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Abstract- Climatological factors influence the performance of grid-connected photovoltaic systems (PV). These factors vary 

according to the altitude above sea level. The present work aimed to compare the performance of a PV with a string inverter 

(String PV) versus a PV with DC-DC power optimizers (DC DC PV) at 3800 meters above sea level (m.a.s.l.) under natural 

conditions. For this purpose, two PV of 3 kW each were installed, and their performance was measured under the IEC 62053 

standard. Then multiparametric regression models were applied for each of them. The results were Validate through linearity, 

normality of the error terms, correlation, autocorrelation and homoscedasticity. Subsequently, the cross-validation of both 

models has performed, whose results showed that the DC-DC PV has a better result in 6.09% over the String PV model, so we 

conclude that the DC-DC Pv converter performs better at 3800 m.a.s.l. 

Keywords Cross-validation, Photovoltaic Systems, Extreme Conditions. 

 

1. Introduction 

Solar energy is an inexhaustible source of clean energy 

and Peru, due to its geographical location close to the equator 

and its topography due to the Andes, has radiation levels that 

vary from 5.5 to 6.5 kWh/m²; which favors the capture of 

this type of energy. Some of the factors that affect the 

quantity and quality of the energy captured in addition to 

climatic factors [1] [2] [3]  are the type and location of the 

inverters and energy optimizers along with the way in which 

this energy is injected into the electrical grid to increase 

efficiency, reduce costs and generate as little pollution as 

possible. [4] One of the cross-cutting factors in energy 

harvesting and its integration into the power grid is the 

variability of insolation and weather conditions. [5] The 

amount of energy generated is directly proportional to the 

amount of insolation or sunlight at any given time, [6] which 

leads to under- or overgeneration phenomena that cause 

instability in the grid. According to [7] [8] [9] [10], ways to 

solve this problem are: using better forecasting tools to make 
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forecasts that reduce these effects, increasing the amount of 

solar panels in large geographic areas to reduce the effects of 

cloud cover, switching to traditional electricity service to 

reduce these effects, and finally incentivizing customers to 

match their energy demand to the generation process. 

Therefore, in the present study, the implementation of two 

PV power generation models was carried out: the traditional 

one with an array of solar panels with a single DC to AC 

converter and the second one with the implementation of DC 

amplifiers, before injecting power into the DC. AC converter 

for grid integration. To determine which system is more 

efficient, we used cross-validation on two generated 

regression models. The present study was conducted in the 

city of Juliaca located at 3824 m.a.s.l. in the department of 

Puno Peru. 

As a background, it is indicated that [11] for the 

implementation in a 31-level asymmetrical switching diode 

based multilevel DC link inverter uses a disturbance and 

observation-based voltage regulator with a capacitor 

compensating circuit (DC) managing to deliver 97.21% of 

the theoretical maximum power to the system. [12] It also 

proposes a robust current (DC) controller and a DC link 

voltage controller based on the μ and H ∞ synthesis method 

to ensure system robustness against weak grid uncertainties, 

as well as to compensate for system delays arising from 

computation, pulse width modulation, and zero-order hold. It 

also seeks to minimize the bus voltage fluctuations caused by 

variations in the power generation of the photovoltaic 

system, indicating that the results of the simulation and 

experiments in controlled environment are auspicious. On the 

other hand [13] proposes a simulation topology to achieve a 

better control of solar panels in which the voltage-current 

characteristic can be reproduced in the desired atmospheric 

conditions, such as solar radiation, temperature and partial 

shade; as well as it can be applied to high power panels with 

an open circuit voltage of 1000 V and a short circuit current 

of 16.5 A, finally indicating that the results obtained through 

MatLab Simulink are verified. Similarly [14] [15]  using 

MatLab Simulink to test the results of a proposed 

transformer less solar PV inverter system integrating a solar 

panel, battery, DC link, DC load and the AC grid with a 

300W resistive load using DC-DC to control the power flow 

between the battery and the DC rail by controlling the flow 

using fuzzy logic. Also, [16] [17] proposes a photovoltaic 

system to charge batteries through solar panels using a three-

stage constant current/constant voltage (CC/CV) 

decentralized charging strategy and a DC-DC step-down 

converter with maximum power point tracking (MPPT) to 

charge these battery cells, achieving an 88.37% utilization of 

the generated energy, this result is also simulated. In another 

type of article [18] proposes two types of optimal charge 

controllers, adjusting their parameters by genetic 

optimization using neural networks and a Sugeno-type fuzzy 

logic controller (SFLC), applied to constant current voltages 

(CCCV) for charging photovoltaic battery systems 

evaluating it under conditions of rapid climatic changes, 

obtaining improvements over the classical on/off control 

system. On the other hand, for the extraction of the 

fundamental component of the static load current for a 

distribution static compensator [19], proposes a control 

technique based on a complex variable filter and a 

generalized second-order integrator composed of a two-stage 

system. consisting of a full-bridge boost converter cascaded 

with an inverter, again the experiment is performed under 

controlled conditions. [20] proposes a solar charge controller 

to power a DC motor and a rechargeable battery of an 

electric vehicle, for which he proposes a controller operating 

in two modes: constant current (DC) charging mode and 

battery tracking mode. maximum power point (MPPT) 

indicating that in the first mode what is sought are short 

charging times, while in the second is to extract the 

maximum power. [21] proposes a fractional open-loop 

MPPT tracking algorithm for improved photovoltaic 

applications. [22] proposes a phase-shifted interleaved 

modulation scheme for a step-down step-up converter to 

avoid the disadvantages of dc-dc conversion, using 

interleaved modulation to reduce the inductor current; it is 

tested on a 150W prototype indicating that it has feasible 

results. [23] proposes the collection, modeling and prediction 

of a multivariate SFV, using a multiparametric regression 

model, presenting five regression models with machine 

learning: three using shrinkage regularization and two using 

eXtreme Gradient Boosting (XGBoost). [24] [25] On the 

other hand [AC] and [AD] highlight the effects of the 

application of intelligent networks on interconnected 

systems; to achieve the monitoring, control and management 

of energy from generation to distribution. 

Regarding validation as a Machine Learning technique, it 

is indicated that for the validation of the crime prediction 

model in India [26] uses K-fold cross-validation applied on 

six different types of learning algorithms: KNN and decision 

trees, Naïve Bayes, CART linear regression classification, 

regression) and SVM indicating that accuracy can be 

improved using cross-validation. Similarly [27] also uses a 

retention accuracy estimator and K-fold cross-validation 

accuracy estimator to determine the validity of 5 models: 

support vector machine, naïve bayes, decision tree algorithm, 

random forest and k-nearest neighbors for classification of 

154 Hindi web poetries obtaining the best results with SVM. 

On the other hand [28] also uses 5-fold cross-validation to 

determine the validity of 5 Naïve Bayes support vector 

machine models, decision tree algorithm, random forest and 

k-nearest neighbors to improve the prediction accuracy and 

generalization ability for the design of three types of elastic 

moduli to predict the electronic work function of pure metals. 

Also [29] uses cross-validation to determine the validity of 

three support vector machine (SVM) models, k-nearest 

neighbors and Naïve-Bayes classifier for the development of 

predictive models to categorize rainfall amount intensity 

from ambient noise achieving accuracies around 99%.  To 

optimize the kernel Ridge regression model to lower the 

correlation index, [30] uses cross-validation to reduce the 

optimal model justifying non-asymptotically for the 

proposed model. Similarly [31] uses cross-validation 

techniques in regression analysis to estimate the accuracy 

matrix to select the appropriate bandwidth for signal 

processing. In the field of malware detection on Android OS 

[32] uses four regression techniques: linear, multilayer neural 

network, additive regression and minimal sequential 

optimization, using cross-validation to determine that the 
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best technique is linear regression with a Pearson correlation 

coefficient of 0.8655. In the field of agriculture to predict 

crop yields [33] uses four regression models: decision tree, 

linear regression, lasso regression and ridge regression using 

cross-validation for the validation of the errors: mean 

absolute, mean square; indicating that the best method is the 

decision tree method. 

In the application of cross validation techniques to the 

field of solar panels [34] applies simple validation to test two 

conventional arrays of solar panels: parallel series and total 

cross tied in four different conditions of partial shading, in a 

MATLAB/Simulink simulation environment, to determine 

the most efficient configuration to face the problem of partial 

shading, indicating that total cross tied offers better results. 

In the same way to forecast the photovoltaic energy collected 

by photovoltaic panels in high temporal resolution using low 

temporal resolution meteorological variables [235] proposes 

three similarity-based models: basic, categorical and 

hierarchical, using cross validation to eliminate variables to 

obtain a more accurate model. Likewise [36] for the 

prediction of the energy generated by photovoltaic panels as 

a function of the solar radiation generated the previous day, 

using random forests with bagging and cross-validation to 

eliminate the most irrelevant variables in a real Australian 

scenario. On the other hand [37] for a PV system located in 

an area with snow accumulation predicts the snow 

accumulation on the solar panels for the energy harvesting 

forecast based on three-year historical data and applying 5-k 

fold cross-validation for the hyperparameters adjustment 

achieving an accuracy of 96%. 

The contributions of this article are: 

Implementation, data acquisition, data storage of two 

photovoltaic systems: String PV and DC-DC PV, connected 

to the grid in altitude conditions above 3,800 m.a.s.l. 

Performing multiparametric regression models for each 

system: String PV and DC-DC PV, validating the results by 

linearity, normality of error terms, correlation, 

autocorrelation and homoscedasticity. 

Cross-form validation of the above models to determine 

which model fits the height conditions. 

2. Methodology 

The Ordinary Least Squares (OLS) regression algorithms 

contain a balance of bias and variance providing the model 

with a correct and reliable prediction, for this purpose a pre-

processing of the data was carried out with the purpose of 

equalizing the variables of both systems, the independent 

variables and the dependent variable, verifying that they had 

the same quantity and the same magnitude. After 

preprocessing and loading the data, the model of the 

algorithm used (OLS) was established with the parameters 

configured for a better performance, then the model was 

trained for both systems; demonstrating that the model has a 

correct performance and validating the results obtained with 

the tests of linearity, normality of error terms, correlation, 

autocorrelation, and homoscedasticity. Then, the CC-CC PV 

system was tested with the String PV model, and the String 

PV system with the CC-CC PV model, determining the 

performance through cross-validation and thus predicting one 

system with the other based on these two proposed models. 

Finally, the performance of such cross-validation was 

measured; see Fig. 1. 

 

Fig. 1. Methodology Flowchart. 

2.1. Power System Model 

The measurements were obtained according to the 

European standard IEC 61724-20170, during the month of 

September 2021 with average temperatures of 10.5 C° and 

solar radiation of 6.4KWh/m2 in the city of Juliaca, province 
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of San Roman, department of Puno in Peru; which is located 

at an altitude of 3827 m.a.s.l. whose coordinates are: 15 ° 29 

′ 27 ″ S 70 ° 07 ′ 37 ″ W, this project was developed with 

funding from CONCYTEC-FONDECYT after winning a 

contest. The PV systems compared in this paper are two PV 

arrays, CC-CC PV and String PV, see Fig. 2. 

 

Fig. 2. Photovoltaic solar system installed. 

A. DC-DC PV  

The PV with DC-DC optimizers has 10 370W 

monocrystalline photovoltaic modules of the ERA SOLAR 

brand model ESPSC370 with 10 Edge P370 solar DC-DC 

converters that support up to an input power of 370W and a 

single-phase inverter with HD technology -Wave Solar Edge 

SE3000H with an output power of 3000W 

The PV has the following configuration shown in the 

following Fig. 3 

 

Fig. 3. Diagram of DC-DC PV. 

B String PV 

The PV with string-type single-phase inverter, has 12 

polycrystalline photovoltaic modules of 270 W brand 

TALESUN model TP660P- and a String-type inverter of 3 

kW. brand SUNNY BOY 3.0 The system diagram is shown 

in the following Fig. 4. 

 

Fig. 4. Diagram of String PV. 

2.2. Data Collection. 

The instrumentation system for data acquisition uses 

current and voltage transducers Zelio Analog brand 

Schneider and power meter HIKING TOMZN with standard 

IEC 62053-21 that allow data to be recorded through a PLC 

micro-LOGO version 8.3 through Modbus RS485 

communication protocol with Accuracy Class 1 and 

LAVBIEW software as shown in Fig. 5 below. 

The instrument calibration system was carried out with 

FLUKE meters with valid calibration certificates for this year 

and applying the IEC 61724-1 standard with a Class A 

monitoring level with AC and or DC uncertainty including 

Instrumentation < 1% of Reading and Data log every 60 

seconds. 

 

Fig. 5. Data collection instrumentation diagram 

The following Fig. 6 shows the instrumentation system 

through which the data is collected. 
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Fig. 6. Data collection instrumentation installed. 

The following Fig. 7 shows the user interface through the 

LabView program through which the data of the 

aforementioned photovoltaic systems can be viewed.  

 

Fig. 7. Monitoring system user interface. 

2.3. Models. 

OLS Regression 

Starting from a statistical model based on the relationship 

of two variables, we have the following equation (1). 

    (1) 

Where: 

εi: It is the error term. 

α,β: They are the hidden parameters of the regression. 

The objective is to find the values of α and β to minimize 

the error term. So that our positive errors are not 

compensated by the negative ones we have the following 

equation (2).: 

   (2) 

We now have the ordinary least squares (OLS) error. 

S(α,β) reaches a minimum point at (α,β), so we derive 

equation (3).: 

    (3) 

Evaluating α and β we have the equations (4)(5): 

    (4) 

    (5) 

Solving the normal equations we have equation (6).: 

 (6) 

Solving we have the linear regression model equation (7).: 

     (7) 

The OLS-type linear regression model draws a line as 

close as possible to the trained data, thus estimating a 

relationship between the dependent variable and one or more 

independent variables, this relationship is made by 

minimizing the sum of the squares in the difference, this 

model This gives us the ability to predict the values of the 

dependent variable based on the values of the independent 

variable. For the present study, two PV systems were 

modeled with data collected independently. The statistical 

description of the data for each system is provided in Table 1 

and Table 2. 

Table 1. Description of DC-DC PV data set. 

 
AC 

CURRE

NT 

AC 

VOLTAJE 

AC 

POWER 

AC 

FRECUENC

Y 

AC 

APARENT 

POWER 

AC 

REACTIVE 

POWER 

DC 

CURRENT 

DC 

VOLTAGE 

DC 

POWER 

count 5041 5041 5041 5041 5041 5041 5041 5041 5041 

mean 7,40 218,90 1623,63 59,99 1636,89 149,48 4,19 368,46 1648,20 

std 4,86 4,17 1095,58 0,038 1086,64 41,95 2,70 78,67 1112,07 

min 0 203,1 0 59,861 0 0 0 0 0 

25% 2,83 216,6 600,1 59,969 614 135,07 1,647 370 609,2 

50% 7,03 219,7 1535,6 59,996 1543 154,1 4,21 370,1 1558,4 

75% 12,98 221,6 2872,8 60,023 2877,6 176,31 6,994 370,3 2914 

max 13,84 228,7 3009 60,205 3016 216,71 8,206 445,7 3055 

Table 2. Description of String PV data set. 

 
AC 

CURRE

NT 

AC 

VOLTAJE 

AC 

POWER 

AC 
FRECUENC

Y 

AC 
APARENT 

POWER 

AC 
REACTIVE 

POWER 

DC 

CURRENT 

DC 

VOLTAGE 

DC 

POWER 

count 4893 4893 4893 4893 4893 4893 4893 4893 4893 

mean 4,52 349,38 1553,73 6,77 220,55 1491,31 59,99 288,79 1499,69 

std 3,02 22,49 1000,88 4,31 3,27 981,84 0,03 325,34 980,54 

min 0,11 139,9 34 0,23 209,43 0 59,8 0 11 

25% 1,79 335,3 653 2,87 218,67 615 59,96 0 618 

50% 4,08 349,5 1449 6,39 220,82 1406 59,99 0,04 1413 

75% 7,45 364,4 2519 10,98 222,55 2437 60,02 655,33 2445 

max 10 412,3 3180 13,7 229,72 3028 60,18 655,35 3065 

2.4. Cross Validation. 

Although it is true that validation is looking for numerical 

results that quantify the hypothetical relationships between 
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variables in acceptable ranges as descriptions of the data; 

This technique is generally used to quantify prediction 

models. Among the most used validation techniques we 

have: simple validation, which consists of randomly dividing 

the values into two groups: one to train the model and the 

other to test it. The second technique is cross validation, 

which starts as the previous method, but performs this 

process "n" times adjusting the model and thus reduces the 

variability caused by randomization in the process of 

choosing the data. The third technique is K-double cross 

validation, which consists of the same iterative process but 

works with k-1 groups to train the model against the only 

group to validate it, but this process is repeated k times using 

different groups for validation. , has the following 

advantages over the previous technique: it generates a 

balance between bias and variance, allowing a better 

estimation of the error, as well as reducing the computational 

cost, since it is recommended to take a k between 5 and a10, 

which generates a good result. The fourth technique is 

iterative double-K cross-validation, which is the same 

technique as above, but it is repeated “n” times to fit the 

model. As a fifth technique, we have Bootstrapping, which 

consists of taking a bootstrap sample, which is a sample 

obtained from the original sample by random sampling with 

replacement, and of the same size as the original sample, so 

that some observations appear multiple times in the bootstrap 

sample. and others none. These observations not taken are 

called out of bag. For each iteration, a new sample of the 

same size as the original is generated and evaluated with the 

samples out of bag. 

If we make a comparison between these techniques, we 

notice that each one has advantages and disadvantages 

according to the type of data to be treated: some are used to 

validate models with small data sizes or samples, others for 

large sample sizes and others are focused on the comparison 

of models for more accurate estimation of metrics. Therefore, 

this feature of the validation techniques was used to compare 

the two models of grid-connected photovoltaic systems 

studied: traditional and with DC amplifiers. 

 

The bootstrapping algorithm used was: 

 

1. Generate first sample of the same size as the original 

sample using random sampling with replacement. 

2. Perform the model fit using the new sample generated 

in step 1. 

3. Calculate the model error using those observations 

from the original sample that have not been included in the 

new sample. This error is known as a validation error. 

4. Repeat steps 1, 2 and 3 “n” times and calculate the 

mean of the n validation errors. 

5. Finally, and after the n repetitions, fit the final model 

using all the original training observations. 

Although in the end a certain bias can be generated, this 

is reduced if the data to be processed are numerous, as is the 

case in this study. 

3. Results. 

3.1. Model Validation. 

A. Linearity 

This gives us the linear measurements with the data and 

the prediction of the proposed model; To verify this 

condition, a scatter diagram is plotted as shown in Fig. 8 

 

Fig. 8. OLS Linearity Current vs Predicted. 

From the graph we note that there is a linear relationship 

between the real values and the values provided by the 

model, as well as the adjusted R-squared coefficient shown 

in Table 3, whose value is 0.99 and which, being greater than 

0.7, indicates the existence of linearity. 

B. Autocorrelation 

For the analysis and detection of an autocorrelation in 

this regression model, the Durbin-Watson test was used to 

ensure that all the information was captured in order to avoid 

biases in the system. When the value of this test is from 0 to 

2 the autocorrelation is considered positive, on the other hand 

if it has values from 2 to 4 it is considered negative.  

The Durbin-Watson test for the present model provides a 

result of approximately 2 for both systems (CC-CC PV and 

String PV), so in both cases no or little autocorrelation is 

considered. 

C. Normality of error terms  

The normality of the error terms shows an interval 

estimate that follows a normal distribution, that is, it is 
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distributed as a normal probability density function with zero 

mean and almost constant variance, this condition is 

indicated by the histogram shown in Fig 9. 

 

Fig. 9. OLS Distribution of Residuals 

D. Correlation 

The correlation between independent variables is avoided 

so as not to obtain a regression in bad conditions; this 

condition will help us minimize or eliminate some variables 

from our model. To show this condition, a heat map is 

plotted that is shown in Fig. 10 

 

Fig. 10. heat map between independent variables 

E. Homoskedasticity 

In statistics, a prediction model is said to be 

homoscedastic when the variance of the error conditional on 

the explanatory variables is constant throughout the 

observations, a statistical model relates the value of a 

variable to be predicted to that of others; if the model is 

unbiased, the predicted value is the mean of the variable to 

be predicted. 

In any case, the model gives an idea of the value that the 

variable to be predicted will take. To avoid that a subset of 

data is assigned an inappropriate weight, it is plotted with the 

residuals and thus it is determined whether the variance is 

uniform as shown in Fig.11. 

 

Fig. 11. OLS Homoscedasticity 

3.2. Model Performance. 

From Table 3, the score for both models is higher than 

99.9%, which indicates that the percentage of correctly 

predicted values with respect to the total values is adequate. 

Likewise, obtaining an MAE of 4.21 for the CC-CC PV 

system and 12.52 for the String PV system indicates the 

proximity of the predictions with respect to the real results. 

Likewise, the MSE value of 8.77 for the CC-CC PV model 

and 24.10 for the String PV model creates a single value that 

summarizes the error in the model and is generally taken as 

the square root of this value. Finally, the coefficients of 

determination and adjusted coefficients of determination, 

which in all four cases are greater than 99.9%, indicate that 

the models performed effectively represent the systems 

analyzed. 

Table 3. Model performance. 

 
OLS 

DC-DC PV String PV 

Score 0.99993534671124 0.999391262336387 

MAE 4.21155133395433 12.5204268446744 

MSE 8.77227535829964 24.1003997219785 

Determination 

coefficient 
0.99993534671124 0.999391262336387 

Adjusted 

coefficient of 

determination 

0.99993524392381 0.999390265223097 

3.3. Cross Validation 

The equations obtained that model the systems to be 

compared by means of OLS regression are: 

 

 

A. DC-DC PV: 

Value of the slopes or coefficients "a": 

[ 4.56883182e+01 1.57976130e+00 -1.15721484e+00 

2.24060833e-01 4.52685101e-02 -3.33755215e+00 -

9.36013521e-02 5.71671771e-01] 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
S. Huaquipaco et al., Vol.12, No.2, June 2022 

957 
 

Intercept value or coefficient "b": 

-258.0901368608595 

B. String PV: 

Value of the slopes or coefficients "a": 

[ 2.43497292e+01 1.04241200e-01 5.02161023e-01 

8.33985448e+00 1.07256736e+00 4.11125860e+00 -

7.44605696e-04 3.75203843e-01] 

Intercept value or coefficient "b": 

-537.8103635478974 

Cross-validation was performed from these two models, 

obtaining predictions from one model with the data from the 

other, as shown in Table 4 and Table 5 

 

Table 4: String PV data in the DC-DC PV model. 
String PV data String PV data in the DC-DC PV model 

AC 

current 

AC 

voltage 

AC 

frecuency 

AC aparent 

power 

AC reactive 

power 

DC 

current 

DC 

voltage 

DC 

power 

AC power string 

PV model 

AC power 

String PV 

data 

Difference 
Prediction of 

original data 

0.75 219.82 59.96 104 655.32 0.44 381.8 170 166.9989975 101 65.998998 125.14114 

0.77 220.53 60.05 110 655.31 0.46 388.8 181 175.8405863 110 65.840586 135.431158 

0.79 220.06 59.97 117 655.34 0.48 392.5 192 183.5495394 118 65.549539 143.78781 

0.84 219.93 59.95 129 655.32 0.51 393.4 203 194.443577 130 64.443577 154.833685 

0.86 219.96 59.99 139 655.34 0.53 394.4 212 202.5846548 141 61.584655 164.059818 

0.89 219.7 59.9 153 0 0.56 396.3 224 183.7013941 150 33.701394 176.356439 

0.93 220.04 59.91 165 0.01 0.59 396.4 235 194.922559 165 29.922559 187.862945 

 
Table 5: DC-DC PV data in the String PV model. 

DC-DC PV Data DC-DC PV data in the String PV model 

AC 

current 

AC 

voltage 

AC 

frecuency 

AC aparent 

power 

AC reactive 

power 

DC 

current 

DC 

voltage 

DC 

power 

AC power DC 

DC PV model 

AC power DC 

DC PV data 
Difference 

Prediction of 

original data 

0.65 218.2 59.98 143.86 118.23 0.247 370.1 91.47 92.65765203 81.97 10.687652 101.3103508 

0.66 217.7 59.97 140.5 112.46 0.231 370.2 85.41 87.5475483 88.12 -0.5724517 96.60828707 

0.68 217.8 60.01 152.04 118.7 0.261 369.9 96.46 98.47213987 95.01 3.46213987 106.7000532 

0.74 217.5 59.97 162.53 105.37 0.303 369.8 112.21 111.3534251 123.74 -12.386574 119.6336947 

0.75 217.7 59.95 164.38 110.81 0.333 369.8 122.87 118.3427168 121.41 -3.0672832 127.0843422 

0.78 217.2 59.98 169.93 103.49 0.383 370.2 141.8 131.041112 134.78 -3.738888 139.1576808 

0.85 217.4 59.96 182.32 107.79 0.403 370 149.28 140.6332972 147.04 -6.4067028 149.8914876 

 

From table 4 the final validation percentage is 1.8951927, 

which results from running the values of the second system: 

String PV in the first regression model: CC-CC PV.  From 

Table 5 the validation percentage is -4.214518 which results 

from running the values of the first system: CC-CC PV in the 

second regression model: String PV. From what we deduce 

that the CC-CC PV system has a better performance in 

6.1097727 for these systems at 3800 m.a.s.l. 

No literature directly related to the cross-validation of the 

CC-CC PV and String PV systems at 3800 m.a.s.l. was 

found. 

4. Conclusion 

Two factors are taken into account to improve energy 

harvesting through solar panels: type and location of the DC 

and AC converters and how they are integrated into the 

electrical grid. Therefore, in this study, two models of 

photovoltaic energy generation were implemented: the first, 

an SFCR with DC-DC optimizers with 10 monocrystalline 

photovoltaic modules of 370W of the ERA SOLAR brand, 

model ESPSC370 with 10 Edge P370 solar DC-DC 

converters and a single-phase inverter with HD-Wave Solar 

Edge SE3000H technology. The second: a SFCR with a 

single-phase String inverter, with 12 polycrystalline 

photovoltaic modules of 270 W TALESUN model TP660P- 

and a String inverter of 3 kW SUNNY BOY 3.0. For the 

collection, IEC 61724-2017 regulations were complied with. 

Both systems were implemented in the city of Juliaca, which 

is located at 3,800 meters above sea level. For the 

comparison of both models, the data provided by the CC-CC 

PV and String PV systems were analyzed, then the 

regression model was trained separately, obtaining in both 

cases scores higher than 99.9%, in the same way the 

determination coefficients and adjusted determination 

coefficients in all cases are higher than 99.9%. Subsequently, 

both systems were validated by means of linearity, normality 

of error terms, correlation, autocorrelation and 

homoscedasticity to check the usefulness of both models. 

Bootstrapping cross-validation was used, whose 

characteristic is that it is used to compare models with small 

data sizes or samples, as in the present study, and thus 

establish which model has the best performance. It was 

determined that the DC-DC PV model has a better 

performance of 6.09% over the String PV model, so we 

conclude that the DC-DC PV converter performs better at 

3800 meters above sea level. For future work we will 
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perform hyperparameter tuning, variable elimination by 

means of recursive models such as RFE and also use new 

boosting type models to perform the regression models such 

as XGBoost. 
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