
INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH  
A. El Barakaz and A. El Marjani ,Vol.11, No.2, June, 2021 
 

Water Oscillation Modelling Inside the Oscillating 
Water Column for Wave Energy Conversion 

 

Abdelhamid El Barakaz‡, Abdellatif El Marjani 
EMISys Research Team, Engineering 3S Research Center, Turbomachinery Lab. Mohammadia School of Engineers, 

Mohammed V University in Rabat 

B.P. 765 Agdal, Rabat, Morocco 

E-mail: elbarakaz.abdelhamid@gmail.com, elmarjani@emi.ac.ma 

 

‡ Corresponding Author: Abdelhamid El Barakaz, B.P. 765 Agdal, Rabat, Morocco; tel: +212 613 098 159 

 elbarakaz.abdelhamid@gmail.com 
 

Received: 18.03.2021 Accepted:23.04.2021 

 

Abstract- Among wave energy converters (WECs), the Oscillating Water Column (OWC) system is considered as one of the 
most promising converters; this system works on the principle of water oscillations in an enclosed air chamber due to incident 
sea waves. The amount of the harvested pneumatic power depends on the elevation level, the water oscillations’ frequency 
inside the chamber, and the chamber’s global damping. A one-dimensional (1-D) unsteady model has been elaborated to 
analyze the water elevation’s dynamic behaviour. Great attention has been paid to determine the natural frequency and the 
global damping for maximum wave energy capture. The model is based on a water mass block moving periodically upward 
and downward as a piston inside the chamber, inducing the enclosed air to flow alternately through a turbine. The Lagrangian 
formalism has been adopted to derive the governing differential equation for the piston water motion. Then the poincaré-
Lindstedt method has been used to deal with the non-linearity of the problem. The elaborated model has been adapted to an 
OWC system in the case of monochromatic waves. Results have been compared to another referenced paper for validation and 
pertinence, fair agreements have been noted. 

Keywords: Wave energy; OWC; Piston model; Lagrange Principle; Poincaré-Lindstedt Method; Resonance; Wells turbine.  

 

Nomenclature: 

A Chamber length 

B Chamber width 

C Turbine damping coefficient 

d Chamber submerged length 

Depth Chamber sea depth 

F External force 

g Local gravity acceleration 

𝐻" Elevation of sea waves 

𝐻#$%& Sea waves maximum elevation 

H Piston elevation 

𝐻$%& Piston maximum elevation 

h Water elevation inside the chamber 

ℎ$%& Water maximum elevation inside the chamber 

ℎ̇ Water velocity inside the chamber 
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ℎ̈ Water acceleration inside the chamber 

L Height of the chamber 

L* Lagrangian 

M Mass of water inside the chamber 

P Air pressure inside the chamber 

P0 Atmospheric pressure 

Q Airflow rate  

S Chamber base area 

T Wave period 

T* Kinetic energy 

V* Potential energy 

xi Poincaré-Lindstedt functions 

n Wave velocity 

γ OWC global damping coefficient 

𝜖	,𝜑 Parameters of the Poincaré–Lindstedt method 

𝜆 Wavelength 

𝜇 Energy loss coefficient 

ρe Seawater density 

Ω Incoming waves frequency 

w0 Natural fundamental frequency  

w1 Natural first frequency 

1. Introduction  

Nowadays, renewable energy has gained significant 
interest due to the growing concerns about the climate change 
challenge. Some countries made massive efforts for more 
renewable energy integration, particularly for solar and wind 
energy:  

On the one hand, solar power may be the hope of 
tomorrow’s energy revolution; sunlight that reaches the earth’s 
surface is the most abundant energy resources on our planet. 
One hour of received solar power can satisfy the human 
requirement of an entire year. It can be exploited directly 
using photovoltaics (PV): Monocrystalline, polycrystalline 
and microcrystalline silicon are commonly used as 
semiconductors in photovoltaic systems. [1] [2], there is also 
oriented research projects to the dye-sensitized solar cells 
(DSSCs), which have encouraging results for next-generation 
solar cells due to their relatively low cost and good efficiency 
[3] [4] [5]. Sunlight can also be exploited indirectly using 
concentrated solar power (CSP). In this case, plants engage 
collectors (aligned mirrors or lenses) to converge sunlight 
from a wide surface into a small one; increasing the light’s 
intensity helps produce high temperatures between 800°C and 
2,000 °C. This heat operates a boiler, which in turn generates 

steam for a steam turbine. many industrialized countries are 
investing in CSP technology because of its capacity for bulk 
electricity generation. [6] 

On the other hand, Wind energy has always been 
convenient, efficient for daily needs; it is usually harvested 
using wind turbines; each turbine has a unique technical 
identity in terms of the used design. Since 1980, advances in 
aerodynamics and structural dynamics contributed to a 5% 
annual increase in the energy efficiency of wind turbines. 
Today we find some installed wind turbine that can reach up 
to 3 MW due to their advanced design and massive wind 
kinetic energy capture capacity. Offshore has better potential 
since wind speed at sea is 70 to 100% higher and much more 
constant. [7] [8] 

Besides solar and wind energy, ocean energy has started to 
gain interest since the 70s. This energy is a high-quality source 
of renewable energy that presents enormous potential for 
exploitation. This energy category includes ocean tidal energy, 
wave energy, energy from marine currents, thermal gradient, 
and salinity gradient. Various solutions have been considered 
to exploit this kind of energy, such as power buoy, wave 
dragon, oscillating water column (OWC), Pelamis, reversed 
electrodialysis (RED), pressure-retarded osmosis (PRO) …[9] 
[10] [11] [12]. 

Wave energy, which derives from solar energy and 
presents a form of high-density energy storage, is a relatively 
perpetual and highly predictable category of energy. Indeed, 
solar power density average on earth is about 100W/m2, which 
can be eventually transformed into a wave power 
concentration of over 60kW/m  [13]; this represents a 
significant potential for wave energy harvesting, especially in 
some world regions, as shown indicatively in Figure 1. 

 
Figure 1: World wave power estimation in kW/m 

Ocean waves are formed due to the imbalance between 
gravitational and wind shear forces. As waves travel from deep 
to shallower water, a certain amount of energy dissipates. 
Nevertheless, wave power available in the nearshore is enough 
to produce electrical energy, and it depends on wave amplitude 
and frequency [14]. Extracting energy from waves has been 
extensively followed over the last few decades. One of the 
most studied devices for extracting sea waves energy is the 
oscillating water column (OWC). This system consists 
essentially of two elements: a chamber which is generally 
made of concrete, and a turbine generator group that converts 
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wave energy into electricity. This system has two major 
benefits, the first one is its simplicity, and the second one 
concerns the maintenance costs, which are lower than other 
WECs since the Power Take-Off (PTO) system is not in direct 
contact with seawater. 

As shown in Figure 2, any OWC system consists of a 
submerged air chamber in the sea connected to the atmosphere 
through a circular duct where an air turbine is installed. The 
oscillatory water movement inside the chamber generates 
inhalation and exhalation, which induces a bidirectional flow 
through the turbine. Despite airflow direction changes, the 
turbine’s rotational movement should be in the same direction. 
Turbines like Wells, radial, or axial impulse and other types 
match these specific conditions  [15] [16]. This process is 
responsible for converting the chamber pneumatic energy into 
a mechanical one then into electricity via a generator, 
providing the necessary power for daily uses. 

 
Figure 2: OWC working principle  

The OWC concept idea is not new. In 1910, the French 
Bochaux-Praceique started developing one of the first 
applications using wave energy for electricity home supply at 
Royan (France) and used a pneumatic system to create the first 
oscillating water column [17], as shown in  Figure 3 below.  

 
Figure 3: Illustration of Bochaux-Praceique OWC device 

from the magazine Power  [17] 

In 1947, Yoshio Masuda, a Japanese naval commander, 
designed an OWC navigation buoy that used a turbine system 
to generate electricity, recharge the buoy’s batteries 
continuously, and give some autonomy engine  [18]. Since the 
1980s, several types of OWC devices have been developed, 
built, and tested for offshore floating and onshore OWCs; they 
are successful operating devices, especially in some locations, 
as shown in Table 1. 

Table 1: Examples of typical OWC plants in the world. 
 Location Power 

PICO Azores 400 kW 

LIMPET Islay Island 500 kW 

OSPREY Scotland 2 MW 

SAKATA Japan 60 kW 

 
The amount of energy, which could be converted into a 

useful form, depends strongly on the chamber’s flow behaviour 
and the turbine used for pneumatic energy conversion. The 
design of the chamber is also a key for high performances. 
Indeed, analyses always aim to find regimes of high 
amplification of waves inside the chamber for maximum 
energy generation. However, to improve the energetic global 
performances, the viscous flow’s aerodynamic losses should be 
controlled [19]. Also, the OWC system must resist challenging 
environmental conditions with high waves loads under storm 
conditions. 

Several studies of mathematical and numerical analysis of 
the OWC hydrodynamics have been established, including 2D 
and 3D models. Objectives refer to deal with the hydrodynamic 
and the aerodynamic coupling inside the chamber  [20] [21] 
[22] [23] [24] [25], besides the improvement of the turbine 
performances  [26] [27]; in this context, attempts aimed to 
describe the dynamics of water surface behaviour inside the 
chamber. The purpose is to maximize the power recuperation 
from waves by exploiting the resonance phenomenon 
depending on the global damping and the natural frequency of 
the OWC system. In order to achieve this objective, a simple 
one-dimensional piston model has been elaborated in the 
present work to investigate the water elevation dynamic 
behaviour and its impact on the OWC global performances. 

2. Modelling and Lagrangian Formalism: 

2.1. Modelling Description and Assumptions: 

All general assumptions made in the modelling approach 
are described as follows: 

Ø The chamber free water surface is assumed to behave 
as a piston able to move only in the vertical direction. 

Ø The air density variation inside the chamber is 
neglected; the air is considered incompressible because of its 
low velocity in the operating conditions (Mach number < 0.3) 
[28]. 
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Ø The hydraulic energy losses via the viscosity of fluids 
and frictions are neglected. 

Ø The pneumatic energy losses in the duct and the air 
turbine are neglected. 

Ø The incoming sea waves are monochromatic. 
Reflected, diffracting, and radiation flows are not considered 
for the studied piston model.  

Ø The pressure inside the chamber depends only on 
turbine characteristics (turbine equation).  

Ø The origin of wave elevation (H=0) coincides with 
the equilibrium sea level. 

Ø Z-axis is pointing upward in the vertical direction. 
Ø The cross-section S of the chamber is constant. 
Ø The OWC system is operating in deep water (h<< 

Depth). 

In this study, it is considered that the water surface inside 
the chamber oscillates with an amplitude ℎ$%& and a 
frequency ω under the influence of the incoming waves 
characterized by their amplitude 𝐻$%& and frequency Ω. The 
chamber has zero thickness, area S, height L, width B, length d 
for the submerged portion, and a water depth Depth under the 
chamber. Air pressure inside and outside the chamber are 
respectively P and P0 (atmospheric pressure). A pressure 
difference DP=P-P0 occurs only in the duct where a Wells 
turbine is installed. These operating parameters and conditions 
are depicted in Figure 4. 

 
Figure 4:  Geometry and characteristics of the chamber 

 

2.2. The Piston Model:  

Sea waves are described by their temporal-spatial 
variations; each point of the sea surface is defined by its 
coordinates (x,y) and has its elevation h in an instant t    ℎ →
𝑓1⃗(𝑥, 𝑦, 𝑡)	.	The objective of this part is to simplify the study 

and find an equivalent model with the same effect on the 
chamber aerodynamics that generates the same airflow; this 
can be done by adopting the piston model in which all points 
of water surface elevation inside the chamber have the same 
value h(t). 

 The simplest mathematical way to describe ocean wave 
propagation is Airy’s theory, which is often called the linear 
wave theory. This theory is based on the assumptions 
formulated by Airy (1845) and describes the propagation of 
waves in the sea. One of the basics of Airy’s assumptions is the 
existence of velocity potential that satisfies Laplace’s equation 
in deep water (h<< Depth)  [29] 

 According to this theory, the surface elevation of waves is 
described by a sinusoidal curve; it is a function of the 
horizontal position x and time t. Due to the symmetry of the 
incident wave, it is invariant in the y-direction. The surface 
elevation 𝐻#(𝑥, 𝑡)	depicted in Figure 5 is expressed as follows:  

 𝐻#(𝑥, 𝑡) = 𝐻#$%&𝑠𝑖𝑛	(2𝜋(𝑥 − 𝑣𝑡)/𝜆) (1) 
Or:	

 𝐻#(𝑥, 𝑡) = 𝐻#$%&𝑠𝑖𝑛	(2𝜋𝑥/𝜆 − 2𝜋𝑡/𝑇) (2) 

 
Figure 5: Illustration of the time-space variation of sea waves 

The following equation associates 𝜆 and	𝑇 and usually 
called the “dispersion equation” [30] [25]: 

 
(2𝜋/𝑇)² = (2𝜋𝑔/𝜆)𝑡𝑎𝑛ℎ	(2𝜋𝐷HIJK/𝜆) (3) 

Water oscillations inside the chamber, in the present 
model, are presented with a mass block acting as a piston for 
which the vertical elevation H(t) has been assigned at the 
averaged wave elevation of 𝐻#(𝑡, 𝑥) over chamber width B, the 
average method aims to eliminate the spacial variation of the 
wave in the 𝑥 direction and come up with a wave function 
with the same effect on the airflow inside the chamber, as 
shown in Figure 6. In this part, the geometrical effect has been 
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considered to determine the wave’s average inside the 
chamber. 

 
Figure 6: Water piston modelling 

The vertical piston elevation H(t) is given by: 

 𝐻(𝑡) =
1
𝐵
N 𝐻#(𝑡, 𝑥)𝑑𝑥
P

Q
 (4) 

   
Hence:   

 𝐻(𝑡) = 𝐻#$%&
𝑠𝑖𝑛(𝜋𝐵/𝜆)
𝜋𝐵/𝜆 𝑠𝑖𝑛(𝜋𝐵/𝜆 − 2𝜋𝑡/𝑇)

= 𝐻$%& 𝑠𝑖𝑛(𝜋𝐵/𝜆 − 2𝜋𝑡/𝑇) 
(5) 

Where:	

 𝐻$%& = 𝐻#$%&
𝑠𝑖𝑛(𝜋𝐵/𝜆)
𝜋𝐵/𝜆  (6) 

It can be perceived from equation (6) that the amplitude of 
the piston oscillations 𝐻$%& depends on the wavelength 𝜆 and 
the chamber width B. The variation of these parameters is 
represented in the graph of Figure 7.	  

 
Figure 7:  Piston to wave amplitude ratio variation with B/𝛌 

In the graph depicted in Figure 7, if the width B is a 
multiplier of	𝜆 waves the piston elevation is nullified even 
with the presence of incident waves: waves do not generate 
any airflow inside the chamber. However, it can be observed 
that in the region where the ratio B/l is low, this effect can be 
neglected. In fact, in the operating conditions, wavelength 
determined from the dispersion relation in equation (3) is 
usually higher than 100m; the typical width B is generally 

taken around 10m in most OWC realizations [31]. Hence, the 
ratio B/l is practically about 1/10, which corresponds 
according to Figure 7 to a ratio 𝐻$%&/𝐻#$%& of 97%.  

One of the factors to design the OWC chamber is the 
wavelength of incoming waves, which depends on sea depth. 
This is one reason to explain why larger scale OWCs are 
deployed in deep water, unlike small OWCs projects deployed 
in shallow water  [32]. 

2.3. Lagrange Method: 

The OWC system is physically studied by considering a 
vertical oscillating water piston as a block of water mass M 
under the influence of upper air pressure force F1, the lower 
water pressure force F2, and the water piston own weight, as 
shown in Figure 8. 

 
Figure 8: Oscillating water piston model 

The expression of piston mass M is related to water 
elevation inside the chamber as given in equation (7): 

 𝑀(𝑡) = 𝜌H	𝑆	(ℎ(𝑡) + 𝑑) (7) 
The expression of F1 depends on the turbine type. Wells or 

impulse turbines are the most popular in practical applications  
[33]. The relation between the pressure drop ∆𝑃 and the flow 
rate 𝑄 inside an air turbine is described as ∆𝑃 = 𝐶𝑄[   [34] 
where C is the damping coefficient related to the used turbine 
and n is equal to 1 and 2 in Wells and impulse turbine, 
respectively. 

 In our case, a linear relation of Wells turbine was 
considered to simplify the mathematical resolution, where the 
damping equation can be expressed as: 

 ∆	𝑃 = 𝐶𝑄 (8) 
Both fluids, water and air, are incompressible in the OWC 

conditions. The flow rate inside the chamber is expressed as 
follows: 

 	𝑄 = 𝑆	ℎ̇ (9) 
𝐹]	is related directly to the applied air pressure: 

 𝐹]	 = 𝑆	𝑃Q + 𝐶	𝑆²	ℎ̇ (10) 
The applied force by water pressure F2 depends on sea 

level: 
 𝐹 = 𝑆	(	𝑃Q + 𝑔	𝜌H(𝐻(𝑡) + 𝑑)) (11) 

The previous expressions of M, 𝐹] and 𝐹 	has been used in 
Lagrange formulation in the mathematical model to establish 
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the differential equation governing the piston motion as 
detailed in Appendix A [35].  

Finally, the differential equation of water elevation inside 
the chamber can be expressed as follows  [36] [37] [38]: 

 

ℎ̈ + 𝛾	ℎ̇ + 𝜔Q^	ℎabbbbcbbbbd
ef[H%g	

+
1
𝑑 [ℎ	ℎ̈ +

1
2 ℎ̇

^]abbbcbbbd
[j[	ef[H%g

=
𝑔
𝑑 𝐻

(𝑡) 

With : k
									𝜔Q = l𝑔/𝑑				
𝛾 = 𝐶	𝑆

𝜌H	𝑑m
 

(12) 

The differential equation (12) can be otherwise 
demonstrated with a second method by considering the Euler 
equation inside a U tube with conditions similar to the OWC 
chamber oscillations (see Appendix B). 

At first glance, this differential equation can be separated 
into a linear part, similar to a second-order oscillator 
responsible for wave oscillations inside the chamber, and a 
nonlinear part that perturbs the motion regularity of waves.  

3. Poincaré–Lindstedt Method:   

The previous differential equation (12) is analytically 
solved using Henri Poincaré and Anders Lindstedt’s method; 
it is based on removing unbounded secular terms, especially in 
weakly nonlinear problems [39]. This method is generally 
used to approximate the periodic solutions of ordinary 
differential equations with nonlinear terms. 

In our study, two cases have been analyzed for the 
homogeneous and non-homogeneous equations. 

3.1. The Homogeneous Differential Equation	𝐻(𝑡) = 0: 

 In this section, equation (12) is considered without the 
exciter term. The OWC system is perturbed by raising the 
water level inside the chamber h to maximum level hmax. As a 
consequence, it will oscillate according to the natural 
frequency of the OWC device. This description corresponds to 
the following initial conditions: 

 o
			ℎ(0) = ℎ$%&
ℎ̇(0) = 0

 (13) 

3.1.1. Case 1: The Harmonic Oscillations (𝛾 = 0) 

After calculation detailed in Appendix C using Poincaré–
Lindstedt method, the solution h(t) can be written as: 
ℎ(𝑡) = ℎ$%& 𝑐𝑜𝑠(𝜔Q𝑡) + ℎ$%&

^(1 − 𝑐𝑜𝑠^(𝜔Q𝑡))/2𝑑 (14) 
The solution of the differential equation has been plotted in 

Figure 9. It is almost a sinusoidal motion. The analytical 
solution h(t) is the sum of the linear solution term 𝑥Q(𝜑) and 
the additionnal nonlinear term	𝜖𝑥](𝜑)	(see Appendix C) It can 
be observed that the motion is nearly similar to the movement 
of a classical second-order oscillator system. 

 
Figure 9: Piston motion: (1) Poincaré–Lindstedt solution h(t), (2) 

linear solution 𝒙𝟎(𝝋), (3) nonlinear solution  𝝐𝒙𝟏(𝝋)  

As shown in the previous graph, the nonlinear term affects 
only the shape of h(t) graph concerning the time-axis  [40], 
while the natural frequency remains the same. However, in the 
case of low wave elevation comparing to the submerged length 
d, the coefficient	𝜖	would be very small, so the linear curve is 
approximately matching the Poincaré–Lindstedt solution. In 
this case, the linear model is a sufficient approximation for the 
water piston motion. 

By applying the same method and using an analogy with 
the calculation presented in Appendix C, we can conclude the 
results for the other cases: under-damping, over-damping, and 
critical damping case  [41]. 

3.1.2. Case 2: The Under-damping: ( 𝛾 < 2𝜔Q^) 

For the under-damped system, it can be noticed that the 
solution is a sinusoidal motion that slowly decreases in 
magnitude until it equals zero ( Figure 10). After the first two 
periods, the damping phenomenon dominates the non-linearity 
effect. 

 
Figure 10: Under-damping case: (1) Poincaré–Lindstedt solution 

h(t), (2) linear solution 𝒙𝟎(𝝋), (3) nonlinear solution 𝝐𝒙𝟏(𝝋) 

3.1.3. Case 3: The Over-damping and Critical damping:( 𝛾 ≥

2𝜔Q^) 

For the over-damped (𝛾 > 2𝜔Q^)	and Critical damped 
systems	(𝛾 = 2𝜔Q^), as shown in Figure 11, we notice the 
absence of oscillations; the solution is an exponential decay 
over time. Due to the high value of the damping, the non-
linearity is dominated by the damping phenomenon. The 
critically damped motion has the same shape as the over-
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damped one but has the property to converge to the origin 
rapidly. 

Figure 11: Overdamping and the critical damping case: (1) 
Poincaré–Lindstedt solution h(t), (2) linear solution 𝑥Q(𝜑), (3) 

nonlinear solution 𝜖𝑥](𝜑) 

3.1.4. The Non-homogenous Differential Equation             
		𝐻(𝑡) = 𝐻$%&𝑐𝑜𝑠(Ω𝑡) ≠ 0: 

In this section, the differential equation (12) is considered 
with a sinusoidal term on the right-hand side, which expresses 
the motion of the incoming wave 	𝐻(𝑡) = 𝐻𝑐𝑜𝑠(Ω𝑡)  [42]. 
Hence, in this case, the piston elevation motion inside the 
chamber is driven by the incident sea waves.  

 ℎ̈ + 𝛾ℎ̇ + 𝜔Q²ℎ + 𝜖 |ℎℎ̈ +
1
2 ℎ̇

^}
= (𝑔/𝑑)H���𝑐𝑜𝑠(Ω𝑡) 

(15) 

To realize a study with realistic parameters, we have 
considered the following chamber dimensions in Figure 12 
operating with Wells turbine:  

 
Figure 12: OWC geometry used in reference [43] 

In general, variables taken into account for such an energy 
converter are the geometry, the flow rate, the pressure drop, the 
rotational speed, the diameter of the turbine, and the fluid 
density, which has been regarded in assumptions as a constant 
for simplification. The resulting pneumatic power can be 
calculated by multiplying the flow rate and the pressure drop. 
In this section, the incident wave has a period of 9s and an 
elevation amplitude of 1m, water depth near and under the 
chamber is equal to 10m, the relation of dispersion presented 
in Equation (3)  gives a wavelength of about 81m, which 

means an equivalent piston elevation amplitude of 0,96m. The 
airflow inside the chamber is imposed by the free water 
surface, taking into account the rotational speed of Wells 
turbine approximately 100rad/s with a diameter of 1.5m, 
which corresponds to a turbine damping coefficient 
117.1Pa.m-3.s.  [43]. Additional Parameters are in Table 2: 

Table 2: Simulation parameters 
g = 9.81m/s² 
ρe = 1000 Kg/m3 
H(t) = Hmax.cos(Ωt) 
Hmax =0.96 m 
Ω= 0.7 rad/s  (period of 9 sec) 
Depth=10m 

A=10m 
B=10m 
S=100m² 
d = 2.5 m 
C = 117.1 Pa.s/m3 

 
Those parameters are the same used by F. R. Torres et al.  

[43]. Indeed, they developed a numerical analysis of the OWC 
using the Fluinco model based on a slightly compressible flow 
method to solve the Navier–Stokes equations. A comparison 
has been established to reveal the pertinence of the final results. 
The numerical values of the global damping and the natural 
frequency of the OWC system are given based on Equation 
(12) as follows: 

 o 𝛾 = 4.68	𝑠�]
𝜔Q = 1.98rad/s	 (16) 

3.2. Poincaré–Lindstedt First Order Method: 

After tremendous and heavy calculations, the Poincaré–
Lindstedt first-order method has been applied by limiting the 
solution decomposition to the usual terms x0 and x1, as 
mentioned in Appendix C. The resulting solutions are depicted 
in Figure 13.   

 
Figure 13: analytical solutions: (1) Poincaré–Lindstedt solution 

h(t), (2) the linear solution 𝒙𝟎(𝝋), (3) the incident wave motion H(t)) 

The analytical and linear solutions shown respectively by 
curves 1 and 2 in Figure 13 are almost identical. The non-
linearity has no significant effect on the appearance of the 
graph solution. This fact remains valid as long as the incoming 
waves’ magnitude is small compared to the length of the 
submerged portion of the chamber d (see Appendix C 
calculation). In this case, the ratio 𝐻$%& 𝑑⁄  is equal to 38.4% 
and we found a good matching between the first-order 
Poincaré–Lindstedt solution and the linear solution.  
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3.3. Simulink 

A state-space description is needed to simulate OWC 
behaviour in Simulink software with Table 2 parameters. It is a 
mathematical representation of the OWC system with inputs, 
outputs, and state variables related to each other by first-order 
differentiation. Equation (15) can be written as a system of 
three equations to build the state-space model with H(t) as the 
input and h(t) as the output. The system (17) can be illustrated 
through the state-space model in Figure 14. 

 

⎩
⎪
⎨

⎪
⎧ℎ̈ = �𝑔 𝑑m �𝐻𝑐𝑜𝑠(Ω𝑡) − 𝛾ℎ̇ − 𝜔Q^ℎ − 𝜖�ℎℎ̈ + 1 2m ℎ̇^�

ℎ̇ = N ℎ̈

ℎ = N ℎ̇

 (17) 

 
Figure 14: State-space model of the OWC  

The state-space model has been rebuilt in Simulink with 
input signal 𝐻𝑐𝑜𝑠(Ω𝑡) and output h, both are plotted through a 
scope block attached, as shown in Figure 15. 

 
Figure 15: State-space of the OWC on Simulink software  

The comparison of the obtained solution, respectively, 
with Simulink software Figure 16–a, and Poincaré–Lindstedt 
method Figure 16-b, shows that solutions are very similar. The 
adopted solving methods are compatible with each other. 

 
Figure 16: Solutions comparison: Simulink software (a), 

Poincaré–Lindstedt method (b)  

In Figure 17, an FFT analysis (Fast Fourier Transform) has 
been established for Simulink’s result to determine the effect 
of the non-linearity of the differential equation terms, 
particularly on the solution modes: the fundamental mode is 
the most dominant one, other modes are missing in this case. 

 
Figure 17: Positive FFT of the analytical solution h(t) 

3.4. Results Validation: 

The obtained previous results are now compared to those 
of F. R. Torres model results and plotted in the same interval 
(125s to 180s), as shown in Figure 18. 
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Figure 18: Comparison of solutions: Poincaré–Lindstedt 

method (a), F. R. Torres et al. (b) 

Results obtained with the Poincaré–Lindstedt first-order 
method and F. R. Torres simulation are very similar. The 
highest level ℎ$%& reached by water in Poincaré–Lindstedt 
method is 0.78m. In F.R. Torres reference used for comparison 
ℎ$%&is equal to 0.75m. It can be observed that both graphs 
show insignificant differences taking into account that the 
respective solutions are obtained from two different resolution 
methods for the same OWC parameters and dimensions. 

Another comparison can be established by calculating the 
duct pressure drop. In our case, we used the Wells turbine 
linear law: 

 ∆𝑃 = 𝐶𝑄 = 𝐶𝑆ℎ̇ (18) 
The pressure drop graphs are shown in Figure 19-a and 

Figure 19-b for both models and for the same time-domain 
(125s -180s): 

 
Figure 19: Analytical pressure drop through the turbine (a)  

Pressure drop in the turbine by F. R. Torres et al. (b) 

The graphs obtained are almost the same. The maximum 
variation ∆P��� is equal to 3.5 kPa in the present model versus 
the estimated value of 3.8kPa in the model developed by F. R. 
Torres et al. It can be observed that the pressure variations are 
minor. Hence, air density inside the chamber may be 
considered constant during inhalation and exhalation, which 
confirms the assumption that air is an incompressible fluid in 
the operating conditions at the beginning. 

With the assumptions of incompressible fluid and zero 
energy loss, the relation between the pneumatic power 
exploited by Wells turbine and water elevation inside the 
chamber can be expressed as follows:  

 𝑃I[H�$%Jf� = ∆𝑃. 𝑄 = 𝐶.𝑄^ = 𝐶. 𝑆². ℎ̇	² (19) 
The generated pneumatic power is directly related to the 

OWC chamber surface S, the damping coefficient of Wells 
turbine C, and the vertical velocity of the piston inside the 
chamber ℎ̇ which is directly affected by 𝜔Q  and 𝛾  [42] 

 
 

Figure 20: The OWC pneumatic power variation 
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As depicted in Figure 20, the power RMS value is designed 
with the dashed line indicating a power around 226kW. The 
optimal output turbine power value mentioned by F. R. Torres 
is 39.4 kW; for the model used, we neglected all sorts of 
energy losses (wall frictions, water viscosity, air viscosity…)  
[44]. For an efficiency of 17.5%, the results obtained for the 
pneumatic power seems logical. For better efficiency, it is 
always recommended to operate in the resonance domain, this 
is established when the damping 𝛾 is small and the incoming 
waves frequency matches with the natural frequency of the 
chamber	(Ω ≈ 𝜔Q) . 

The expressions of the natural frequency and the global 
damping of the OWC device, as mentioned in a previous 
equation, are:  

 
⎩
⎨

⎧𝜔Q = �
𝑔
𝑑

𝛾 =
𝐶	𝑆
𝜌H	𝑑

 (20) 

The resonance conditions, if established, allow acquiring 
the maximum pneumatic power by having ℎ at extreme values. 
From equation (19), the power can be expressed in the 
resonance domain as follows:  

 𝑃I[H�$%Jf� = 𝐶𝑆²ℎ̇	² = 𝐶𝑆²Ω^ℎ	² (21) 
For the studied geometry, it can be noticed that the natural 

frequency 𝜔Q  can be controlled only by fixing d, which is 
physically limited by the available sea depth  Depth. This leads 
to consider another geometrical shape or assumptions such as 
for chambers with parabolic or inclined sidewalls that provide 
additional geometrical parameters to control the natural 
frequency 𝜔Q   [45]  [37] [46]   

By examining the global damping	𝛾, it depends on the 
depth d, the Wells turbine damping C, and the base area 
surface S. As mentioned before, the global damping coefficient 
must be as low as possible to exploit the resonance 
phenomenon according to Figure 22. From the damping 
equation in the system (20), this can be applied only by taking 
the product C.S as low as possible since d  has been already 
fixed to obtain Ω ≈ 𝜔Q  (first condition of the resonance). 
However, this may affect the pneumatic power captured 
according to equation (21); a compromise should be 
established to ensure that the pneumatic power reaches its 
maximum in a region close to the resonance domain.  

4. The Second Order Oscillator and Mechanical Analogy: 

By adopting an analogy with mechanical systems, the linear 
part of the OWC differential equation is similar to the second-
order mechanical oscillator one. This oscillator is made up 
mainly of spring with stiffness k, a damper with damping b, 
and a mass m excited by a force F(t) presented in Figure 21; 
mass motion satisfies the following differential equation: 

 𝑚
𝑑^𝑦
𝑑𝑡^ + 𝑏

𝑑𝑦
𝑑𝑡 + 𝑘𝑦 = 𝐹(𝑡) (22) 

 

 
Figure 21: Simple mechanical oscillator 

m, k, and b are the critical parameters of any mechanical 
oscillator. They determine the natural frequency and the 
damping given by [41]: 

 			𝜔Q^ = 	𝑘 𝑚m 							 ; 				𝛾 = 𝑏 𝑚m 	 (23) 

At a low elevation of h, the variation of water mass inside 
the chamber can be neglected, and the total mass M is 
approximately equal to	𝜌H𝑆	𝑑. Table 3 shows the parameters 
equivalence between the OWC system and mechanical 
oscillators.    

Table 3: Analogy between the mechanical oscillator and the 
OWC system 

 Mechanical 
oscillator 

OWC (with low 
variation of h) Unit 

Mass m M=𝜌H	𝑆	𝑑 kg 

Stiffness k 𝑔	𝜌H	𝑆 N/m 

Damping b 𝐶	𝑆^ N.s/m 

 
Studying the usual equation without considering the 

nonlinear term provides a good indication of the resonance 
regime, as shown in Figure 22, especially for low variation of 
h. This mechanical analogy helps to understand the behaviour 
of the water piston motion inside the OWC chamber. 

 
Figure 22: Dynamic system resonance 

Thereafter, only the linear part of the wave differential 
equation is considered to establish an analogy with the Second-
order oscillator systems and find an approached formulation. 
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 We know that the expression of the differential equation of 
a second-order oscillator is:  

 𝑑^𝑦(𝑡)
𝑑𝑡^ +

𝑏
𝑚
𝑑𝑦(𝑡)
𝑑𝑡 +

𝑘
𝑚𝑦(𝑡) =

𝐹(𝑡)
𝑚  (24) 

If an external force drives a damped oscillator, the motion 
equation solution has two parts: a transient and steady-state 
part. As we are interested only in the surface elevation inside 
the chamber after many periods, only the steady-state remains 
for the rest of our study, the expression in equation (25) 
describes the motion equation:  

 𝑦�JH%��(𝑡) = 𝐴	cos	(Ω𝑡 − 𝜑) (25) 
While: A is the displacement amplitude and 𝜑 is the 

angular dephasing  [41]: 
𝐴 = £/�

l(Ω²�¤¥²)¦§¨²Ω²/$²
    ;    tan	(𝜑) = 	 ¨Ω

«�$Ω¦
 (26) 

By applying the analogy of Table 3, water piston 
amplitude inside the chamber and the angular dephasing of its 
motion can be expressed as follows : 

ℎ$%& =
𝜔Q^	𝐻$%&

l(Ω^ − 𝜔Q^)^ + 𝛾^Ω^
		 ;	 tan(𝜑) =

𝛾Ω
Ω^ − 𝜔Q^

 (27) 

Substituting the expressions with the numerical values 
for the F.R. Torres model leads to a maximum elevation of the 
piston inside the chamber ℎ$%& equal to 0.801𝑚 and an 
angular dephasing 𝜑 between the incident wave and the piston 
elevation equal to 0.76𝑟𝑎𝑑,  which correspond to a time delay 
between the incident wave peak and the chamber wave 
elevation peak of 1.08𝑠𝑒𝑐. In conclusion: the numerical 
results of the simplified analogy expressions confirm graphs 
obtained in the simulation part. 

The expression of piston elevation leads to deduce the 
expression of the airflow through the turbine, the pressure 
drop, and the pneumatic power in the case of the linear 
simplification assumption. The following equations (28), (29), 
and (30) show the expressions of these temporal variables: 

 
𝑞(𝑡) = −SΩ	

𝜔Q^𝐻$%&
l(𝜔Q^ − Ω^)^ + 𝛾^Ω^

	sin	(Ωt

+ 𝜙)							 
(28) 

 

 

∆𝑃(𝑡) = −CSΩ
𝜔Q^	𝐻$%&

l(𝜔Q^ − Ω^)^ + 𝛾^Ω^
	sin	(Ωt

+ 𝜙)							 
 

(29) 

 
𝑃I[H�$%Jf�(t)

= 𝐶S^Ω^
𝜔Q´		𝐻$%&^

(𝜔Q^ − Ω^)^ + 𝛾^Ω^
cos²	(Ωt + 𝜙) 

(30) 

As for the RMS expression of the pneumatic power:  

 𝑃I[H�$%Jµ�¶¶¶¶¶¶¶¶¶¶¶¶¶ = ·3
8𝐶S

^Ω^
𝜔Q´		𝐻$%&^

(𝜔Q^ − Ω^)^ + 𝛾^Ω^
 (31) 

The calculated value of the pneumatic power RMS that 
depends on F. R. Torres parameters choice is equal to 226𝑘𝑊,  
which confirms graph results in Figure 20. In the resonance 
domain where 		Ω ≈ 𝜔Q  the theoretical output of the OWC 
device is maximal, and its RMS can be expressed as follows: 

 
𝑃gH�j[%[�H	¶¶¶¶¶¶¶¶¶¶¶¶¶ = ·3

8𝐶S
^ 𝜔Q

´		𝐻$%&^

𝛾^  

															= ·3
8
(𝑔	𝐻$%&𝜌H)^

𝐶  

(32) 

 
The pneumatic power RMS value in the resonance 

domain for F. R. Torres chamber parameters is 503kW; this 
value is the maximal amount of energy that can be 
theoretically harvested by this air chamber coupled with the 
chosen turbine from an incident wave of 1m and a period of 9 
sec. 

In practical cases, the pneumatic power expression can 
be improved by adding a coefficient responsible for friction 
and viscosity energy loss 	𝜇  [47]. This coefficient is always 
less than 1 and equal to 1 only when the viscosity and friction 
are neglected, as we did in the current model. Considering this 
condition, Equation (31) becomes:  

 𝑃I[H�$%Jµ�¶¶¶¶¶¶¶¶¶¶¶¶¶ = ·3
8𝜇

𝐶(𝑔	𝐻$%&)^

( �
½Ω
)^(𝜔Q^ − Ω^)^ + (𝐶	 𝜌H	m )^

 (33) 

Equation (33) describes the essential components 
affecting the generated pneumatic power: 

Ø The incident wave with its amplitude 𝐻$%&	and 
frequency	Ω. 

Ø The chamber design: especially the cross-
section area S and the length of the submerged 
part d 

Ø The choice of Wells turbine: the damping 
coefficient C. 

Ø The quality of the process: energy loss via 
frictions and viscosity (coefficient 𝜇) 

It is interesting to see the influence of parameters that we 
can handle during the design: C for the Wells turbine choice, S 
and d for the chamber design. All OWC parameters are 
involved simultaneously; however, it is possible to fix two 
parameters and see the third one’s influence to obtain a 
desired effective pneumatic power. The following equations 
(34), (35), and (36) reveal the expression of each parameter 
under these conditions. 

S	
= d(𝜔Q^ − Ω^)

/[Ω¾¿·
3
8𝜇

𝐶(𝑔	𝐻$%&)^

𝑃I[H�$%Jµ�¶¶¶¶¶¶¶¶¶¶¶¶¶ − À𝐶	 𝜌H	m Á
^
Â] 

(34) 

𝐶 = 𝑠𝑜𝑙	{	C^ − [·
3
8𝜇

(𝜌H𝑔	𝐻$%&)^

𝑃I[H�$%Jµ�¶¶¶¶¶¶¶¶¶¶¶¶¶ ]𝐶	

+ (
𝑑𝜌H
Ω𝑆 )

^(𝜔Q^ − Ω^)^ = 0} 

(35) 

𝑑 = 	𝑠𝑜𝑙	{𝑑^ −
2𝑔
Ω^ 𝑑 + [�

𝑔
Ω²�

^
+ �𝐶𝑆	 Ω𝜌H	m �

^

− ·
3
8𝜇

Æ
𝑆
Ω
Ç
^ 𝐶(𝑔	𝐻$%&)^

𝑃I[H�$%Jµ�¶¶¶¶¶¶¶¶¶¶¶¶¶ ] = 0} 
(36) 
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It is evident that the three equations do not always have a 
physical solution. There is some limitation on the pneumatic 
power that can be extracted. 

 For the chamber design and according to equations (34) 
and (36), regardless of the surface S and the length d choice, 
the pneumatic power cannot exceed a certain amount (the 
resonance condition): 

 ·3
8𝜇

(𝜌H𝑔	𝐻$%&)^

𝐶 ≥ 𝑃I[H�$%Jµ�¶¶¶¶¶¶¶¶¶¶¶¶¶ (37) 

 Furthermore, with Wells turbine choice according to 
equation (35), the effective pneumatic power is also limited: 

 ·3
8𝜇Ω𝑆𝜌H

(𝑔	𝐻$%&)^

2𝑑|𝜔Q^ − Ω^|
≥ 𝑃I[H�$%Jµ�¶¶¶¶¶¶¶¶¶¶¶¶¶ (38) 

 
It is possible to have a combination of the three 

parameters: surface and chamber depth in addition to the 
turbine damping to approach the resonance domain; however, 
there are other ways to improve the OWC generated 
pneumatic power like: 
Ø Building the chamber in coastal structures such as 
breakwaters, seawalls, or jetties not only offers benefits in 
terms of construction costs but also improves wave height 
and energy concentration, especially in V structures [48]. 
Ø Searching regions with high waves amplitude is a 
priority; however, it is approved that area with regular waves 
can be more beneficial to the OWC performances [49] [50] 
Ø The turbine choice is not limited by its damping; 
there are also some characteristics to consider during the 
design step (flow velocity, rotation speed, blade position…). 
Table 4 shows some used prototypes of the Wells turbine 
[51]: 

Table 4: Wells turbine types used for wave energy 
conversion. 

Wells turbine Observations 
Wells turbine with 
guide vanes [52] 

It was adopted for the project 
“Mighty Whale” in Japan 

Wells turbine with 
self-pitch-controlled 
blades 

The turbine blades oscillate 
between two angles according to the 
flow direction, where the turbine has 
active pitch controlled blades 

Biplane Wells turbine 
with guide vanes 

This type is used in Islay, where the 
guide vanes are not necessarily 
adopted. 

Contra-rotating Wells 
turbine 

This turbine is installed in the 
LIMPET system in Islay, U.K.  
which is the world’s first 
commercial wave power station 

 
Ø Also, the design assumptions and the used methods to 
evaluate the OWC performances must not be neglected; in 
the current study, all hypotheses were simplified to construct 
solid arguments to see the implication of OWC parameters 
in its performances, Figure 23 sum up clearly all followed 
steps during this study. Still, there are many ways to 

improve this model, e.g., by considering an OWC with 
inclined sidewalls, variable cross-section or a multi-chamber 
OWC [45] [46] [53]. Nevertheless, this model can be 
regarded as a first tool to size and analyze an OWC device 
for better performance. 

 

 
 

Figure 23: Proposed modelling steps to optimize the OWC 
performances 

5. Conclusion: 

In this paper, the studied OWC used for wave energy 
conversion was illustrated with a one-dimensional model based 
on water mass block moving upward and downward as a 
piston. The Lagrange formalism was applied to establish the 
governing differential equation. Analytical solutions of the first 
order were obtained successfully by applying the Poincaré–
Lindstedt method. A parameter related to the chamber’s 
submerged portion was then identified and used to solve the 
differential equation. The non-linearity effect on the dynamic 
behaviour of the considered system was examined. It was 
found that it has minor influences on the system operation. 
Then results were compared successfully with those obtained 
with Simulink software and by F. R. Torres simulation in the 
same conditions. As a conclusion, the elaborated model reveals 
similarities between the OWC device and any second-order 
mechanical oscillator, which are both characterized by their 
damping and natural frequency. Operating with an incoming 
wave frequency equal to the natural OWC frequency under low 
damping will theoretically amplify water elevation ℎ(𝑡)	inside 
the chamber. This case corresponds to the resonance condition. 
It was found that the natural frequency depends mainly on the 
depth of the submerged portion d, even though a combination 
of the chamber design parameters and the turbine choice must 
be carefully chosen in order to maximize the pneumatic power. 
This work is limited to the case of vertical OWC with a 
constant area and monochromatic sea waves driving the free 
water surface inside the chamber. However, its results and 
methodology may help to comprehend the essence of more 
complex models or even build powerful and efficient ones. 

 

Sea incident waves 
H(t,x,y)

Equivalent piston 
model H(t) 

Lagrange (Euler) 
formulation

Poincaré-Lindstedt 
solution and 
linearisation

Chamber Key 
parameters d,C,S

Wave magnitude , 
dephasing angle, 
natural frequency

Resonance Maximazing piston 
Height h(t)

Maximazing the 
Pneumatic power 

output 
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APPENDICES 

Appendix A: Lagrangian Formulation 

The Lagrangian 𝐿∗ consists of evaluating the difference 
between the kinetic energy T* and the potential energy V* of a 
system: 
 𝐿∗ = 𝑇∗ − 𝑉∗  (A.1) 

The definition of Lagrange’s equation:  

 
𝑑
𝑑𝑡
Æ
𝜕𝑇∗

𝜕ℎ̇
Ç −

𝑑
𝑑𝑡
Æ
𝜕𝑉∗

𝜕ℎ̇
Ç −

𝜕𝑇∗

𝜕ℎ +
𝜕𝑉∗

𝜕ℎ = 𝐹ÍÎ  (A.2) 
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Where:   FNC is the sum of all non-conservative forces. 

The expression of the kinetic energy: 

 𝑇∗ =
1
2
N𝑣If�Jj[^	𝑑𝑀 =

1
2𝜌H𝑆

(ℎ + 𝑑)ℎ̇^ (A.3) 

For terms in which the kinetic energy is involved: 

 
𝑑
𝑑𝑡
Æ
𝜕𝑇∗

𝜕ℎ̇
Ç 		= 𝜌H𝑆(	ℎ̇^ + (ℎ + 𝑑)ℎ̈) (A.4) 

And:	 	
 

𝜕𝑇∗

𝜕ℎ =
1
2𝜌H𝑆ℎ̇

^ (A.5) 

We know that the potential of conservative forces does not 
depend on velocity: 

 
𝑑
𝑑𝑡
Æ
𝜕𝑉∗

𝜕ℎ̇
Ç = 0 (A.6) 

To simplify, we can integrate the potential energy into the 
expression of total applied forces, using the following relation: 
 −

𝜕𝑉∗

𝜕ℎ + 𝐹ÍÎ =Ñ𝐹 = 𝐹 − 𝐹] − 𝑔.𝑀(𝑡) (A.7) 

By substituting equations (A.4), (A.5), (A.6), and (A.7) in 
equation (A.2), we obtain a differential equation for the piston 
motion: 

 ℎ̈ +
𝐶. 𝑆
𝜌H. 𝑑

ℎ̇ +
𝑔
𝑑 ℎ +

1
𝑑 [ℎℎ̈ +

1
2 ℎ̇

^] =
𝑔
𝑑 𝐻

(𝑡) (A.8) 

Appendix B: Euler Formulation 

In order to apply Euler formulation, a U tube model with 

different section S1 and S2 where the water level oscillates as 

described in Figure 24 which is a simplification of  the OWC 

chamber model considered previously in Figure 4:  Geometry 

and characteristics of the chamber Figure 4  

 
Figure 24: the OWC U tube model 

From the definition of Euler equation (equation of the 

momentum): 

 𝐷(𝜌𝑣⃗)
𝐷𝑡 = −𝑔𝑟𝑎𝑑ÒÒÒÒÒÒÒÒÒÒ⃗ 𝑃 + 𝜌𝑔⃗ (B.1) 

While: v is the flow velocity 

With some simplifications, we obtain: 

 
𝜌((

𝜕𝑣⃗
𝜕𝑡 ) + 𝑔𝑟𝑎𝑑

ÒÒÒÒÒÒÒÒÒÒ⃗ Ó
𝑣^

2 Ô − 𝑣⃗⋀𝑟𝑜𝑡
ÒÒÒÒÒÒ⃗ 𝑣⃗)

= −𝑔𝑟𝑎𝑑ÒÒÒÒÒÒÒÒÒÒ⃗ 𝑃 + 𝜌𝑔⃗ 

(B.2) 

 

𝜕𝑣⃗
𝜕𝑡 + 𝑔𝑟𝑎𝑑

ÒÒÒÒÒÒÒÒÒÒ⃗ Ó
𝑣^

2 Ô − 𝑣⃗⋀𝑟𝑜𝑡
ÒÒÒÒÒÒ⃗ 𝑣⃗

= −
𝑔𝑟𝑎𝑑ÒÒÒÒÒÒÒÒÒÒ⃗ 𝑃
𝜌 + 𝑔𝑟𝑎𝑑ÒÒÒÒÒÒÒÒÒÒ⃗ (−𝑔𝑧) 

(B.3) 

 
𝜕𝑣⃗
𝜕𝑡 + 𝑔𝑟𝑎𝑑

ÒÒÒÒÒÒÒÒÒÒ⃗ Ó
𝑣^

2 +
𝑃
𝜌 + 𝑔. 𝑧Ô − 𝑣⃗⋀𝑟𝑜𝑡

ÒÒÒÒÒÒ⃗ 𝑣⃗ = 0 (B.4) 

After a scalar multiplication by the element	dlÒÒÒÒ⃗  parallel to 

the streamlines:  

𝜕𝑣⃗
𝜕𝑡 . 𝑑𝑙

ÒÒÒ⃗ + 𝑔𝑟𝑎𝑑ÒÒÒÒÒÒÒÒÒÒ⃗ Ó
𝑣^

2 +
𝑃
𝜌 + 𝑔. 𝑧Ô𝑑𝑧

ÒÒÒÒ⃗ − 𝑣⃗⋀𝑟𝑜𝑡ÒÒÒÒÒÒ⃗ 𝑣⃗. 𝑑𝑧ÒÒÒÒ⃗ = 0 (B.5) 

Hence: 

𝜕𝑣⃗
𝜕𝑡 . 𝑑𝑙

ÒÒÒ⃗ + 𝑑 Ó
𝑣^

2 +
𝑃
𝜌 + 𝑔𝑧Ô = 0 (B.6) 

Then integration between h and H elevations: 

N
𝜕𝑣⃗
𝜕𝑡 . 𝑑𝑙

ÒÒÒ⃗
Ø

K
+ [

𝑣^

2 +
𝑃
𝜌 + 𝑔𝑧]K

Ø = 0							 (B.7) 

As water is incompressible, its velocity v depends only on 

the section; the flow remains the same:   

𝑄 = 𝑆. 𝑣 = 𝑆]. 𝑣] = 𝑆^. 𝑣^ (B.8) 

So the velocity has two value depending on the cross-

section: 

𝑣 = Ù
			ℎ > 𝑥 > −𝑙 ∶ 	 𝑣] = ℎ̇	

−𝑙 > 𝑥 > −2𝑙 + 𝐻 ∶ 	 𝑣^ =
𝑆]
𝑆^
ℎ̇

 (B.9) 

Then from the equation (B.7): 

N ℎ̈	𝑑𝑙ÒÒÒ⃗
�e

K
+ N

𝑆]
𝑆^
ℎ̈	𝑑𝑙ÒÒÒ⃗

�^e�Ø

�e
+ [
𝑣^

2 +
𝑃
𝜌 + 𝑔. 𝑧]K

Ø = 0 (B.10) 

ℎ̈ ÓÆ
𝑆]
𝑆^
+ 1Ç 𝑙 +

𝑆]
𝑆^
𝐻 + ℎÔ +

ℎ̇^

2 Ó1 −
Æ
𝑆]
𝑆^
Ç
^

Ô 

+
𝑃 − 𝑃Q
𝜌 + 𝑔(ℎ −𝐻) = 0 

(B.11) 
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By replacing S1 and S2 with chamber and sea surface and l 

with the depth of chamber d, the ratio S1/S2 is neglected, and 

the final equation is the same as the one obtained in the 

Lagrangian formulation: 

ℎ̈(𝑑 + ℎ) +
ℎ̇^

2 +
𝑃 − 𝑃Q
𝜌 + 𝑔(ℎ −𝐻) = 0 (B.12) 

Finally: 

ℎ̈ +
𝐶. 𝑆
𝜌H. 𝑑

ℎ̇ +
𝑔
𝑑 ℎ +

1
𝑑 [ℎℎ̈ +

1
2 ℎ̇

^] =
𝑔
𝑑 𝐻

(𝑡) (B.13) 

Appendix C: Poincaré–Lindstedt Method 

The initial conditions are: 

o
			ℎ(0) = ℎ$%&
ℎ̇(0) = 0

 (C.14) 

We define 𝜖 = 1
𝑑m  and equation (12) becomes: 

 ℎ̈ + 𝜔Q^ℎ + 𝜖	[ℎℎ̈ +
1
2 ℎ̇

^] = 0 (C.15) 

As long as 𝜖 is a small parameter comparing to hmax, the 

method of Poincaré–Lindstedt first-order becomes more 

accurate, otherwise higher orders are suggested. 

To apply Poincaré–Lindstedt (first-order), we need to 

consider new variables: 

 Û

𝜔 = 𝜔Q + 𝜖𝜔]
𝜑 = 𝜔𝑡

𝑥(𝜑) = ℎ(𝑡)
𝑥(𝜑) = 𝑥Q(𝜑) + 𝜖𝑥](𝜑)

 (C.16) 

Then: 

 

⎩
⎪
⎨

⎪
⎧

ℎ(𝑡) = 𝑥(𝜑)

ℎ̇(𝑡) = 𝜔
𝑑𝑥
𝑑𝜑

= 𝜔𝑥′(𝜑)

ℎ̈(𝑡) = 𝜔²
𝑑²𝑥
𝑑𝜑²

= 𝜔²𝑥′′(𝜑)

 (C.17) 

After substituting the old variables with the new ones: 

 𝜔^𝑥ÝÝ + 𝜔Q^𝑥 + 𝜖 Æ𝜔^𝑥ÝÝ𝑥 +
1
2𝜔

^𝑥Ý^Ç = 0 (C.18) 

Then: 

(𝜔Q + 𝜖𝜔])²(𝑥ÝÝQ + 𝜖𝑥ÝÝ]) + 𝜔Q^(𝑥Q + 𝜖𝑥]) + 𝜖(𝜔Q
+ 𝜖𝜔])²[(𝑥ÝÝQ + 𝜖𝑥ÝÝ])(𝑥Q + 𝜖𝑥])

+
1
2 (𝑥

Ý
Q				 + 𝜖𝑥Ý])²] = 0 

(C.19) 

After that, we ignore the terms with coefficients of order 

greater than	𝜖]: 

(𝜔Q²𝑥ÝÝQ + 𝜖𝜔Q²𝑥ÝÝ] + 2𝜖𝜔Q𝜔]𝑥ÝÝQ) + (𝜔Q^𝑥Q
+ 𝜖𝜔Q^𝑥])

+ Æ𝜖𝜔Q²𝑥ÝÝQ𝑥Q +
1
2 𝜖𝜔Q²𝑥

Ý
Q
^Ç = 0 

(C.20) 

𝜔Q²𝑥ÝÝQ + 𝜔Q^. 𝑥Q + 𝜖(2𝜔Q𝜔]𝑥ÝÝQ + 𝜔Q²𝑥ÝÝ] + 𝜔Q^𝑥]

+ 𝜔Q²𝑥ÝÝQ𝑥Q +
1
2𝜔Q²𝑥

Ý
Q
^) = 0 

(C.21) 

By isolating each order of  𝜖, the result is a system of two 

differential equations: 

	𝜖Q:								𝑥ÝÝQ + 𝑥Q = 0				 

𝜖]:									𝑥ÝÝ] + 𝑥] = −
𝑥ÝQ
^

2 − 𝑥ÝÝQ𝑥Q − 2 Æ
𝜔]
𝜔Q
Ç𝑥ÝÝQ 

 

(C.22) 

Initial conditions: 

 o𝑥Q
(0) = ℎ$%&
𝑥′Q(0) = 0 																	o𝑥]

(0) = 0
𝑥]′(0) = 0 (C.23) 

The solution for 𝑥Q(𝜑)can be easily written: 

 𝑥Q(𝜑) = ℎ$%&𝑐𝑜𝑠	(𝜑) (C.24) 

Then we substitute 𝑥Q(𝜑) in the second equation of the 

system, to solve 𝑥](𝜑): 

𝑥](𝜑) = −ℎ$%&. (𝜔]/𝜔Q	) 𝑐𝑜𝑠(𝜑)

−
1
2ℎ$%&[−2. (𝜔]/𝜔Q	)𝜑 𝑠𝑖𝑛

(𝜑)

+ ℎ$%&𝑐𝑜𝑠^(𝜑)

− 2(𝜔]/𝜔Q	) 𝑐𝑜𝑠(𝜑) − ℎ$%&] 

(C.25) 

The coefficient 𝜔]must equal to zero. Otherwise, the 

solution includes a divergent term (the secular term   

2¤Þ
¤¥
𝜑 𝑠𝑖𝑛(𝜑)			). 

Thus, once the divergence problem is eliminated, 𝑥](𝜑) 

can be expressed as follows: 

 𝑥](𝜑) = ℎ$%&
^(1 − 𝑐𝑜𝑠^(𝜑))/2 (C.26) 

Finally, the solution h(t) can be written as: 

ℎ(𝑡) = 𝑥Q(𝜔𝑡) + 𝜖𝑥](𝜔𝑡) (C.27) 

ℎ(𝑡) = ℎ$%& 𝑐𝑜𝑠(𝜔Q𝑡) + ℎ$%&
^(1 − 𝑐𝑜𝑠^(𝜔Q𝑡))/2𝑑 (C.28) 

 


