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Abstract- With more Renewable Energy (RE) integration in recent years, Wind farms (WFs) seem to produce more energy from 
Wind Turbines (WTs). Most WTs in WFs are designed to face a predetermined wind direction; this means that WTs can generate 
less electricity than they need due to the intermittent nature of the wind. Due to the non-linear nature of wind energy, optimization 
techniques are critical for successfully building a wind farm.  This process involves performing layout optimization techniques 
using soft computing. WFs have a construction configuration with multiple turbines situated near together in a restricted terrain, 
contributing to higher energy losses due to the wake effects. Therefore, WTs on a WF to enhance the generated energy while 
meeting all constraints are pretty restrictive and complicated. We utilized the newly developed Sparrow Search Algorithm (SSA) 
to determine the most effective technique for the optimal positioning of WTs in WF. We can obtain the high efficiency of the 
WTs at the lowest possible level of turbine output. This article examined two case studies: the first one is a Constant Wind Speed 
(CWS) with Variable Wind Direction (VWD); the second one is a Variable Wind Speed (VWS) with Variable Wind Direction 
(VWD). It was determined how well the proposed method performed compared to the bulk of prior research that dealt with the 
same problem. Consequently, SSA is an effective technique for determining the WT position allocation problem to achieve the 
optimum position. 

Keywords Wind Farm Power, Wind Turbine Positioning, Location Optimization, Sparrow Search Algorithm. 

 

1. Introduction 

Electricity is an integral part of the earth and forms the 
basis of all industrial, scientific, transportation, and 
communication activities, especially present and future. 
Electricity consumption is increasing enormously, but 
conventional supplies are becoming scarcer, prompting many 
academics to look for new energy sources. RE, particularly 
solar and wind energy, is becoming more prominent and 
attractive as a technological alternative. Renewable Energy 
Sources (RES) are being utilized in this area to decrease 
reliance on conventional energy sources due to the many 
advantages of RES, including reduced carbon emissions and 
hazardous gas emissions. Wind energy is among the most 
efficient forms of electricity generation. WTs are among the 
most accessible energy supplies available globally due to the 
stability, environmental friendliness, and affordable character 

of RES. It will be possible to meet future energy demand by 
converting wind energy into electrical energy. The efficiency 
of WTs is relatively poor if WTs are properly not installed in 
the correct location. So, the construction of WF is meticulous, 
and thorough work is required.  

The best location of WT is important in WF design. An 
improper WF design contributes to a negative impact of the 
wake effect of lowering harvested electrical energy. Wake 
effect caused by upstream WT, which reduces downstream 
WT speed. As a consequence, downstream WT harvested 
energy is less in comparison with upstream WT harvested 
energy. The traditional WTs layout considerably enhances the 
wake effect; thus, the optimal location of WT inside WF may 
be an ideal solution for reducing the wake effect and 
strengthening the WF performance by increasing the collected 
energy of the WTs. As a result, researchers have taken a 
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significant interest in the best location of WTs to extract 
maximum electricity from WFs at lower energy prices per 
kilowatt. 

Grady et al. [4] applied a genetic algorithm to establish 
optimal WF configurations; Castro Mora et al. [5] used an 
evaluative algorithm to show optimal WF arrangement. Peng 
Hou et al., [6] and Xiawei Wu et al., [7] used Levelized 
Production Cost (LPC) with Particle Swarm Optimization 
(PSO) employed to boost the electrical energy production 
while minimizing total investment. Feng and Wen [8] used 
Random Search Algorithm (RSA). Genetic Algorithm (GA) 
[9]–[11], Multi population genetic algorithm [12], Ant colony 
optimization [13], Evolutionary algorithm [14], Monte Carlo 
simulation [15], Particle swarm optimization [16], Pattern 
search algorithm [17], Differential evolution algorithm [18], 
Water Cycle Optimization [2], Self-Informed Genetic 
Algorithm [19], data-driven evolutionary algorithm [20], 
Adaptive Differential Evolution Algorithm (ADE) [20], and 
many more meta-heuristic algorithms are employed to 
optimize WF layout to reduce cost per unit. 

In this paper, we applied Sparrow Search Algorithm 
(SSA) [21] to obtain WT optimum positions with the 
Objective Function (OF) cost/kW. Two case studies, including 
1) CWS with VWD and 2) VWS with VWD, are performed. 
The suggested technique results compared with GA [3], GA 
[4], BPSO-TVAC [22], and RSA [8]. However, many works 
of literature [23-27] have used different optimization methods 
for determining optimal location, thorough and accurate 
comparisons with the research findings with the same factors 
and mathematical models that affect the objective function. 

The organization of this paper is given below. 

Ø Introduction to problem and literature of work done 
previously  

Ø Mathematical modelling of the problem, objective 
function for the wind farm layout optimization mathematical 
equations and definitions. 

Ø  Modelling of Sparrow search algorithm. 

Ø Results and discussions and conclusions. 

2. Modelling of the Wind Farm 

As a free stream of wind meets turbine blades, the speed drops, 
and the turbulence level rises, are creating a wake.  

Wind velocity in the wake-field calculated with Jensen linear 
wake decay model [28]. 

The linear wake paradigm is depicted schematically in Figure 
1. The wake impact between WTs is one of the most 
significant factors influencing WF power production; in the 
wake area, the momentum is conserved.  

In our present analysis, we utilized the wake model of Jensen 
[28] for the deficit measurement of wind speeds behind a WT 
with the following eq. (1) [3, 4, 18, 7, 8, and 28]. 

 
Figure 1 Diagram of a linear wake model 

   … (1) 

where u0u is average wind speed, au is axial induction factor, 
αu is constant entrainment, xu is the downstream length of the 
turbine, and r1u is the downstream wind radius. The following 
eq. determines these parameters. (2) - (4) [18]. 

    ... (2) 

    ... (3) 

     ... (4) 

where CT is the rotor thrust coefficient, z0 is the surface 
roughness of the WFs, rdu is the WT rotor radius. Kinetic 
energy is often equal to the total of the energy deficits from 
several wakes. The resulting velocity of the ith turbine 
downstream of the NT turbines is given by 

   ... (5) 

where uik is the wind velocity of the ith turbine under kth turbine 
influences. For a linear wake model, the wake area is conical, 
and the wake region radius is expressed as wake influence 
radius measured with the following: 

     ... (6) 
where r1 is the WT radius. Mosetti et al. [3] developed a Cost 
Function (CF) model.  The same CF is used to calculate the 
total cost of WTs within WF, which is defined by equation (7). 

   ... (7) 
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where N wind turbines are included in the wind park. The 
proposed model assumes that the number of turbines in a WF 
is the only variable that can be used to determine the cost of 
electricity. Non-dimensional cost per year is assumed as 1 and 
the maximum cost reduction is 1/3. 
Table 1 describes some of the turbines parameters that were 
considered for this analysis, and the power output can be 
determined using the equation [18]: 

   ... (8) 
In this paper re-writes the formula (8) and uses it with little 
numerical approximation [3] and [4]. It also compares the 
previous results of the same formula with the previous results. 

     ... (9) 
where ρ is the air density, r is the rotor diameter, u is the wind 
speed and CP is the rotor efficiency, The total output power of 
the WF with N number of turbines is calculated [18], 
The total output power of the WF having N no. of turbines, 

    ... (10) 

where fk is the wind probability for a wind speed from a 
particular direction  

and is the ith turbine actual power output as a 

function of wind speed ui. 
Table 1 describes the Nomenclature and acronyms and table 2 
describes the turbines and other related information for the 
problem and corresponds to the data in [3] and [4]. 
 
Table 1: Nomenclature and acronyms 

u0 local wind speed/ constant wind speed 
x distance downstream of the turbine 
r radius of turbine rotor 
r1 downstream rotor radius 
h hub height of turbine 
α the entrainment constant 
a axial induction factor 
CT thrust coefficient of the wind turbine rotor 
z0 surface roughness of the wind farm 
NT Number of turbines 

uij 
wind velocity at ith turbine under the influence of 
jth turbine 

 
Table 2: Numerical Data 

S. 
No. Parameter Value 

1 Rotor diameter (2r) 40 m 
2 Thrust coefficient (CT) 0.88 
3 Hub height (h) 60 m 
4 Rotor efficiency (CP) 0.4 
5 Air density (ρ) 1.2254 kg/m3 

6 Atmospheric Pressure 101.3 kPa 
7 Temperature 25oC 
8 Wind farm surface roughness (z0) 0.3m 
9 Axial induction factor (a) 0.2 - 0.4 
10 Local wind speed, (u0) 12 m/s 

The main objective is to determine the best WF configuration 
for the lowest unit cost of energy generated and maximize the 
generated power Pi, thus lowering WF installation costs. 

The objective function ‘cost/kW’ utilized in this article as 
a criterion for deciding the WFs optimal configuration Grady 
et al., [4] have shown. The equation that describes this OF is 
as follows (11). 

The OF is       ... (11) 

where cost is the combined power generated by all N turbines 
in the wind farm, and PT is the total power output of the WF 
cost. This goal would reduce the cost per unit of energy 
generated to the lowest possible amount. 

To measure the performance of a WF with the following 
equation: 

Efficiency (η) is  ... (12) 

where, Pi,max is the ith turbine maximum power output as a 
function of most feasible wind speed ui,max had there been no 
wake effect and fk is the wind probability for a wind speed 
from a particular direction. 

3. Mathematical Model and Algorithm 

Jiankai Xue and Bo Shena [21] have formulated a new 
swarm optimization method: the Sparrow Search Algorithm 
(SSA). SSA developed with sparrow's group wisdom, hunting, 
and anti-predatory behavior. Jiankai Xue and Bo Shena built 
the mathematical model to construct SSA. We simplified the 
sparrow behavior and developed the appropriate rules to 
represent this simplification. 

Generally, producers have almost unlimited energy 
resources, and they encourage scavenging for all scroungers. 
It plays a crucial role in finding rich sources of food. Personal 
levels of fitness affect energy resources. 
When the sparrow senses the predator, the individuals start 
chirping as disturbing signs. If the warning value exceeds the 
protection level, the production companies must get all 
screeners to a safe place. 
Ø All sparrows can be producers, yet the number of 

scroungers and producers remains constant in the overall 
population. 

Ø High energy sparrows become productive. Many hungry 
scroungers often fly to different locations to find food to 
obtain sufficient energy. 

Ø The scroungers go from place to place to find sufficient 
food. In the meantime, certain scroungers will watch the 
farmers continuously and fight for food to raise their food 
predation rate. 

Ø The sparrow at the outside of a group walks instantly to a 
secure position to have a better place when it detects a 
threat; if the sparrow is at the group's center, try to move 
randomly nearer to the other. 
We were required to use sparrows in the numerical 

simulation to locate food. The following matrix can determine 
the location of sparrows [21]. 
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    ... (13) 

where dim indicates dimension size, n represents total 
sparrows, and the next vector will then represent the fitness 
value of all sparrows [21]: 

   ... (14) 

Each row value of FX reflects the fitness value. In SSA, 
producer priority with a better fitness value is acquiring food 
in the quest process. Furthermore, the producers have the 
responsibility to look for food and direct the whole population 
movement. The producers will then hunt for food in a wide 
variety of ways, compared with scroungers. According to rules 
(1) and (2), the producer's position changes as follows for each 
iteration [21]: 

   ... (15) 

where t denotes the current iteration, k = 1, 2, ..., dim,  ith 
sparrow kth dimension at tth iteration, α [0, 1] is a random 
integer, itmax is total iterations, RN2 [0, 1] is a caution value, 
and ST ϵ [0.5, 1.0] is a threshold value. Q is a normal-
distributed random number, and L reveals a matrix of 1 × dim 
for which every component within is 1. If RN2<ST shows no 
predators discovered around the search space, the producer 
will fly around the search space. If RN2≥ST offers predators 
around the search space, the producer quickly moves to safe 
areas.  

The scroungers require executing rules (4) and (5); certain 
scroungers monitor the producers more regularly. When they 
discover that the producers have found a good food source, 
they quickly leave their present location to compete for food. 
The updated food location by the follows (16) [21]. 

  ... (16) 

where XP reflects the producer's optimum position, the new 
global worst location is Xworst. A is a matrix size of 1 × dim, 
for which every component range is a random value (-1,1), 
and A+ = AT(AAT)-1. If i > n/2 reflects the worst fitness value 
of ith scrounger. 
The simulation experiment believes that 10 to 20 percent of 
the overall population account for these danger-conscious 
sparrows. The initial locations of these sparrows are created 
spontaneously by the community. The mathematical equation 
is formed by the following rule (6) [21]: 

 ... (17) 

There, the current optimum global position is Xbest, β is a 
normal-distributed random number between 0 and 1; H ∈ [−1, 
1] is arbitrary. Here fi, fg, and fw are the sparrow's current, 
highest, and least fitness values, respectively; 𝜀 is a constant 
value is used to prevent zero-division error. 
For simplicity, when fi > fg indicates that the producer is at the 
edge of the group, fi = fg shows that the producers are in the 
middle of the population, are aware of the threat. Then 
producers quickly move to safe areas. H indicates the path in 
which the movement of sparrow and is also the step size 
control coefficient. The SSA fundamental step-by-step 
procedure is designed as pseudo-code shown in the below 
Table 3 and the flow chart of the SSA as shown in figure 2. 
4. Results and Discussions 

To analyze performance of the suggested technique, we 
tested over 50 times, selected the better value for ‘OF’ of both 
case studies, and performed estimates power for 36 various 
wind directions. The suggested technique implemented on 
MATLAB 2021a and developed on a computer with 8GB 
RAM and Intel Core i3 CPU@2.0GHz. 
This research is performed on a square WF with 100 feasible 
positions for WTs (10×10). All WT was placed in the middle 
of the cell. The size of every cell is 200m, shown in Figure 2. 
In one column with another in neighboring columns, the cell 
selection, equivalent to the rotor diameter, prevented the wake 
impact between turbines. 
 

Table 3: The pseudo-code of SSA. 
Input: 
G: the maximum iterations 
PD: the number of producers 
SD: the number of sparrows who perceive the danger 
R2: the alarm value 
n: the number of sparrows 
Initialize a population of n sparrows and define its relevant 
parameters. 
Output: Xbest, fg. 
1: while (t < G) 
2: Rank the fitness values and find the current best 
individual and the current worst individual. 
3: R2 = rand(1) 
4: for i = 1 : PD 
5: Using equation (3), update the sparrow’s location; 
6: end for 
7: for i = (PD + 1) : n 
8: Using equation (4), update the sparrow’s location; 
9: end for 
10: for l = 1 : SD 
11: Using equation (5), update the sparrow’s location; 
12: end for 
13: Get the current new location; 
14: If the new location is better than before, update it; 
15: t = t + 1 
16: end while 
17: return Xbest, fg. 

 

n,dimn,2n,1

2,dim2,22,1

1,dim1,21,1

xxx

xxx
xxx

X

!

""""

!

!

=

])xxf([x

])xxf([x
])xxf([x

F

n,dimn,2n,1

2,dim2,22,1

1,dim1,21,1

X

!

""""

!

!

=

ï
î

ï
í

ì

³´´

<÷÷
ø

ö
çç
è

æ
´
-

´
=+

STRNifLQX

STRNif
itα
iexpX

X

2
t
ki,

2
max

t
ki,1t

i,k

t
ki,X

ï
ï
î

ïï
í

ì

´´-+

>÷÷
ø

ö
çç
è

æ -
´

=
+++

+

otherwiseLAXXX

2n/iif
i
XX

expQ
X

1t
P

t
i,

1t
i,

2

t
i,

t
worst

1t
i,

kk

k

k

ï
ï
î

ïï
í

ì

=÷÷
ø

ö
çç
è

æ
+-

-
´+

>-´+

=+

gi
wi

t
worst

t
i,t

i,

gi
t
best

t
i,

t
best

1t
i,

ffif
ε)f(f

XX
X

ffifXXβX

X
k

k

k

k
H



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
K. K. Kumar et al., Vol.11, No.4, December, 2021 

 1943 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Flow chart for the proposed SSA 
The main objective is to enhance the optimal 

positioning of the WTs within WF to reduce the overall cost 
of power generation. For case 1, we assume CWS with VWD. 

The WF utilized in this analysis included Table 1 
specifications. We considered the roughness of site field Z0 to 
be 0.3 m.  Here we considered 12 m/s CWS and wind flows in 
every direction with the same probability by examining 36 
angles from 00 to 3600 in steps of 100. 

 
Figure 3 Wind Farm Topology 

 
Table 4 SSA user defined parameters 

Parameter  Value 
Population size (nPop) 30 

Percent of the total population size 0.2 
Maximum iterations (itmax) 500 
Lower bounds (lb) 0 
Upper bounds (ub) 1 
Dimension size (dim) 100 

 
Table 5 of SSA Results Comparison with GA, BPSO-TVAC, 

and RSA for case 1 
Reference 
Method for 
Optimizatio

n 

No. of 
turbine

s 

Powe
r 

(MW
) 

Wind 
Farm 

Efficienc
y (η %) 

Objective 
Function 

(Cost/MW) 

GA [3] 19 9.245 93.86% 0.00000173
71 

GA [4] 39 17.22 85.17% 0.00000156
66 

BPSO-
TVAC [22] 35 15.79

6 87.06% 0.00000156
48 

RSA [8] 40 17.40
6 NA 0.00000154

79 
SSA 

40 17.78
1 85.74% 

0.00000154
61 

We applied the suggested approach for case 1, and better 
solutions were obtained and compared with the previously 
reported in Table 5. The optimal arrangement of WFs obtained 
by SSA compared with GA [3], GA [4], BPSO-TVAC [22], 
and RSA [8]. The SSA obtained better solutions for the same 
objective function. The convergence curve of the objective 
function is shown in Figure 4. SSA has discovered the 
optimum configuration of wind form in figure 5. The 
suggested approach produced 17,780.96 kW annual power 
generations from 40 turbines with less cost/kW 0.0015461 and 
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an efficiency of 85.74%. We can observe that the SSA 
performed very well compared with other approaches. 

 
Figure 4 Convergence of SSA algorithm for case 1 

To confirm the validity of the proposed approach for 
optimum positioning of WF for case 2, we assume VWS with 
VWD. Here we considered 8 m/s, 12 m/s, and 17 m/s with 36 
angles from 0o to 360o in steps of 10o. 

 
Figure 5 Optimum configuration of wind form by SSA for 

case 1 
Table 6 of SSA Results Comparison with GA, BPSO-TVAC, 

and RSA for case 2 
Reference 
Method for 
Optimizatio

n 

No. of 
Turbine

s 

Power 
(MW) 

Wind 
Farm 

Efficienc
y (η %) 

Cost/M
W 

GA [3] 15 13.46 94.92% 9.941e-7 

GA [4] 39 32.03
8 86.62% 8.403e-7 

BPSO-
TVAC [22] 46 36.43

3 82.76% 8.523e-7 

RSA [8] 39 32.09
6 NA 8.492e-7 

SSA 39 32.49
8 86.11% 8.377e-7 

 

 
Figure 6 Convergence of SSA algorithm for case 2 

We applied the suggested approach SSA for case 2, and 
better solutions were obtained and compared with the 
previously reported techniques in Table 4. The optimal 
arrangement of WFs obtained by SSA compared with GA [3], 
GA [4], BPSO-TVAC [22], and RSA [8]. The SSA obtained 
better solutions for the same objective function. The 
convergence curve of the objective function is shown in figure 
6. SSA has discovered the optimum configuration of wind 
form in figure 7. The suggested approach produced 32139.36 
kW annual power generations from 39 turbines with less 
cost/kW 0.0008377 and an efficiency of 86.11%. We can 
observe that the SSA performed very well compared with 
other approaches. 

 
Figure 7 Optimum configuration of wind form by SSA for 

case 2 
Finally, the achieved results validated the validity and 

reliability of the suggested SSA in optimally configuring 
turbines in a WF for both cases. The suggested approach gave 
the most reliable solution compared to other approaches. 

We applied the suggested approach SSA for case 2, and 
better solutions were obtained and compared with the 
previously reported techniques in Table 6. The optimal 
arrangement of WFs obtained by SSA compared with GA [3], 
GA [4], BPSO-TVAC [22], and RSA [8]. The SSA obtained 
better solutions for the same objective function. The 
convergence curve of the objective function is shown in figure 
6. SSA has discovered the optimum configuration of wind 
form in figure 7. The suggested approach produced 32139.36 
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kW annual power generations from 39 turbines with less 
cost/kW 0.0008377 and an efficiency of 86.11%. We can 
observe that the SSA performed very well compared with 
other approaches. 

Finally, the achieved results validated the validity and 
reliability of the suggested SSA in optimally configuring 
turbines in a WF for both cases. The suggested approach gave 
the most reliable solution compared to other approaches. 

5. Conclusions 
The optimal position of wind turbines was determined 

employing the newly developed Sparrow Search Algorithm. 
We selected the objective function to minimize overall 
cost/kW to enhance the optimum position of the wind turbine 
on a wind farm. We considered two cases: the first one is a 
Constant Wind Speed (CWS) with Variable Wind Direction 
(VWD); the second one is a Variable Wind Speed (VWS) with 
Variable Wind Direction (VWD). The optimized 
configurations of wind turbines can be obtained through the 
use of the sparrow search algorithm, this configuration of wind 
turbines can produce high output power, despite their 
efficiency. This study shows that it is the most effective 
algorithm for WF layout optimization and the SSA algorithm 
performs better than most other algorithms WF layout 
optimization. This algorithm significantly improves the 
efficiency of wind turbines. The obtained results by SSA 
compared with those obtained by GA, GA, BPSO-TVAC, and 
RSA. The comparison of the various techniques validated that 
the SSA-based optimum position of WTs on WF was the best 
amongst other techniques like GA, GA, BPSO-TVAC, and 
RSA. 
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