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6. Conclusion 

EVs are the future of transport for conquering carbon 

emissions, leading to the formation of charging stations. As a 

result, EVCSs will become an unavoidable element of the 

distribution grid. Including EVCSs in URDS increases the 

system losses and a significant voltage variation at remote 

buses. Hence, the introduction of DGs is required to reduce 

URDS losses & improve the voltage profile when charging 

EVs with EVCSs. The influence of incorporating EVCSs & 

DGs into URDS is investigated in this work by utilizing a 

modified forward-backward load flow. 

The following findings demonstrate the effectiveness & 

advantages of the proposed framework. The planning 

framework is to determine the optimal EVCS placement & DG 

capacity & placement, aiming to lower power loss and voltage 

variation. For the effective placement of EVCSs and DGs in 

the distribution network, the HHO method is utilized. The 

efficiency of the suggested method is evaluated on 25 bus 

URDS.  

With the inclusion of EVCSs with minimum CPs operated 

and without placing them at optimized location, the real power 

losses are increased by 24.44%, 24.23% & 24.23%, reactive 

power losses are increased by 24.30%, 24.02% & 23.98% & 

the minimum voltage is reduced by 0.70%, 0.72% & 0.56% in 

A,B & C phases respectively. By placing the EVCS at 

optimum location i.e. at bus no 2, the real power losses are 

reduced by 12.12%, 11.88% & 12.78%, reactive power losses 

are reduced by 10.20%, 10.17% & 10.11% & the minimum 

voltage is improved by 0.52%, 0.54% & 0.44% in A, B & C 

phases respectively when compared to EVCSs with minimum 

CPs operated and without placing them at optimized location. 

With the inclusion of EVCSs with maximum CPs operated and 

without placing them at optimized location, the real power 

losses are increased by 68.44%, 67.86% & 67.78%, reactive 

power losses are increased by 67.99%, 67.17% & 67.02% & 

the minimum voltage is reduced by 1.75%, 1.80% &1.40% in 

A,B & C phases respectively. By placing the EVCS at 

optimum location i.e. at bus no 2, the real power losses are 

reduced by 25.46%, 25.05% & 26.81%, reactive power losses 

are reduced by 21.59%, 21.57% & 21.47% & the minimum 

voltage is improved by 1.30%, 1.34% & 1.09% in A, B & C 

phases respectively when compared to EVCSs with maximum 

CPs operated and without placing them at optimized location. 

With the optimal integration of DG at bus 13 & EVCS at 

bus 2 with minimum number of CPs operated, the real power 

losses are reduced by 36.77%, 36.23% & 37.54%, reactive 

power losses are reduced by 34.34%, 33.63% & 34.55% & the 

minimum voltage is improved by 2.33%, 2.51% & 2.08% in 

A, B & C phases respectively when compared to EVCSs with 

minimum CPs operated and without placing them at optimized 

location. With the optimum integration of DG & EVCS with 

maximum number of CPs operated, the real power losses are 

reduced by 47.93%, 47.36% & 48.44%, reactive power losses 

are reduced by 46.15%, 45.11% & 45.74% & the minimum 

voltage is improved by 3.29%, 3.48% & 2.85% in A, B & C 

phases respectively when compared to EVCSs with maximum 

CPs operated and without placing them at optimized location. 

The suggested HHO has the lowest objective function when 

compared to other optimization techniques. HHO has 

demonstrated its advantage in terms of robustness and 

consistency in a statistical study based on 50 unique run time 

data. Finally, in handling the nonlinear and complicated 

optimization problem, HHO outperformed other metaheuristic 

algorithms. It is recognized that HHO manifests fast 

convergence features. In future research activity, the 

optimization problem can be continued for a hybrid DG system 

with different DG units, including battery storage. 

Furthermore, the impact of renewable DG's intermittent nature 

may be handled using uncertainty modelling. 

References 

[1] D. Sanchari, Kari Tammi, Karuna Kalita, Pinakeshwar 

Mahanta, "Impact of Electric Vehicle Charging Station 

Load on Distribution Network", Energies, 11, no. 1:178, 

2018. DOI: https://doi.org/10.3390/en11010178. (Article) 

[2] A. Mohsenzadeh, Samaneh Pazouki, Shahab Ardalan & 

Mahmoud Reza Haghifam, “Optimal placing and sizing of 

parking lots including different levels of charging stations 

in electric distribution networks”, International Journal of 

Ambient Energy, 2017, DOI: 

10.1080/01430750.2017.1345010. (Article) 

[3] T.Ramana, V.Ganesh & S.Sivanagaraju, “Distributed 

Generator Placement and Sizing in Unbalanced Radial 

Distribution System”, Cogeneration & Distributed 

Generation Journal, Vol. 25, No. 1, 2010, pp.52-71.   DOI: 

https://doi.org/10.1080/15453661009709862. (Article)  

[4] V.Janamala, U.Kamal Kumar & TKS.Pandraju, “Future 

search algorithm for optimal integration of distributed 

generation and electric vehicle fleets in radial distribution 

networks considering techno-environmental aspects”, SN 

Appl.Sci.3, 464, 2021. DOI: 

https://doi.org/10.1007/s42452-021-04466-y. (Article) 

[5] R. Sanjay, T. Jayabarathi, T. Raghunathan, V. Ramesh & 

N.Mithulananthan, "Optimal Allocation of Distributed 

Generation Using Hybrid Grey Wolf Optimizer", IEEE 

Access, Vol. 5, 2017, pp. 14807-14818. DOI: 

https://doi.org/10.1109/ACCESS.2017.2726586. (Article) 

[6] I. A. Quadri, S. Bhowmick & D. Joshi, "A comprehensive 

technique for optimal allocation of distributed energy 

resources in radial distribution systems", Applied Energy, 

Vol. 211, 2018, pp. 1245-1260. DOI: 

https://doi.org/10.1016/j.apenergy.2017.11.108. (Article) 

[7] S. Kayalvizhi, D.M. Vinod Kumar, "Optimal planning of 

active distribution networks with hybrid distributed energy 

resources using grid-based multi-objective harmony search 

https://doi.org/10.1016/j.apenergy.2017.11.108


INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
P. Vijetha et al., Vol.12, No.1, March, 2o22 

68 
 

algorithm", Applied Soft Computing, Vol. 67, 2018, pp. 

387-398. DOI: https://doi.org/10.1016/j.asoc.2018.03.009. 

(Article) 

[8] A. Jabbary & Hossein Shayeghi, “Smart Imposing of 

Operational Limits in Optimizing the Technical and 

Economic Indexes of Distribution Network in Presence of 

Distributed Generation Sources”, International Journal of 

Ambient Energy, 2018, DOI: 

10.1080/01430750.2018.1492451. (Article) 

[9] A. Hajimiragha, CA. Canizares, MW. Fowler and A. 

Elkamel, "Optimal Transition to Plug-In Hybrid Electric 

Vehicles in Ontario, Canada, Considering the Electricity-

Grid Limitations", IEEE .Transactions on Industrial 

Electronics, vol. 57, no. 2, 2010, pp. 690-701. DOI: 

https://doi.org/10.1109/TIE.2009.2025711. (Article) 

[10] M.Etezadi-Amoli, K. Choma, and J. Stefani, “Rapid-

Charge Electric-Vehicle Stations”, IEEE Transactions on 

Power Delivery, vol. 25, no.3,pp. 1883-1887,  

2010.DOI:https://doi.org/10.1109/TPWRD.2010.2047874

. (Article) 

[11] F. Xu, G. Q. Yu, L. F. Gu, and H. Zhang, “Tentative 

analysis of layout of electrical vehicle charging stations”, 

Proceeding of East China Electric Power,vol. 37, no. 10, 

2009, pp.1677–82.  (Conference Paper) 

[12] M. Satish Kumar Reddy & K. Selvajyothi, “Optimal 

placement of electric vehicle charging station for 

unbalanced radial distribution systems”, Energy Sources, 

Part A: Recovery, Utilization, and Environmental Effects, 

2020. DOI: 

https://doi.org/10.1080/15567036.2020.1731017. (Article) 

[13] M. Dixit, R. Roy, "PSO-CFA based optimal placement of 

EVs in radial distribution network for loss minimization," 

2015 IEEE International Conference on Electrical, 

Computer and Communication Technologies (ICECCT), 

Coimbatore, March 5-7, 2015, pp.1-5.  DOI: 

https://doi.org/10.1109/ICECCT.2015.7225983. 

(Conference Paper) 

[14] G. Battapothula, Y. Chandrasekhar & M. Sydulu, "Multi-

objective simultaneous optimal planning of electrical 

vehicle fast charging stations and DGs in distribution 

system", Journal of Modern Power Systems and Clean 

Energy, Vol. 7, 2019, pp. 923–934. DOI: 

https://doi.org/10.1007/s40565-018-0493-2. (Article) 

[15] G. Battapothula, C. Yammani & S. Maheswarapu, 

"Multiobjective optimal planning of FCSs and DGs in 

distribution system with future EV load enhancement", 

IET Electrical Systems in Transportation, Vol. 9, No. 3, 

2019, pp. 128-139. DOI: https://doi.org/10.1049/iet-

est.2018.5066. (Article) 

[16] M. S. K. Reddy, K. Selvajyothi, "Optimal Placement of 

Electric Vehicle Charging Stations in Radial Distribution 

System along with Reconfiguration", 2019 IEEE 1st 

International Conference on Energy, Systems and 

Information Processing (ICESIP), Chennai, July 4-6, 2019, 

pp. 1-6. DOI: 

https://doi.org/10.1109/ICESIP46348.2019.8938164. 

(Conference Paper) 

[17] S. Ermis, M. Yesilbudak and R. Bayindir, "Optimal 

Power Flow Using Artificial Bee Colony, Wind Driven 

Optimization and Gravitational Search Algorithms", 2019, 

8th International Conference on Renewable Energy 

Research and Applications (ICRERA), 2019, pp. 963-967, 

DOI:https://doi.org/10.1109/ICRERA47325.2019.899655

9. (Conference Paper) 

[18] M. Yesilbudak & A. Colak, "Integration Challenges and 

Solutions for Renewable Energy Sources, Electric 

Vehicles and Demand-Side Initiatives in Smart Grids", 

2018 7th International Conference on Renewable Energy 

Research and Applications (ICRERA), 2018, pp. 1407-

1412, DOI: 

https://doi.org/10.1109/ICRERA.2018.8567004. 

(Conference Paper) 

[19] P. V. K. Babu and K. Swarnasri, "Adaptive PSO 

Technique for Optimal Placement and Sizing of DG in 3-

Phase Unbalanced Radial Secondary Distribution System," 

2019 IEEE International Conference on Intelligent 

Systems and Green Technology (ICISGT), 

Visakhapatnam, India, 2019, pp. 85-854, DOI: 

https://doi.org/10.1109/ICISGT44072.2019.00034. 

(Conference Paper) 

[20] A. A. Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim 

Aljarah, Majdi Mafarja & Huiling Chen, "Harris hawks 

optimization: Algorithm and applications", Future 

Generation Computer Systems, Vol. 97, 2019, pp. 849-

872. DOI: https://doi.org/10.1016/j.future.2019.02.028. 

(Article) 

[21] P. V. K. Babu and K. Swarnasri, “Optimal integration of 

different types of DGs in radial distribution system by 

using Harris hawk optimization algorithm”, Cogent 

Engineering, vol.7, no. 1, 2020. DOI: 

https://doi.org/10.1080/23311916.2020.1823156.  

(Article) 

[22] P. V. K Babu and K. Swarnasri, " Multi-Objective 

Optimal Allocation of Electric Vehicle Charging Stations 

in Radial Distribution System Using Teaching Learning 

Based Optimization", International Journal of Renewable 

Energy Research, Vol. 10, No.1, pp. 366–377, 2020. 

(Article) 

[23] P. V. K. Babu, K. Swarnasri, P. Vijetha, “A three phase 

unbalanced power flow method for secondary distribution 

system”, Advances in Modelling and Analysis B, Vol. 61, 

No. 3, pp. 139-144, 2018. DOI: 

https://doi.org/10.18280/ama_b.610306.  (Article) 

[24] J. Kennedy, RC. Eberhart,“ Particle swarm optimization”, 

In: Proceedings of IEEE International Conference on 

Neural Networks, Perth, Australia, vol 4., 1995, pp 1942–

1948. DOI: https://doi.org/10.1109/ICNN.1995.488968. 

(Conference Paper) 

[25] XS. Yang,“Flower pollination algorithm for global 

optimization”, In: International conference on 

unconventional computing and natural computation. 

https://doi.org/10.1016/j.asoc.2018.03.009
https://doi.org/10.1109/TIE.2009.2025711
https://doi.org/10.1080/15567036.2020.1731017
https://doi.org/10.1109/ICECCT.2015.7225983
https://doi.org/10.1007/s40565-018-0493-2
https://doi.org/10.1049/iet-est.2018.5066
https://doi.org/10.1049/iet-est.2018.5066
https://doi.org/10.1109/ICESIP46348.2019.8938164
https://doi.org/10.1109/ICRERA.2018.8567004
https://doi.org/10.1109/ICISGT44072.2019.00034
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1080/23311916.2020.1823156
https://doi.org/10.18280/ama_b.610306
https://doi.org/10.1109/ICNN.1995.488968


INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
P. Vijetha et al., Vol.12, No.1, March, 2o22 

69 
 

Springer, Berlin, Heidelberg, 2012.  DOI: 

https://doi.org/10.1007/978-3-642-32894-7_27. 

(Conference Paper) 

[26] RV. Rao, VJ. Savsani, DP. Vakharia, “Teaching–

learning-based optimization: a novel method for 

constrained mechanical design optimization problems”, 

Comput Aided Des 43(3):303–315, 2011. DOI:  

https://doi.org/10.1016/j.cad.2010.12.015 (Article) 

[27] C.H. Prasad, K. Subbaramaiah, & P. Sujatha, “Cost–

benefit analysis for optimal DG placement in distribution 

systems by using elephant herding optimization 

algorithm”, Renewables: Wind, Water and Solar, 6(1), 

2019. DOI:  https://doi.org/10.1186/s40807-019-0056-9. 

(Article) 

[28] CM. Topaz, AJ. Bernoff, S. Logan, W. Toolson, “A 

model for rolling swarms of locusts”,  Eur Phys J Spec Top 

157:93–109,2008. DOI: 

https://doi.org/10.1140/epjst/e2008-00633-y.  (Article) 

[29] XS. Yang, S. Deb, “Cuckoo search via Lévy flights”, In: 

Proceedings of world congress on nature and biologically 

inspired computing. IEEE Publications, USA, 2008, pp 

210–214. DOI:  

https://doi.org/10.1109/NABIC.2009.5393690. (Article) 

[30] F. K. V. Junior, B. A. Teplaira, M. C. Franklin, "Optimal 

Reliability of a Smart Grid", International Journal of Smart 

Grid, Vol.5, No.2, June, 2021. (Article) 

[31] M. Gilbert, N. Shililiandumi, H Kimaro, "Evolutionary 

Approaches to Fog Node Placement in LV Distribution 

Networks", International Journal of Smart Grid, Vol.5, 

No.1, March, 2021. (Article)    

 

https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1186/s40807-019-0056-9
https://doi.org/10.1140/epjst/e2008-00633-y
https://doi.org/10.1109/NABIC.2009.5393690

