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Abstract- Economic and demographic development has led to energy consumption increment around the world. The utilization 
of renewable energies is the best solution to offset this increase. The photovoltaic energy is widely used around the word through 
grid connection or standalone systems. Climatic changes can influence the generated power and the operating management 
strategy. Thus, photovoltaic power forecasting is very crucial to ensure stability. Reliable prediction accuracy provides 
information to ensure an efficient energy management of a PV/Battery/Diesel hybrid system. This paper presents a comparative 
study among various photovoltaic power prediction methods based on deep learning and optimization algorithms. Three 
topologies are outlined: the feed forward neural network with Particle- Swarm-Optimization tool (FFNN-PSO), the long short-
term memory recurrent neural network (LSTM) and the bidirectional LSTM network with the Bayesian Optimization Algorithm 
(BiLSTM-BOA). The predictors’ accuracy evaluation is done via statistical metrics. The simulation analysis show the 
performance of the BiLSTM-BOA on photovoltaic power forecasting. The application of the management algorithm using the 
forecasted PV power proved a high level of efficiency for both clear and disturb days. It maximizes the contribution of the 
renewable resource, minimizes the utilization of the batteries and the diesel generators and ensures load supply continuity. 

Keywords Photovoltaic power, forecasting, deep learning, optimization, management. 

Nomenclature  
 
𝐴𝐴𝑑𝑑: Battery daily autonomy [day] 
𝐶𝐶𝐵𝐵: Battery capacity [Ah] 
𝐶𝐶𝑇𝑇: Total batteries capacity [Ah] 
𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: Battery maximum depth of discharge 
𝐸𝐸𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: Nominal amount of energy of one battery [Wh] 
𝐸𝐸𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏: Batteries nominal amount of energy [Wh] 
𝐸𝐸𝐿𝐿: The mean daily produced PV power [Wh/day] 
𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏: Charged battery power [Wh] 
𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑: Discharged battery power [Wh] 
𝑃𝑃𝐿𝐿: The load power [W] 
𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚: The maximum battery charged power [Wh] 
𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: The maximum battery discharged power [Wh] 
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏: Batteries minimum amount of energy [Wh] 
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚: Batteries maximum amount of energy [Wh] 

𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏: Batteries amount of energy variation [Wh] 
𝑃𝑃𝐷𝐷𝐷𝐷𝑏𝑏: Diesel generator nominal power [W] 
𝑃𝑃𝐷𝐷𝐷𝐷: Diesel generator power [W] 
𝑃𝑃𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑: The dumped power [W] 
𝑃𝑃𝑃𝑃𝑃𝑃: The predicted photovoltaic power [W] 
1. Introduction 

Due to the excessive economic and demographic 
development, the utilization of the renewables energies has 
been increased all over the other sources [1-2]. Thanks to their 
advantages including property and durability [3].  The most 
utilized source is the photovoltaic energy [4]. The PV panel 
converts the sunlight into electrical energy. The intermittent 
character is the main drawbacks of the generated power [5]. It 
depends on the variable climatic data such as sun radiation and 
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temperature [6]. Indeed, the produced power can be more 
effective on a clear day than on a cloudy day. Thus, to 
maximize its contribution, an effective photovoltaic power-
forecasting tool is mandatory [7-9]. The main predicted power 
is a helpful tool for energy managers to guarantee an optimal 
energy dispatch [10]. The photovoltaic power forecast 
methodologies could be divided on five categories: The 
persistence forecast is based on the theory that today equal to 
tomorrow defined with a mathematical equation [11-12]. The 
physical models, which impose the knowledge of the 
astronomical parameters [13-14]. The statistical methods 
based on a pure mathematical process e.g. the curve fitting, the 
autoregressive moving average model, the exponentially 
weighted moving average (EWMA) [15-16]. The deep 
learning techniques that enclose the feed forward neural 
network, the multilayer perceptron neural network and the 
recurrent neural network [17-19]. The hybrid models, which 
present a combination of two or more topologies. It takes the 
potential of all the combined techniques. For example, the 
ANFIS model that combine ANN and fuzzy logic, the ANN 
with the Wavelet Transform, the ANN with the support vector 
machine, the multilayer perceptron and grey wolf, ant lion and 
whale optimization algorithms [20-23]. The most accurate 
tools relies on deep learning networks including recurrent and 
non-recurrent structure. Moreover, they have been used in 
different tasks such as face recognition [24-25], wireless 
sensor network [26-27]. They can be combined with an 
optimization tools for more accurate prediction results [28-
31]. In our paper, three types of artificial networks are 
proposed: the feed forward neural network with Particle- 
Swarm-Optimization tool (FFNN-PSO), the long short-term 
memory recurrent neural network (LSTM) and the 
bidirectional LSTM network with the Bayesian Optimization 
Algorithm (BiLSTM-BOA). The mentioned methods 
performances have been compared via statistical metrics. The 
simulation results show that the BiLSTM-BOA topology is 
the most accurate. It encloses the benefits of the BiLSTM 
network, as it performs the training on both the forward and 
the backward path, and the BOA, as it performs an effective 
optimization of the BiLSTM hyperparameters. As application 
of the forecasted PV power, the energy management of a 
hybrid system. The studied system consists of a PV station, 
bidirectional inverter, batteries and diesel generators. The 
management strategy respects the following criteria: 
maximization of the renewable source utilization, 
minimization of the batteries and the diesel generators use, 
protection of the storage systems from over-charging or 
discharging and load-supply continuity. The simulation results 
for both clear and disturb days show a full respect of the 
designed criteria. The main process is summarized on the 
flowchart presented in figure 1. 

The main contributions of this study can be presented as 
follows: (a) An advanced PV power prediction models based 
on deep learning and optimization algorithms are proposed (b) 
Accuracy prediction levels are compared based on the 
performance evaluation metrics and the training time, for both 
stable and disturb days (c) Exploitation of the forecasted PV 
power on a hybrid PV/Battery/Diesel energy management. 
The main study presents a useful reference on the combination 

between the optimization algorithms and the deep learning 
networks for the generated PV power forecast. 

The following paper is organized as follow: section 3 
describes the proposed methods, section 4 summarizes the 
statistical metrics, section 5 presents the hybrid system 
components description and the proposed management 
algorithm, section 6 displays the simulation results and section 
7 outlines the conclusion. 

 
Fig. 1. Methodology of the proposed approach. 

2. Methodologies description 

For PV power production forecasting, three topologies 
based on deep learning and optimization algorithms have been 
considered. We have used different architectures: the feed 
forward neural network with Particle- Swarm-Optimization 
tool (FFNN-PSO), the long short-term memory recurrent 
neural network (LSTM) and the bidirectional LSTM network 
with the Bayesian Optimization Algorithm (BiLSTM-BOA). 
Below, a brief description of each topology. 

2.1. Feed Forward algorithm-Particle Swarm Optimization 
(FFNN-PSO) 

The FFNN information flow is done in one direction from 
the input to the output layer [32]. The FFNN output with a 
linear function can be expressed as follow [33]. 

𝑂𝑂𝑗𝑗 = 𝑓𝑓(∑ 𝜔𝜔𝑠𝑠𝑗𝑗𝑝𝑝𝑠𝑠 + 𝑏𝑏𝑗𝑗𝑏𝑏
𝑠𝑠=1 ) (1) 
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Where, 𝑓𝑓 is the sigmoid hidden layer’s activation 
function, 𝑝𝑝𝑠𝑠 is the input data, 𝜔𝜔𝑠𝑠𝑗𝑗 are the weights between the 
input and the hidden layers and 𝑏𝑏𝑗𝑗 presents the bias value of 
neuron 𝑗𝑗 of the hidden layer. Linear activation function was 
chosen for the output layer.  

The FFNN involves two primordial steps, which are 
training and validation. During the learning process, the bias 
and the weights parameters are updated to meet the desired 
output value based on the back propagation. The main process 
can be fell down on local minima [34]. To solve this problem, 
the cited factors should be updated with another technique 
such as the particle-swarm-optimization-algorithm. It is 
characterized with its faster and greater training results [35-
36]. The PSO, invented by Russell Eberhart and James 
Kennedy, consists of a population optimization tool inspired 
from birds flocking around food sources [37-39]. Indeed, the 
PSO is initialized with a random particles population. The 
main algorithm process focuses on optima through 
generations update. All the particles present fitness values, 
which are evaluated based on a fitness function [40]. The 
mean squared error was defined as a fitness function. It can be 
calculated using equation (2). 

𝑀𝑀𝑀𝑀𝐸𝐸 = ∑ (𝑂𝑂𝑖𝑖−𝑂𝑂𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑏𝑏
 (2) 

Where, 𝑂𝑂𝑠𝑠 is the network’s output, 𝑂𝑂𝑠𝑠𝐷𝐷is the desired 
output and n: is the total number of data. 

Each particle is characterized with its specific position 
and velocity, which are updated using equations (3) [41]. 

𝑠𝑠𝑘𝑘+1𝑠𝑠 = 𝑠𝑠𝑘𝑘𝑠𝑠 + 𝑣𝑣𝑘𝑘+1𝑠𝑠  (3) 

Where: 

𝑠𝑠𝑘𝑘+1𝑠𝑠 : Particle 𝑖𝑖 position at time instant 𝑘𝑘 + 1 

𝑠𝑠𝑘𝑘𝑠𝑠  : Particle 𝑖𝑖 position at time instant 𝑘𝑘 

𝑣𝑣𝑘𝑘+1𝑠𝑠 : Particle 𝑖𝑖 velocity at time instant 𝑘𝑘 + 1 

𝑣𝑣𝑘𝑘𝑠𝑠 : Particle 𝑖𝑖 velocity at time instant 𝑘𝑘 

𝜔𝜔𝑘𝑘: The inertia weight 

𝑐𝑐1; 𝑐𝑐2: The acceleration constants 

𝑟𝑟1; 𝑟𝑟2: Random elements 

𝜑𝜑𝑘𝑘𝑠𝑠 : The best solution reached by the designed particle 

𝜑𝜑𝑘𝑘
𝑔𝑔: The best solution reached by the entire particles 

The FFNN+PSO optimization algorithm can be summarized 
on the following organogram presented in figure 2. 

 
Fig. 2. FFNN-PSO flowchart. 

2.2. Long Short-Term Memory (LSTM) 

LSTM is a subtype of recurrent neural network. LSTM 
and RNN consist of internal self-looped repeating networks. 
The difference between them is the repeating module 
structure. Indeed, the RNN involves a simple repeating model 
based on a simple layer such us ‘Tanh layer’. However, the 
LSTM presents four layers including the ‘Tanh layer’ [42]. 
The LSTM utilizes the hidden layer unit, namely memory 
cells, to overcome the RNN limitation. Three gates are 
designed for memory cells control, which are the input gate, 
the output gate, and the forget gate. The memory flow control 
is done through the input and the output gates. The forget gate 
is added to the memory cell that straight the output 
information with weights update from previous to next 
neuron[43-44]. 

The forget gate output derives the information that should 
be forget from the previous step. It can be expressed using 
equation (4). 

𝑓𝑓𝑏𝑏 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑏𝑏−1, 𝑥𝑥𝑏𝑏] + 𝑏𝑏𝑓𝑓� (4) 

The input gate derives the information that should be 
stored in the cell state. It can be displayed using equation (5). 

𝑖𝑖𝑏𝑏 = 𝜎𝜎(𝑊𝑊𝑠𝑠 ∙ [ℎ𝑏𝑏−1, 𝑥𝑥𝑏𝑏] + 𝑏𝑏𝑠𝑠) (5) 

The third layer is the ‘Tanh layer’. It can be used to 
generate new values that can be added to the state. It can be 
expressed using equation (6). 

𝐶𝐶𝑏𝑏� = 𝜑𝜑(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑏𝑏−1, 𝑥𝑥𝑏𝑏] + 𝑏𝑏𝐶𝐶) (6) 

After the application of the cited three layers, the previous 
cell state 𝐶𝐶𝑏𝑏−1 should be updated, the forget gate derives what 
should be forgotten, the input gate derives what should be 
added to the new cell state 𝐶𝐶𝑏𝑏� . The cell state update can be 
formulated using equation (7). 

𝐶𝐶𝑏𝑏 = 𝑓𝑓𝑏𝑏𝐶𝐶𝑏𝑏−1 + 𝑖𝑖𝑏𝑏𝐶𝐶𝑏𝑏�  (7) 
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The output gate derives the output of the whole process, 
after the cell update. The final output can be expressed using 
equation (8). 

𝑂𝑂𝑏𝑏 = 𝜎𝜎(𝑊𝑊𝑂𝑂 ∙ [ℎ𝑏𝑏−1, 𝑥𝑥𝑏𝑏] + 𝑏𝑏𝑂𝑂) ∙ 𝜑𝜑(𝐶𝐶𝑏𝑏) (8) 

Where: �𝑊𝑊𝑓𝑓,𝑊𝑊𝑠𝑠 ,𝑊𝑊𝐶𝐶 ,𝑊𝑊𝑂𝑂�are the weights of each layer, 
�𝑏𝑏𝑓𝑓, 𝑏𝑏𝑠𝑠 ,𝑏𝑏𝐶𝐶 ,𝑏𝑏𝑂𝑂� are the bias of each layer, 𝜎𝜎 denotes the 
sigmoid activation function and 𝜑𝜑 is the Tanh function. 

The LSTM loss function is the mean squared function 
between the output of the LSTM topology and the truth data. 
It can be formulated as follow using equation (9). 

𝐿𝐿𝑑𝑑𝑠𝑠𝑠𝑠(𝜃𝜃)𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿 = 1
𝑁𝑁
∑ |𝑁𝑁𝑁𝑁(𝑥𝑥𝑠𝑠;𝜃𝜃) − 𝑦𝑦𝑠𝑠|2𝑁𝑁
𝑠𝑠=1  (9) 

Where: 𝜃𝜃 = {𝑊𝑊, 𝑏𝑏}; 𝑊𝑊 = �𝑊𝑊𝑓𝑓,𝑊𝑊𝑠𝑠 ,𝑊𝑊𝐶𝐶 ,𝑊𝑊𝑂𝑂�, 𝑏𝑏 =
�𝑏𝑏𝑓𝑓, 𝑏𝑏𝑠𝑠 , 𝑏𝑏𝐶𝐶 ,𝑏𝑏𝑂𝑂�; N is the number of data 

The loss function minimization can be done through 
stochastic gradient descent algorithm. 

2.3. The Bayesian optimization algorithm (BOA) 

The Bayesian optimization algorithm is used to pick out 
the hyperparameters optimal values with fewer iterations. The 
main idea of BOA is to suppose a prior distribution model of 
f (X) at first, after that utilize the derived information for guess 
model optimization in accordance with the actual distribution. 
Thus, the BOA selects the parameters for results 
improvement. It maximizes the global optimum via the 
previous sampling point information [45].  

The steps of the BOA are as follows [46]: First, suppose 
a prior function. Commonly, the Gaussian Processes (GP) is 
utilized as the assumed model. Then, involve two input sets of 
real data [𝑋𝑋0,𝑓𝑓(𝑋𝑋0)], [𝑋𝑋1,𝑓𝑓(𝑋𝑋1)]into the GP model to rectify 
the assumed model. After that, select a set 𝑋𝑋𝑠𝑠 from the rectified 
GP. The designated criterion requires the ability of the 
selected set to improve the acquisition function. Finally, the 
𝑓𝑓(𝑋𝑋𝑠𝑠) value is calculated. If the iteration number fulfill the 
whole dataset, the results are generated. If not, an input 
[𝑋𝑋𝑠𝑠,𝑓𝑓(𝑋𝑋𝑠𝑠)] is implanted on the GP, re-rectify the model and 
repeat the followed steps until dealing with all the sets. 

The BOA is utilized for the bidirectional LSTM model 
(BiLSTM) parameters optimization. The main difference 
between LSTM and the BiLSTM lies on the training process. 
Indeed, the LSTM train the data only on one direction. 
However, the BiLSTM train the data on the forward and the 
backward path [47] as presented in figure 3.  

 
Fig. 3. BiLSTM structure. 

The BiLSTM model forward, backward and output layers 
expressions can be expressed using equations (10), (11) and 
(12), respectively [48]. 

ℎ�⃗ 𝑏𝑏 = 𝐻𝐻�𝑊𝑊1𝑥𝑥𝑏𝑏 + 𝑊𝑊2ℎ�⃗ 𝑏𝑏−1 + 𝑏𝑏�⃗  � (10) 

ℎ⃖�𝑏𝑏 = 𝐻𝐻�𝑊𝑊3𝑥𝑥𝑏𝑏 + 𝑊𝑊5ℎ⃖�𝑏𝑏−1 + �⃖�𝑏�� (11) 

𝑦𝑦𝑏𝑏 = 𝑊𝑊4ℎ�⃗ 𝑏𝑏 + 𝑊𝑊6ℎ⃖�𝑏𝑏 + 𝑏𝑏𝑦𝑦 (12) 

Where: 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊3, 𝑊𝑊4, 𝑊𝑊5, 𝑊𝑊6 are de corresponding 
weights, 𝑏𝑏�⃗ , �⃖�𝑏�, 𝑏𝑏𝑦𝑦 are the forward, backward and the output 
biases. 

3. Statistical evaluation metrics 

The evaluation of the proposed technologies can be done 
through statistical metrics such us: the normalized mean 
squared error, the mean absolute percentage error and the 
normalized error. The cited measures compare between the 
real and the predicted data to assimilate the performance of the 
utilized model [49-51]. The following metrics can be 
expressed using equations (13), (14) and (15). 

The Normalized root mean squared error: 

𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝐸𝐸(%) = 100 × ��1
𝑁𝑁
∑ �𝑃𝑃𝑠𝑠 − 𝑃𝑃�𝑠𝑠�

2𝑁𝑁
𝑠𝑠=1 / 1

𝑁𝑁
∑ 𝑃𝑃𝑠𝑠𝑁𝑁
𝑠𝑠=1 � (13) 

The mean absolute percentage error: 

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸(%) = 100 ∙ �1
𝑁𝑁
∑ �𝑃𝑃𝑖𝑖−𝑃𝑃

�𝑖𝑖
𝑃𝑃𝑖𝑖

�𝑁𝑁
𝑠𝑠=1 � (14) 

The normalized error: 

𝑁𝑁𝐸𝐸 = |𝑃𝑃𝑖𝑖−𝑃𝑃�𝑖𝑖|
max (𝑃𝑃𝑖𝑖)

 (15) 

Where: 𝑃𝑃𝑠𝑠 is the real value, 𝑃𝑃�𝑠𝑠 is the predicted value and 
N is the observations number. 

4. Hybrid PV/Battery/Diesel system management 

Standalone hybrid systems are widely used in remote area 
where there is not access to the power grid [52-53]. In our 
paper, the hybrid system main components are the PV 
generator, the batteries, the bidirectional inverter and the 
diesel generator. The load is supplied mostly through the 
renewable source and the batteries and the diesel generator 
intervene only when there is lack of energy. The PV generator 
model, the batteries storage system, the diesel generator and 
the energy management algorithm are discussed as follow. 

4.1. PV generator modelling 

The generated PV Power can be calculated considering 
the solar irradiation and the ambient temperature 
meteorological parameters [54-55]. The mathematical model 
of the produced energy can be expressed as follow in equation 
(16) [56]. 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑇𝑇
𝐿𝐿𝑆𝑆(𝑏𝑏)
𝐿𝐿𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇

�1 + 𝛼𝛼𝑃𝑃
100

(𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) − 𝑇𝑇𝐿𝐿𝑇𝑇𝐶𝐶)� 𝑓𝑓𝑃𝑃𝑃𝑃 (16) 

Where: 𝑁𝑁𝑃𝑃𝑃𝑃 is the number of the photovoltaic panels, 
𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑇𝑇 is the photovoltaic power rate on the nominal condition 
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STC (𝑀𝑀𝑁𝑁𝐿𝐿𝑇𝑇𝐶𝐶 = 1000𝑊𝑊/𝑚𝑚2,𝑇𝑇𝐿𝐿𝑇𝑇𝐶𝐶 = 25℃,𝐴𝐴𝑀𝑀 = 1.5), 𝑀𝑀𝑁𝑁(𝑡𝑡) 
is the solar irradiation at time t, 𝛼𝛼𝑃𝑃 is the temperature 
coefficient of maximum power, 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) is the cell temperature 
at time t and 𝑓𝑓𝑃𝑃𝑃𝑃 is the derating factor that consider the losses 
due to shading and natural degradation of the PV Panel.  

The cell temperature can be calculated using equation (17). 

𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑇𝑇𝑚𝑚𝑚𝑚𝑏𝑏(𝑡𝑡) + 𝑀𝑀𝑁𝑁(𝑡𝑡) �𝑁𝑁𝑂𝑂𝐶𝐶𝑇𝑇−25
1000

� (17) 

Where 𝑇𝑇𝑚𝑚𝑚𝑚𝑏𝑏(𝑡𝑡) is the ambient temperature at time t and 
NOCT is the nominal operating cell temperature. 

4.2. Battery modelling 

Standalone photovoltaic system requires storage 
components. The most used are the batteries due to their 
efficiency and their cheaper cost [57]. The battery bank is 
characterized with its state of charge and the terminal voltage 
[58].  

The total capacity of the battery bank to meet the load can 
be calculated using equation (18) [59]. 

𝐶𝐶𝑇𝑇 = 𝐸𝐸𝐿𝐿 𝐴𝐴𝑑𝑑
𝑈𝑈𝑇𝑇 𝑑𝑑𝑠𝑠𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 (18) 

Where: 𝐸𝐸𝐿𝐿 is the mean daily produced PV power, 𝐴𝐴𝑑𝑑 is 
the battery autonomy, 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the battery maximum depth 
of discharge, 𝑈𝑈𝑇𝑇 is he voltage related to how much batteries 
are installed in series. 

The number of batteries in parallel can be deducted 
through the following equation (19). 

𝑁𝑁𝑏𝑏𝑃𝑃 = 𝐶𝐶𝑇𝑇 
𝐶𝐶𝐵𝐵

 (19) 

Where: 𝐶𝐶𝐵𝐵 is the capacity of one battery. 

The battery bank nominal amount of energy can be 
expressed using equation (20). 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏 = 𝑁𝑁𝑏𝑏𝑃𝑃𝑁𝑁𝑏𝑏𝐿𝐿𝐸𝐸𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (20) 

Where: 𝑁𝑁𝑏𝑏𝑃𝑃 is the number of batteries in parallel, 𝑁𝑁𝑏𝑏𝐿𝐿 is 
the number of batteries in series and 𝐸𝐸𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the nominal 
capacity of one battery, which is the product of the battery 
capacity and voltage. 

The battery bank amount of energy depends on the 
required load power and the generated energy. Its variation 
during the charging and the discharging process can be 
expressed using equations (21) and (22) as follow. 

During the charging process: 

𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) + 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏 (21) 

During the discharging process: 

𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) − 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑 (22) 

Where: 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡) is the batteries’ amount of energy at time 
(t), 𝜎𝜎𝐵𝐵 is the battery self-discharge parameter, 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡) is the 
designed energy to charge the batteries, 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡) is the 
discharged energy to feed the load requirements, generated 
power at time t and 𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏, 𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑 are the battery efficiency 

during the charging and the discharging processes comprised 
between 0 and 1, respectively. 

The battery can be charged or discharged in coordination 
with a specific quantity of energy. The maximum energies can 
be defined using equations (23) and (24). 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡) (23) 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡) − 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏 (24) 

The battery bank amount of energy should be limited 
between minimum and maximum values to avoid 
overcharging and discharging issues. The minimum and the 
maximum amount of energy values can determined based on 
equations (25) and (26), respectively. 

𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏𝑚𝑚𝑠𝑠𝑏𝑏 = (1 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚)𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏 (25) 

𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏 (26) 

4.3. Diesel generator modelling 

The dispatch strategy involved in our paper consists on 
running the diesel generator (DG) only when the generated 
photovoltaic power and the stored energy on the batteries are 
not sufficient to meet the load requirements [60].   

The number of DG units required to ensure Power-Load 
equilibrium can be expressed using equation (27). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁(𝑡𝑡) = min �𝑁𝑁𝐷𝐷𝐷𝐷𝐿𝐿𝐴𝐴𝐷𝐷, 𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑 �𝑃𝑃𝑖𝑖𝐷𝐷(𝑏𝑏)
𝑃𝑃𝑖𝑖𝐷𝐷𝑛𝑛

�� (27) 

4.4.  Energy management algorithm 

The PV/Battery/Diesel energy management algorithm 
(EMA) considers the renewable resource as the first load 
supplier, the battery bank is only charged through the 
generated PV Power and the diesel generator is only required 
when the produced energy through the PV generator and the 
stored energy on the batteries are not sufficient to meet the 
load demand. The EMA aims to maximize the use of the 
renewable source, minimize the utilization of the batteries and 
the diesel generators, protect the storage systems for over 
charging or discharging and ensure the continuity of the load 
supply. 

The following cases describe the management strategy 
used in our paper. The first case is when the generated PV 
power is equal to the load requirements. The load is supplied 
through the renewable source, there is no excess energy stored 
in the batteries and the DG is off. 

The second case is when the produced PV power is higher 
than the load demand. The load is supplied through the PV 
station. The excess of energy is used to charge the batteries. If 
the batteries are fully charged, this energy is dumped. In this 
case, the DG also is off. 

The third case is when the produced PV power is lower 
than the load demand. The load is supplied through the PV 
station and the batteries, if there is sufficient energy. If not the 
diesel, generator is turning on. In this case, the PV generator 
charges the battery bank with the needed energy depending on 
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its capacity and the load requirements are covered using the 
DG and the rest of the PV power.  

The last case is when there is no energy from the PV 
generator. The load is supplied through the DG and the 
batteries. 

The mentioned strategies can be summarized on the 
following flowchart presented in figure 4. 

 
Fig. 4. Hybrid PV/Battery/Diesel management algorithm. 

The mentioned tasks and conditions presented in the 
designed management algorithm below can be described 
through mathematical equations in table 1.  

Table 1. Management algorithm tasks and conditions 
equations. 

SC1 𝑃𝑃𝐿𝐿(𝑡𝑡) − 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖 ≤ 0 

SC2 𝑃𝑃𝐿𝐿(𝑡𝑡) − 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖 ≤ 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) 𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖 

Task 
1 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝐿𝐿(𝑡𝑡) 𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖⁄ ) 
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) + 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏  ; 
𝑃𝑃𝐷𝐷𝑑𝑑𝑚𝑚𝑑𝑑(𝑡𝑡) = 0 

Task 
2 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡) =  𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ;  𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) =
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) + 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏 
𝑃𝑃𝐷𝐷𝑑𝑑𝑚𝑚𝑑𝑑(𝑡𝑡) = 0 

SC3 𝑃𝑃𝐿𝐿(𝑡𝑡) − 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖 ≤ 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) 𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖 

Task 
3 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡) = 𝑃𝑃𝐿𝐿(𝑡𝑡) 𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖⁄ − 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) 
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) − 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑 

SC4 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) > 0 

SC5 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ≥ 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) 

Task 
4 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡) =  𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)   𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) =
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) + 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏 
𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑃𝑃𝐿𝐿(𝑡𝑡) − �𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡)�𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖) ;  
𝑃𝑃𝐷𝐷𝑑𝑑𝑚𝑚𝑑𝑑(𝑡𝑡) = 0 
𝑁𝑁𝐷𝐷𝐷𝐷𝑂𝑂𝑁𝑁(𝑡𝑡) = 𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑(𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡) 𝑃𝑃𝐷𝐷𝐷𝐷𝑏𝑏⁄  

Task 
5 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡) =  𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  ;   𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 −
𝜎𝜎𝐵𝐵) + 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏 
𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑃𝑃𝐿𝐿(𝑡𝑡)  ; 𝑁𝑁𝐷𝐷𝐷𝐷𝑂𝑂𝑁𝑁(𝑡𝑡) =
𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑(𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡) 𝑃𝑃𝐷𝐷𝐷𝐷𝑏𝑏⁄  ;  𝑃𝑃𝐷𝐷𝑑𝑑𝑚𝑚𝑑𝑑(𝑡𝑡) = 0 

SC6 𝑃𝑃𝐿𝐿(𝑡𝑡) − 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡)𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖 ≥ 𝑃𝑃𝐷𝐷𝐷𝐷𝑏𝑏 

Task 
6 

𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡) =  𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ;  𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) =
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) − 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑 
𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑃𝑃𝐿𝐿(𝑡𝑡) − 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡)𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖)  ;   𝑁𝑁𝐷𝐷𝐷𝐷𝑂𝑂𝑁𝑁(𝑡𝑡) =
𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑(𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡) 𝑃𝑃𝐷𝐷𝐷𝐷𝑏𝑏⁄  
𝑃𝑃𝐷𝐷𝑑𝑑𝑚𝑚𝑑𝑑(𝑡𝑡) = 0  ;  𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡) = 0 

Task 
7 

𝑁𝑁𝐷𝐷𝐷𝐷𝑂𝑂𝑁𝑁(𝑡𝑡) = 1   𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑃𝑃𝐷𝐷𝐷𝐷𝑏𝑏 ;  𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡) =
�𝑃𝑃𝐿𝐿(𝑡𝑡) − 𝑃𝑃𝐷𝐷𝐷𝐷(𝑡𝑡)� 𝜂𝜂𝑠𝑠𝑏𝑏𝑖𝑖⁄  
𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡 + 1) = 𝐸𝐸𝑠𝑠𝑠𝑠𝑏𝑏(𝑡𝑡)(1 − 𝜎𝜎𝐵𝐵) − 𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑(𝑡𝑡)𝜂𝜂𝐵𝐵𝑚𝑚𝑏𝑏𝑑𝑑 
𝑃𝑃𝐷𝐷𝑑𝑑𝑚𝑚𝑑𝑑(𝑡𝑡) = 0  ;   𝐸𝐸𝐵𝐵𝑚𝑚𝑏𝑏𝑏𝑏(𝑡𝑡) = 0 

SC7 𝑃𝑃𝐿𝐿(𝑡𝑡) > 0 

 

5. Simulation and Results 

5.1. Photovoltaic Power prediction results 

The utilized database encloses the photovoltaic power for 
clear and disturb days. For the first category, the training data 
are spread out from 20 July to 28 July 2017 and the testing 
data allied to 29 July 2017. For the disturb day, the training 
data are expanded from 20 December to 28 December 2017 
and the testing date unfold 29 December 2017. Three methods 
were simulated for both mentioned days: the FFNN-PSO, the 
LSTM and the BiLSTM-BOA. 

5.1.1. FFNN-PSO best topology selection 

The FFNN requires the determination of the optimum 
number of neurons in the hidden layer. Thus, a trial and error 
method was involved to find out the best neural network 
architecture with the minimum errors. The simulation results 
provide the perfect topologies, 2 neurons in the hidden layer 
for the clear day and 4 neurons in the hidden layers for the 
disturb day. The PSO algorithm intervenes on the 
determination of the FFNN optimized synaptic weights and 
biases.  

The PSO parameters are depicted in table 2. 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
R. B. Ammar et al., Vol.12, No.1, March, 2022 

103 
 

Table 2. The PSO parameters. 

Parameter Value 
Maximum number of iterations 250 
Population size 100 
Inertia weight 1 
Inertia weight damping ratio 0.99 
Acceleration coefficient 𝐶𝐶1 1.5 
Acceleration coefficient 𝐶𝐶2 2 
Test Function MSE 

5.1.2. LSTM topology selection 

The application of the LSTM was done through 
MATLAB. The first step consists on the determination of the 
training and the test datasets. The second step focuses on data 
standardization to ensure a zero mean and a unit variance. This 
step restrains the LSTM from overfitting. The third step 
focuses on the determination of the LSTM network structure, 
which encloses four layer: the sequence input layer, the LSTM 
layer characterized with a sigmoid gate, a Tanh state activation 
functions and 200 hidden units, the fully connected layer and 
the regression output layer. The fourth step displays the 
training options as presented in table 3. Finally, the training, 
validation and test of the designed network. 

Table 3. The training options parameters. 

Parameter Value 
Gradient decay factor 0.9 
Epsilon 1e-08 
Initial learn rate 0.005 
Learn rate schedule piecewise 
Learn rate drop factor 0.2 
Learn rate drop period 125 
Gradient threshold 1 
Max epochs 250 
Mini batch size 128 

The training process of the LSTM model encloses the 
RMSE and the loss function variation during the training and 
the validation processes. 

5.1.3. BiLSTM-BOA topology selection 

The Bayesian optimization was used for the BiLSTM 
hyperparameters selection. The BOA focuses on the following 
hyperparameters: the number of neurons, the learning rate and 
the L2Regularization. The low number of neurons may not 
achieves high level of accuracy; the large value may affects 
the model performance. The large value of the learning rate 
engenders a rapid convergence without dealing with the 
optimum network; the low value enables the network to 
converge at a specific simulation time. The L²Regularization 
optimized value restrains the model from overfitting. The 

hyperparameters optimized values are presented in table 4 for 
both clear and disturb days. 

Table 4. The BiLSTM hyperparameters. 

Hyperparameter Clear day Disturb day 
Number of neurons 78 189 
Initial learning rate 0.013386 0.040658 
L²Regularization 1.3388e-10 2.4442e-10 

5.1.4. Models performances evaluation 

The selected models were tested for two types of days: 
clear and disturb days. The simulation results of the predicted 
photovoltaic power and the designed normalized error for the 
clear and the disturb days are presented in figures 5 and 6. 

 

Fig. 5.Clear day PV power 
forecast. 

Fig. 6. Disturb day PV 
power forecast. 

The evaluation of the topologies accuracy on PV power 
forecasting, was tested through the statistical metrics as 
presented in table 5. The percentage errors show that the 
BiLSTM-BOA is the most accurate model with an NRMSE 
and a MAPE values equal to 0.74% and 1.84% for the clear 
day and 4.39% and 5.24% for the cloudy day. the LSTM 
model shows an effective prediction accuracy for the different 
days with a NRMSE and a MAPE equal to 0.81% and 2.12% 
for the clear day and 5.47%and 8.45% for the disturb day. 
However the FFNN-PSO topology is mostly recommended 
for a clear day rather than a disturb day. The FFNN-PSO 
accuracy evaluators for the clear day are lower than those of 
the disturb day and does not exceed 6.37%.  Above the 
following results, we can conclude that the LSTM and the 
BiLSTM-BOA can accurately fit the PV Power for different 
climatic conditions, the FFNN-PSO model performs better for 
a clear day without fluctuations and the BiLSTM-BOA 
ensures predictions with high precision level. The impressive 
results derived with the BiLSTM-BOA predictors is based on 
the training process of the forward and the backward path and 
the effective choice of the hyperparameters using the Bayesian 
optimization. 
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Table 5. Models accuracy evaluation. 

 Clear day Disturb day 

NRMSE 

(%) 

MAPE 

(%) 

NRMSE 

(%) 

MAPE 

(%) 

FFNN-PSO 2.67 6.37 12.74 43.86 

LSTM 0.81 2.12 5.47 8.45 

BiLSTM-BOA 0.74 1.84 4.39 5.24 

The training time is an important parameter for accuracy 
model determination. The simulation time of the proposed 
models are displayed in table 6. The BiLSTM-BOA model 
ensures an accurate prediction results, on the other hand it 
demands more training time comparing with the other cited 
topologies. The training time is in the range of 69944.1062 
seconds for the disturb day and 36336.015 for the clear day. 
The LSTM algorithm presents the lowest training time, it is 
equal to 672.47 seconds for the clear day and 684.1062 
seconds for the disturb day. 

Table 6. Models training time evaluation. 

 
Training time (s) 

Clear day Disturb day 
FFNN-PSO 1005.379 1044.445 

LSTM 672.470 684.534 
BiLSTM-BOA 36336.015 69944.1062 

5.2. Case study using the forecasted photovoltaic power  

The studied hybrid installation encloses photovoltaic 
station, batteries diesel generators and a bidirectional inverter. 
The main objective consists on the flow energy management 
using as input data the forecasted PV power, the load and the 
electrical parameters of the cited components. The technical 
parameters are defined in table 7. 

Table 7. Components technical parameters. 

Component Technical parameter Value 

PV
 S

un
 m

od
ul

e 
Pr

o 
se

rie
s S

W
-2

50
 

Maximum power [Wp] 250  
Open circuit voltage [V] 37.6 
Maximum power point voltage, 
[V] 30.5 

Short circuit current [A] 8.81 
Maximum power point current 
[A] 8.27 

Power temperature coefficient 
αP [%/K] -0.45  

Nominal operating cell 
temperature [°C] 46  

Derating Factor 0.85 
Number of PV panels 16 
Nominal Voltage [V] 12 

Battery 
VRLA BPL 

210-12 

Nominal Capacity [Ah] 210 
DC system voltage [V] 24 
Capacity Rate [h] 20 
Charge efficiency 0.98 
discharge efficiency 1 

Self-discharge rate 0.0000
83 

Maximum Depth of Discharge 0.89 
Battery daily autonomy [day] 3 
Number of batteries 36 

Diesel 
generator 

Nominal diesel generator power 
[W] 500 

Number of diesel generators 5 
Bidirectioanl 

Inverter Inverter efficiency 0.99 

 

The Predicted PV and the designed load, related for both 
clear and disturb days, are presented in figures 7 and 8. 

 

Fig. 7. PV-Load Clear 
day. 

Fig. 8. PV-Load Disturb 
day. 

The Application of the management algorithm cited 
below, for the clear day, using Matlab M-File gives the 
following results presented in figures 9 and 10. 

Figure 9 presents the power contribution of the PV panel, 
the batteries power during charging and discharging processes 
and the diesel generator energy in coordination with the 
number of DG turning ON to provide the load power demand. 
5 or 2 diesels are turning ON depending on the required power.  

As shown in figure 10, the load requirements are covered 
through the PV station with a percentage value equal to 32%, 
the batteries contribution is 15% and finally the diesel 
generator presents the minor percentage in the order of 3%. 
The main results confirm the management algorithm criteria 
basically the maximization of the renewable source 
contribution and the minimization of the DG utilization.  
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Fig. 9. PV/Battery/Diesel energy management results 

(Clear day). 

 
Fig. 10. PV/Battery/Diesel contribution percentages 

(Clear day). 

The simulation results of the disturb day derived through 
the management algorithm application are presented in figures 
11 and 12. Figure 11 presents the powers derived from the PV 
station, batteries and the diesel generator. 5 DG are turning 
ON to ensure the required load power. As shown in figure 12, 
the PV station contribution is in the range of 24%, the batteries 
contribution is equal to 15% and the DG contribution is in the 
order of 11%. The simulation results are in coordination with 
the EMA aims. 

 
Fig. 11. PV/Battery/Diesel energy management results 

(Disturb day). 

 
Fig. 12. PV/Battery/Diesel contribution percentages 

(Disturb day). 

6. Conclusion 

Photovoltaic power forecasting is an important task due to 
its fluctuation. Three predictors were proposed FFNN-PSO, 
LSTM and BiLSTM-BOA for both clear and disturb days. A 
comparative study between the mentioned methodologies was 
done through the designed curves and the statistical metrics. 
For the clear day, the simulation results show that all the 
topologies give satisfactory results as the accuracy evaluators 
does not exceed 6.37%. For the disturb day, LSTM and 
BiLSTM-BOA networks are more effective than the FFNN-
PSO model. The NRMSE and the MAPE values does not 
surpass 8.45%. However, the BiLSTM-BOA structure ensures 
the most accurate prediction results for both clear and disturb 
days. It encloses the benefits of the BiLSTM network, as it 
performs the training on both the forward and the backward 
path, and the BOA, as it performs an effective optimization of 
the LSTM hyperparameters. The NRMSE and the MAPE 
percentages are equal to 0.74% and 1.84% for the clear day. 
For the cloudy day, they are in the range of 4.39% and 5.24%, 
respectively. 

The predicted photovoltaic energy presents a promoted 
solution for rural areas, where there is not grid connection. The 
renewable resource should be coupled with storage systems 
and diesel generators to guarantee the continuity of load 
supply. Thus, an energy management algorithm was proposed. 
The designed algorithm ensures a maximum use of the PV 
power, a minimum use of the batteries and the diesel 
generators, continuity of service and storage systems 
protection. The main objectives were respected as shown in 
the simulation results done via the designed management 
strategy.  

The advanced PV power prediction models based on deep 
learning and optimization algorithms show their accuracy on 
PV Power forecasting for different climatic conditions, mainly 
the BiLSTM-BOA Predictor. The forecasted energy is very 
important for an effective energy management strategy. As 
future work, the designed predictors can be applied for wind 
speed forecasting. The management strategy can be applied 
for hybrid system with two renewable sources of energy 
(PV/Wind), batteries and diesel generators. 
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