
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
H. Alawami et al., Vol.11, No.4, December, 2021 

Virtual Microgrid Partitioning Considering Structure 
and Characteristics of Smart Distribution Networks 

Hasan Alawami , Junainah Sardi ‡ , Chin Kim Gan  

 

Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia 

 (hasanalawami0@gmail.com, junainah@utem.edu.my, ckgan@utem.edu.my) 

 

Corresponding author: ‡ Junainah Sardi, Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Durian 
Tunggal,  

76100, Melaka, Malaysia, Tel: +60 02702139, junainah@utem.edu.my 

 
Received: 30.08.2021 Accepted:20.10.2021 

 
Abstract- One key element that limits the transition of conventional distribution networks (DNs) to smart distribution 
networks (SDNs) is its infrastructure and used technologies which are not originally designed to be integrated with distributed 
energy resources. To address this limitation, Virtual Microgrids (VMs) concept is used for upgrading DNs to SDNs. The core 
issue for developing VMs is to identify its boundaries. Therefore, this paper presents a strategy that aims to identify VMs 
boundaries for conventional DNs to be upgraded to SDNs, considering both structure and characteristics of power networks. 
The proposed method is tested on IEEE 33-bus system, in which both modularity and line losses were used to evaluate its 
effectiveness. Furthermore, feasibility of the proposed algorithm is validated on a larger IEEE 118-bus system. Subsequently, 
IEEE 33-bus and IEEE 69-bus systems are used to test the impact of PV penetration increment on the VM design. The 
numerical results show that the proposed partitioning strategy can identify lines which has the highest resistivity and least 
transmitted power. 

Keywords Virtual microgrid, community detection, partitioning, clustering, distributed generation, photovoltaic. 

 

1. Introduction 

Nowadays, with the increase of environmental 
awareness of climate change, unstable fuel costs and 
outdated electricity grid infrastructure and technologies, 
there have been initiatives from governments and institutes 
to move towards smart grid and green energy. Renewable 
Energy Sources play a key role in the smart grid design 
however research on integrating them to the existing 
infrastructure show many challenges [1-4]. The 
complexity of the system is increased by the 
interconnection of the Distributed Energy Resources 
(DERs). Further complication occurs when the consumers 
also generate some energy on their own, using home based 
solar panels [5][6]. Distribution networks are designed to 
be unidirectional networks. They deliver electrical power 
to customers in the most economical way possible for 
centralized systems and that required them to be fixed and 
not feasible to be integrated with distributed generation 
resources (DERs). Since it is not reasonable or 
economically possible to redesign DNs for entire cities, 
detailed research on how to upgrade the existing 
distribution networks to fit the use of DERs in the most 

economical and convenient way should be done. One of 
the most popular concepts for upgrading conventional 
distribution networks that have drawn much attention 
lately is virtual micro-grids (VMs). VMs concept has the 
ability to upgrade conventional distribution networks. It is 
based on partitioning the DNs into a group of areas or 
microgrids. While there is no general agreement among 
researchers on the definition of VMs, VM concept will be 
discussed in detail and summarized according to previous 
literature in the following section.  

The study of power network partitioning using various 
approaches has been broadly studied. Authors in [7] 
proposes an optimum power system network partitioning 
method for detecting community structures in power 
networks and dividing them into communities while 
reducing intercommunity V-Q sensitivity and Q power 
imbalance. A partitioning method that uses a combination 
of the optimization problem's Hessian matrix and the 
admittance matrix as the affinity matrix to determine the 
partition by grouping strongly computationally coupled 
buses and weakly coupled buses to different areas using 
the spectral clustering technique.is proposed in [8]. An 
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island partitioning approach based on energy risk 
evaluation utilising supply–demand balance was presented 
by the author in [9]. Authors in [10] presented a portioning 
approach based on electrical distance and voltage control 
capabilities to address voltage violation problems caused 
by significant penetration of PV units. They presented a 
two-layer voltage control approach that incorporates both 
cluster and distributed inter-cluster optimization. By 
updating the intra-cluster optimal solution and the virtual 
slack bus voltage, cluster autonomous optimization may 
avoid intra-cluster voltage violation. In [13], a 
multifaceted partitioning method for power networks using 
K-means algorithm tool is presented where electrical 
distance was taken as an important factor. Based on these 
reviews, all previous partitioning methods are effective for 
specific purposes rather than considering the topology of 
the power distribution networks.  

Complex network theory has gotten a lot of attention 
in studying power network systems. In [14], the authors 
presented a methodology for evaluating the performance 
of alternative multivoltage-level distribution network 
design strategies, as well as a statistical algorithm based on 
fractal theory to realistically model consumer settlement 
and network topologies for multivoltage-level distribution 
networks. In [15], authors developed a method which is 
based on defining a new similarity index, and it can be 
used to locate communities and investigate the impact of 
bridging nodes on power grid cascading failure. By 
improving the Newman community detection algorithm to 
be implemented as a power grid partitioning algorithm, a 
functional community structure based on weighted 
network model was developed by authors in [11] and [12]. 
The electrical coupling strength (ECS) was used as a 
measure to detect communities. Therefore, techniques for 
detecting communities in complex networks offer a lot of 
potential for VM identification in distribution networks. 

The main contributions of this paper include the 
following: 1. Study features and characteristics of VMs 
and propose a definition which sum up characteristics and 
working principles of VMs. 2. Propose a methodology for 
partitioning distribution networks using both its structure 
and power flow ability to identify the lines with highest 
resistivity and least power transmission significance. 

The remainder of this work is structured as follows. 
Features and characteristics of VMs as well as virtual 
microgrid boundaries are summarized and explained in 
Section 2. The methodology on the proposed community 
detection in power networks are explained in Section 3. 
Meanwhile, Section 4 and Section 5, present the case 
studies and numerical results of the proposed partitioning 
method when it is applied to the IEEE 33-bus, IEEE 69-
bus and IEE 118-bus systems. Finally, Section 6 concludes 
the paper by highlighting the major conclusions and 
contributions of the work. 

2. Virtual Microgrid 

Until now, there is no agreement on a particular 
definition of VMs.  K. Anoh in [13] defined VM as “an 

aggregation of small-scale prosumers in order to operate as 
a single controlled entity which has the ability to manage 
the aggregated units; and control the electrical energy flow 
between these units in order to obtain better operation of 
the system.” Authors in [14] define VMs as “entities where 
energy prosumers are orchestrated into bigger associations 
with the goal of optimizing the association’s benefits. 
Meanwhile, authors in [15] defines VMs specifically as an 
“integration of all kinds of distributed power sources, 
distributed energy storage system, energy-saving source in 
a certain region by multilayers of cloud platform control 
center; implementing virtual Internet, ubiquitous 
communication and flexible configuration, while keeping 
microgrid characteristics internally balanced.” A recent 
study by I. Xiaotong Xu in [12] proposed a definition of 
VMs considering previous research as follows: “Virtual 
microgrids are virtually islanded systems based on the 
structure of conventional distribution networks (CDNs), 
they have the similar control strategies and operating 
modes as microgrids and can adapt to the future 
requirements of SDNs.” 

Based on previous research and understanding of the VM 
concept, in this research the following definition is 
proposed and shown in Fig. 1: “Virtual microgrids are 
virtually islanded systems developed from conventional 
distribution networks (CDNs) where each partition must 
contain enough distributed energy resources to maintain 
the following electrical characteristics: self-adequacy, self-
sufficiency and self-healing; and have information and 
communication technologies (ICTs) between partitions for 
optimized energy management.” 

 
Fig. 1. Illustration of the basic concept of VM [12]. 

Self-adequacy refers to the ability to keep power 
generation and consumption balanced within each VM 
[14][15]. Self-healing is the capability of autonomous 
restoration after faults or disturbances [15]. Self-
sufficiency in DNs refers to minimizing power flow 
between different VMs, and the imbalance between 
generation and loads within each VM [16-18]. 

Most of the suggested methods which are aimed to identify 
VMs boundaries are based on analyzing the operating 
states of power network [13]-[16]. An interesting approach 
done by [12] introduced a partitioning strategy based on 
structural characteristics of power networks. In this work, 
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a virtual microgrid framework is introduced considering 
both structure and operating states of power networks; 
where a clear-cut investigation of power network structure 
along with the power transmitted between buses is done.  

To achieve the electrical characteristic of VMs which is 
self-sufficiency, VM design should have some features 
from a structural point of view. This refers to dense 
electrical connection inside VMs while relatively sparse 
electrical connection between different VMs. This feature 
can also meet one of the goals of optimal power 
distribution operations, which refers to transmitting power 
with the least losses. 

3. Methodology 

This section describes a methodology that is proposed 
in this work for VM design. The aim is to optimally 
partition the distribution network integrated with 
distributed PV generation by minimizing line losses. This 
is a crucial first step in order to pick the optimal location 
and capacity for energy storage, which is the research's 
final step. The presented technique that uses distribution 
system data, a PV generation model, and a load model as 
inputs. The procedure's decision variables are distribution 
line resistivity and transmitted power. 

3.1. Structure of Power networks 

While complex network theory is a popular topic in 
computer, brain and social networks’ applications, 
research considering the structure of power networks along 
with their operating states are lacking. Power grid is a 
system of high-voltage transmission lines that allows 
electric power to be transported over great distances both 
inside and between countries. Different networks are 
represented by simplified graphs in complex network 
theories, which consist of two basic elements: nodes 
(vertices) and edges (links). To be able to represent and 
analyze the power grids in a simplified manner, some 
graph concepts that are related to power networks are used 
and shown in Figures. 2-5.  

The nodes and edges referred to in this work correspond to 
elements of power distribution network. Fig. 2 shows three 
kinds of edges in complex networks. Edges refer to links 
between two nodes (for instance, edge between node 1 and 
node 2). Multi-edges represent the presence of more than 
one edge connecting two nodes (for instance, edges 
between node 2 and node 3). A self-edge is a link 
connecting one vertex to another. (For instance, the edge 
in node 4.) Because electrical networks are usually used to 
transmit power from one node to another, this project's 
work is based on nodes with one edges and multi-edges. 

 

Fig. 2. A diagram of different components in complex 
networks. 

A directed network, also called a digraph, is a network 
where every edge has a direction, pointing from one node 
to another. These edges are called directed edges, or 
sometimes arcs, and are be represented graphically by, for 
instance, lines with arrows on them as in Fig.3. 

 

Fig. 3. A directed network. 

Even though power networks may seem like directed 
graphs since they transmit power from one node to 
another, in this research, power networks are considered 
undirected graphs. This enables the analysis of the whole 
network considering the existence of DERs and energy 
trading. 

The two forms of complex networks that are typically 
examined are unweighted and weighted networks, with the 
latter being significantly more difficult to evaluate. The 
links between any two nodes in an unweighted network are 
either present or absent. For example, social networks are 
an unweighted network in which two types of potential 
links exist between people: either they know each other, or 
they do not. A N×N adjacent matrix A can be used to 
describe the connection in an unweighted network. 
Imagine i and j are two nodes in a network, the element 

in matrix A can be written as 

 

(1) 
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So, in a social network, if there is a connection between i 

and j and they know each other then but if they 

do not then . 

Edges in unweighted networks indicate basic binary 
connections between nodes; they either exist or they do 
not. However, in some cases, representing edges as having 
a strength, weight, or value, generally a real integer, is 
beneficial. As a result, edges in a social network may have 
weights that indicate the strength of people's relationships. 
Predator–prey interactions in a food web may have 
weights that measure total energy transfer between prey 
and predator. Weights may be assigned to network lines to 
reflect the quantity of data passing through them or their 
bandwidth. Such weighted can be represented 
mathematically by an adjacency matrix with the elements 

equal to the weights of the corresponding connections. 
So, the adjacency matrix is written as: 

 

 

 

(2) 

Where  represents a weighted network in which the 
connection between node 1 and 2 is 3 times stronger than 
node 1 connection with node 3. Also, it is noticed that 
node 2 and 3 have a connection weight of 2. Nodes 1,2 and 
3 have no weight among themselves which indicate that 
there are no self-edges for the 3 nodes. This weighted 
graph can be illustrated in Fig. 4. 

 

Fig. 4. A weighted network. 

In Fig. 5, the nodes with the same colour belong to the 
same community, and it can be seen that the nodes in the 
same community have more physical connections than the 
other nodes in the network. To be able to utilize network 
communities concept to obtain the goal which is 
transmitting power with the least losses (minimizing the 
distance between nodes and minimize power flow between 
communities of VMs), it is needed to compare it to VMs 
characteristics. Because VMs are self-sufficient systems, 
their electrical connections should be higher than those of 
other nodes in the network, resembling the features of 

communities in complex networks. As a result, community 
detection algorithms in complex networks has high 
potential for solving power network partitioning problems 
[8]. 

 

Fig. 5. A network with 3 communities. 

 

The problem of finding groups of nodes in networks is 
called community detection. Community detection is a 
challenging task as the problem is not very well posed. 
Broadly speaking, the aim of community detection is to 
locate natural partitions of a network into groups of nodes 
with multiple edges inside and few edges between them. 
This description, however, is vague and open to 
interpretation—what exactly do we mean by “multiple” 
edges or “few”?   To turn community detection into a 
problem that can be tackled quantitatively, numbers or 
indexes are required to be included on these concepts. The 
most widely used approach is the method of modularity 
maximization. A number of methods on community 
detection have been developed and shown good results in 
practical situations [24-30].  

The task of community detection is approached as an 
optimization problem. The method of community 
detection is the optimization of modularity. Modularity is a 
scale value between -1 and 1 that measures the density of 
edges inside communities to edges outside communities. 
Theoretically, the best possible grouping of nodes in a 
given network may be obtained by optimising this value. 
Heuristic algorithms are used since it is difficult to go 
through all possible iterations of the nodes into groups. 

3.2.  Community Detection in Power Networks 

This study proposes an approach of community detection 
in power networks based on both the structural 
characteristics and power flow of the networks. This is 
achieved by formulating the network structure and 
transmitted power in the optimization problem equally. 
Specifically, the optimization will minimize the distance 
between buses and power flow between boundaries of 
VMs as illustrated in Fig.6. Since CDNs structure is 
already formed and is unlikely to be changed, the 
structural parameters of the distribution lines (line 
electrical distance and line capacity) are fixed. So, 
calculation of the electrical distance is based resistance; 
the reactance is ignored in calculating electrical distance 
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since resistance is much higher than the reactance in 
distribution lines. Also, the capacity of the distribution 
lines is considered as a limit of how much can be 
transmitted within VMs’ distribution lines rather than a 
parameter of the VM design itself. So, to minimize 
electrical distance, the reciprocal of resistance, which is 
conductance, is used and is defined as follows:    

     (3) 

where  is the electrical distance between bus i and bus j. 
A refers to all the buses in the network. 

 

Fig. 6. Illustration of concept of minimizing distance 
among buses in and minimizing power flow between 
different VMs. 

To incorporate transmitted power within the distribution 
lines in the planning stage of the VM, the transmitted 
power in each line is calculated based on load of its 
receiving bus. Since VMs are supposed to be self-
sufficient, the power flowing between lines within the VM 
should be proportional to the load of the receiving bus. 
This concept is illustrated in Fig. 7. 

 

Fig. 7. Illustration of power transmission within 
distribution lines 

The line transmitted power is defined as follows: 

=       (4) 

where  is the real load power at bus j. The peak load of 
the receiving bus represents the actual value of transmitted 
power in the transmission line over a period of a time. To 
represent a 24-hour scenario of load and PV profile, 
energy is used instead of power in the composite weight. 
Energy for 24 hours is defined as: 

=    (5) 

Where  is the real load power in bus j at hour n and 

is the PV generated power in bus j at hour n. The 
input data used for VM clustering are normalized using 
feature scaling as follows: 

     (6) 

where   is an original value,  is the normalized 
value.  and  are the minimum and maximum 
values of the data. In order to obtain partitioning results 
that incorporate both the transmitted power of lines and 
electrical distance, the composite weight index is defined 
as: 

    (7) 

where  is the normalized active power,  is the 
normalized conductance, α and β are proportion 
coefficients; and α = β =0.5. 

The value to be optimized is modularity, which has a value 
between −1 and 1. For a weighted graph, modularity is 
defined as:  

   (8) 

Where: represents the edge weight between nodes i 

and j.  and are the sum of the weights of the edges 
attached to nodes, respectively.  is the sum of all of the 

edge weights in the graph. and are the communities 
of the nodes and  is Kronecker delta function 

 

The Louvain algorithm proposed in [30] is a heuristic 
algorithm for maximizing modularity over divisions of a 
network into any number of communities. The Louvain 
algorithm is an agglomerative algorithm, which works by 
taking single nodes and joining them into groups, then 
joining groups with other groups, and so forth, in an effort 
to find the configuration with highest modularity. The 
partitioning process was developed by replacing the 
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modularity Q by the electrical modularity and the 
community detection process is shown in Fig. 8.  

 

Fig. 8. Community detection process using Louvain 
Algorithm. 

3.3. Losses Calculation 

Energy losses for each VM were calculated as the total line 
losses within the VM using (9) 

   (9) 

Where is the line power losses at hour n for lines 
within the VM. 

 

 

4. Case Study 

Using the structure and characteristics of power networks 
presented in sections 2 & 3, the power network is 
perceived as a weighted undirected graph. The proposed 
methodology was tested on IEEE 33-Bus, IEEE 69-Bus 
and IEEE 118-Bus systems as shown in Fig. 9-11. The PV 
profile of a sunny day were recorded for every 30 minutes 
from Solar Lab PVSG in the main campus of UTeM, 
Durian Tunggal, Melaka, Malaysia and is shown in Fig 12. 
Also, hourly load profile that represents typical Malaysian 
residential distribution network demand [31] is shown in 
Fig. 13. The demand profile shown in Fig.13 shows that 
the demand is higher during the night when people come 
back from work and early in the morning when they wake 
up to get ready to go out than demand at other time. 

 

Fig. 9. IEEE 33-bus radial distribution system. 

 

 

Fig. 10. IEEE 69-bus distribution system. 
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Fig. 11. IEEE 118-bus system. 

 

 

Fig. 12. PV Profile. 

 

Fig. 13. Load Profile. 

The developed method was applied on IEEE 33-Bus 
network and compared the results of VM design in terms 
of cut-sets, modularity, and line losses for the first three 
cases. Also, in order to validate the feasibility of the 
proposed algorithm on a larger system, we tested it on the 
IEEE 118-bus system as shown in Table 1. Table 2 and 
Table 4 list some of the values of computed weight of lines 
for the IEEE 33-Bus and IEEE 118-Bus networks, 
respectively. 

 

Table 1. Description of the study cases. 

 

Table 2. Computed weight of some lines for IEEE 33-Bus 
test system. 

From 
bus 

To 
bus 

Case 1  
W(S) [12] 

Case 2 
W(G) 

Case 3  
W(P, G) 

1 2 18.2797 10.84599 0.714671 
8 9 1.2796 0.970874 0.035382 
9 10 1.2796 0.957854 0.034846 

12 13 0.9053 0.681199 0.028307 
13 14 1.3209 1.846381 0.163506 
14 15 1.7309 1.692047 0.076746 
2 19 5.5918 6.097561 0.386741 

19 20 0.8146 0.664805 0.084853 
20 21 1.8893 2.442002 0.149783 
21 22 1.0558 1.410636 0.099414 

Table 3. Computed weight of some lines for IEEE 118-
Bus test system. 

From bus To bus Case 4  
W(C, Y) [11] 

Case 5 
W(P, G) 

3 5 1.263 0.00997578 
5 6 - 0.134270696 
8 9 0.779 0.098531273 
11 13 - 0.087462899 
12 14 - 0.037446802 
16 17 2.156 0.028575021 
17 18 2.412 0.154406073 

Cases Type of input Input weight Test system 

1 [12] Structure of 
distribution 

lines 

Susceptance 
and line 
capacity 

W(S) 

IEEE 33-Bus 
distribution 

system 

2 Structure of 
distribution 

lines 

Conductance 
W(G) 

IEEE 33-Bus 
distribution 

system 
3 Structure and 

transmitted 
power of 

distribution 
lines 

Conductance 
and power 

flow  
W(P, G) 

IEEE 33-Bus 
distribution 

system 

4 [11] Electrical 
coupling 
strength 

Transmission 
capacity and 
equivalent 
admittance  
W(C, Y) 

IEEE 118-Bus 
system 

5 Structure and 
transmitted 
power of 

distribution 
lines 

Conductance 
and power 

flow  
W(P, G) 

IEEE 118-Bus 
system 
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To incorporate PV generation profile in the VM design, 
24-hours energy formulated in (5) is used instead of power 
as the composite weight index. The proposed partitioning 
method that considered the 24 hours energy is tested on the 
IEEE 33-bus and IEEE 69-bus distribution networks with 
solar PV generation. Then, the impacts of solar PV 
increment and distribution on the VM design are 
evaluated. As it is assumed that VMs are self-adequate and 
self-sufficient systems; PV stand-alone system will not 
satisfy those characteristics without energy storage. Since 
placement and control of energy storage will take place in 
the following process of the study, PV generation for 
designing VM will be perceived as if they satisfy the load 
during night regardless of missing the energy storage. 

5. Results 

This section presents the findings of this work, in 
which IEEE 33-Bus network was partitioned and the 
results of VM design were compared in terms of 
modularity and line losses for study Cases 1-3 shown in 
Table 1. IEEE 118-bus system was used and compared to a 
previous study in cases 4 and 5 to validate the feasibility of 
the proposed algorithm to a larger system. The impact of 
solar PV generation to the VM design was tested on the 
IEEE 33-bus and IEEE 69-bus distribution systems where 
different penetration levels and locations were assigned for 
PV systems. 

5.1. Verification of VM Design 

5.1.1. IEEE 33-Bus Distribution System 

Fig. 14 and Table 4 present the results of VM designs 
for the first three cases as stated in Table 2. These results 
consist of the modularity, cut sets and line power losses. 
Result in Table 4 shows that the proposed partitioning 
method has resulted in the highest modularity (Q = 0.77) 
which indicate a very dense partition compared to the 
approach presented in [12] (Case 1) and Case 2. 
Consequently, that the third case which considers both 
structure and transmitted power in the weightage 
formulation has given the least line power losses; followed 
by Case 2 which uses conductance; and finally, Case 1 
[12] with the highest line power losses. Since the main 
purpose of this method is to minimize line losses, it is 
expected that the lines with the highest resistance are used 
as boundaries and lines with similar lines resistance are 
grouped into one partition. VMs’ boundaries depict in 
Table 5 and Fig. 14 prove this expectation as communities 
with a resistance close in range are grouped together and 
any sudden increase in resistance in one of lines was 
identified as a cut-set. For example, line 19-20 has a 
resistance of 1.5042 Ω comparing to the range of 
resistance of VM 1 which are between (0.0922 Ω and 
0.164 Ω). Also, VM 5 which has cut-set lines (8-9) of high 
resistivity (1.03 Ω) compared to the resistance range 
within the VM (0.1872 Ω and 0.7114 Ω). A significant 
difference in the partition of the three cases is VM3. The 
partitioning of VM3 into two VMs (VM3 and VM8) in 
case 3 reduced the total power losses. VM3 line losses in 

both case 1 and case 2 is (0.705760 MW) while the total 
line losses for VM3 and VM8 in case 3 is (0.691027 MW).  
These results verify that the proposed partitioning method 
is suitable and effective in identifying the optimal VM 
design for minimizing the power losses in distribution 
network.  

5.1.2. IEEE 118-Bus System 

To validate the feasibility of the proposed algorithm to 
a larger system, we tested it on the IEEE 118-bus system. 
The optimal partitioning results for the 118-bus are a 
division into 12 VMs with electrical modularity equal to 
0.77. The result was compared to the partition in [11] with 
an electrical modularity of 0.072. Table 5 shows the 
electrical modularity, partitioning results and line power 
losses for both cases.  

 

 

 

 

Fig. 14.  Partitioning results for IEEE 33-bus distribution 
network. (a) Case 1 [12] (b) Case 2 (c) Case 3. 
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Table 4. VM designs for different case studies for IEEE 
33-bus distribution network. 

Case Modularity 
Q 

Power Losses 
in VM (MW) 

Total Power 
Losses 
(MW) 

1[12] 0.71 VM1:0.143049 
VM2: 0.001628 
VM3: 0.70576 
VM4: 0.126523 
VM5: 0.235301 
VM6: 0.037551 
VM7: 0.224537 

1.474348 
 

2 0.75 VM1: 0.143049 
VM2: 0.001628 
VM3: 0.70576 
VM4: 0.228297 
VM5: 0.11839 
VM6: 0.037551 
VM7: 0.224537 

1.459212 
 
 

3 0.77 VM1: 0.143049 
VM2: 0.001628 
VM3: 0.662642 
VM4: 0.228297 
VM5: 0.11839 
VM6: 0.037551 
VM7: 0.224537 
VM8: 0.028385 

1.444478 
 

 

5.2. Impact of solar PV generation to the VM design 

To investigate the impact of PV penetration on the 
VM design, the proposed partitioning method that 
considered the 24 hours energy was tested on the IEEE 33-
bus and IEEE 69-bus distribution networks with solar PV 
generation. The two distribution systems were tested by 
varying PV penetration levels and by changing PV 
allocation in the distribution network. 

5.2.1. Variation of PV Penetration Level 

PV was installed on every bus in the test systems for 
different penetration levels (20%,40%,60%,80% and 
100%) of the total load. Result obtained from these tests 
were the same as the one obtained using the W (P, G) 
weight index except for 100% of the load which provided 
the same results using the weight index of the conductance 
alone W(G). Since power was injected to all buses in a 
balanced manner the weight index did not change and 
therefore provided the same VM boundaries. 

 

 

 

Table 5. VM designs for different case studies for IEEE 
118-bus system network. 

Case Q Bus number in 
each VM 

Power 
Losses in 

VM (MW) 

Total 
Power 
Losses 
(MW) 

4[11] 0 .072 VM1: 1-7, 11-24, 
27-29, 31-33, 70-
76, 113-115, 117, 
118 
VM2: 8-10, 25, 
26, 30, 34-69, 116 
VM3: 77-112 

VM1:24.329 
VM2:55.548 
VM3:38.287 

118.17 

5 0.77 VM1: 1.-7, 11, 
12, 16, 117 
VM2: 8-10, 26, 
30, 38 
VM3: 13-15, 17-
22, 33-36, 43, 113 
VM4: 23, 25, 27-
29, 31, 32, 114, 
115 
VM5: 24, 69-
82,118 
VM6: 37, 39, 40-
42, 44-50, 57 
VM7: 51-56, 58, 
59, 63, 64 
VM8: 60-62, 66, 
67 
VM9: 65, 68, 116 
VM10: 83-88 
VM11: 89-97, 
102 
VM12: 99-101, 
103-112 

VM1:3.0953 
VM2:13.958 
VM3:4.4699 
VM4:14.071 
VM5:17.176 
VM6:16.309 
VM7:3.1889 
VM8:1.0863 
VM9:0.1299 
VM10:2.612 
VM11:12.15 
VM12:12.55 

100.81 

 

5.2.2. Variation of PV Distribution 

5.2.2.1. IEEE 33-bus system 

To test the validity of this method to reflect on power 
change in the VM design, the PV was injected in an 
unbalanced manner for two different cases as follows: 1. 
Case A: PV Penetration level of 60% for busses at the end 
of the network bus 9-13, 15-18. 2. Case B: PV Penetration 
level of 100% for buses with load under 200 kW. VM 
designs of the test systems under both considered scenarios 
are shown in Fig.15 and Table 6.  Table 6 points out the 
cut sets change from the initial W (E, G) design. 
Transmitted power for 24 hours (energy) and line 
resistance for the cut sets and lines connected to them are 
also shown to point out the significance of the chosen line 
to be the cut set. As seen in Cases A and B, lines with the 
least transmitted power over time (energy) was chosen to 
be the cut sets. In cases where the line has the same 
amount of transmitted energy as the one connected to it, 
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line with the highest resistivity was chosen as the cut set. 
Line 6-7 and line 7-8 in Case a are an example of that 
scenario. However, line 12-13 in Case a was used as a cut 
set even though it transmits more power than line 11-12. 
The reason for that is the significantly higher resistance of 
line 12-13 which 1.468 Ω to the resistance of its connected 
lines 11-12 and 13-14 which are 0.3744 Ω and 0.5416 Ω, 
respectively. 

5.2.2.2. IEEE 69-bus system 

The weight index used to represent the 24-hour load 
alone is calculated and partitioning results for IEEE 69-bus 
test distribution system is shown in Fig.16. PV is then 
added to the system in unbalanced manner for two 
different cases as follows: 1. Case A: one PV is installed 
on busses with loads at the middle of the network bus 
Bus7-9. 2. Case B: 100% of the load for buses with load 
under 100 kW is supplied. The cut sets change from initial 
W (E, G) design is shown in Table 7 where it is shown that 
lines with lowest energy transmission and highest 
resistivity were chosen as the cut sets. 

 

Fig. 15. Partitioning results for IEEE 33-bus distribution 
network considering load and PV profiles. (a) Case 1 (Q= 

0.72) (b) Case 2 (Q = 0.79). 

Table 6. Partitioning results for IEEE 33-Bus distribution 
network including load and PV profiles. 

Case Cut sets 
change 
from 
initial W 
(E, G) 

Energy 
transmitted in 
the chosen cut 
set line 
compared to 
VM lines 
(MWh) 

Line resistance 
in the chosen 
cut set line 
compared to 
VM lines (Ω) 

A L29-30 
L7-8 
L12-13 

L28-29: 1.2401 
L29-30: 0 
L30-31: 1.5501 

L28-29: 0.8042 
L29-30: 0.5075 
L30-31: 0.9744 

 
L6-7: 0 
L7-8: 0 
L8-9: 0.62 
L11-12: 0.4650 
L12-13: 0.6200 
L13-14: 0.6200 

 
 
 
L6-7: 0.1872 
L7-8: 0.7114 
L8-9: 1.03 
L11-12: 0.3744 
L12-13: 1.468 
L13-14: 0.5416 

B L30-31 L29-30: 1.8668 
L30-31: 0 
L31-32: 1.9701 
 

L29-30: 0.5075 
L30-31: 0.9744 
L31-32   0.3105 

 

Fig. 16. Partitioning results for IEEE 69-bus test 
distribution system based on the method formulated in (5) 

W (E, G) (Q=0.77). 

Table 7. Partitioning results for IEEE 69-bus distribution 
network including load and PV profiles. 

Case Cut sets 
change 
from 
initial W 
(E, G) 

Energy 
transmitted in 
the chosen cut 
set line 
compared to VM 
lines (MWh) 

Line 
resistance in 
the chosen cut 
set line 
compared to 
VM lines (Ω) 

A L11-66 
L12-68 
 

L10-11: 1.4984 
L11-66: 0 
L66-67: 0 
 
L11-12: 1.4984 
L12-68:  0 
L68-69:  0 

L10-11: 0.1872 
L11-66: 0.2012 
L66-47: 0.0047 
  
L11-12: 0. 
7114 
L12-68: 0.7394 
L68-69: 0.0047 

B L9-53 L8-9:  0.1949 
L9-53:0.0450 
L53-54: 0.2728 

L8-9:  0.0493 
L9-53: 0.1740 
L53-54:0.2030 

6. Conclusion 

This paper discusses the features and characteristics of 
VMs and proposes a definition for VMs according to 
previous literature. A method for identifying VMs 
boundaries for residential distribution networks, 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
H. Alawami et al., Vol.11, No.4, December, 2021 

 1588 

considering both structure and characteristics of power 
networks using virtual microgrid concept is done. Through 
analyzing the results of IEEE 33 and IEEE 118 networks, 
it can be concluded that the method used in the paper can 
describe the structural characteristics of distribution 
networks very well, and the partitioning method can 
determine the boundaries for VMs while providing the 
least losses. After that, the analysis was done to investigate 
PV increment effect on the VM design for residential 
network on IEEE 33-bus and IEEE 69-bus distribution 
networks and showed that lines with highest resistivity and 
least power transmission significance were used for the 
VM cut sets.  
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