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Abstract- Photovoltaic (PV) energy is among the most used renewable sources. Grid-connected PV systems should yield as 
much energy as possible. However, external influencers such as irradiance and temperature impose a non-linear characteristic of 
the PV system, which hinder its operation at the maximum power point. Additionally, other factors, such as shading or internal 
degradation, can change this characteristic by making local maximums appear, which makes it difficult to extract the maximum 
available power. There are several techniques for maximum power point tracking (MPPT) and very diverse algorithms for this 
purpose. There are also some published works with comparative studies. However, in most of these works, the comparison is 
based on a literature review or on simulation. An experimental evaluation of MPPT techniques, from the simplest to the most 
complex, remains relevant. Thus, this paper presents an experimental analysis of five MPPT algorithms: two of the simplest and 
widely used (Perturb & Observe and Incremental Conductance) and three of the most complex (Fuzzy Logic Controller, Kalman 
Filter and Particle Swarm Optimization). The experimental tests were carried out under real test conditions, using Simulink and 
the dSPACE 1103 real-time controller board. The results show that the five MPPT algorithms are able to track the MPP with a 
difference of less than 2% in their efficiency under normal operating conditions. This difference increases under shadow effect. 
The PSO algorithm was the only one able to find the global MPP under the effect of partial shading. 

Keywords MPPT algorithms; Perturb and Observe; Incremental Conductance; Fuzzy Logic Control; Kalman filter; Particle 
Swarm Optimization. 

 

1. Introduction 

Since the past decade, photovoltaic (PV) energy is among 
the most preferred source over all the other renewable sources, 
due to its wide range of qualities such as abundance in nature, 
low maintenance and high power density [1, 2]. However, the 
efficiency of PV systems is greatly affected by the efficiency 
of the inverter, the PV modules and the maximum power point 
tracking (MPPT) algorithms. PV inverters available on the 
market have achieved a maximum efficiency of 98% [3]. The 
increase of PV modules efficiency is under way and has been 
intensely investigated but it depends on complex 

manufacturing processes. Instead, improving the efficiency of 
the MPPT with various control techniques may be an 
alternative [4]. The main goal of these algorithms is to achieve 
the maximum power point (MPP) located along the nonlinear 
P-V characteristic, which depends on the temperature, solar 
irradiance and shadow situations [5]. Fig. 1 presents a generic 
P-V curve under normal test conditions containing a unique 
MPP, and under partial shading conditions, which contains a 
local MPP (LMPP) and a global MPP (GMPP)[5, 6].  

There are about 10 main MPPT techniques [7, 8], and a few 
dozen variants [9] published in literature. Some of the most 
recent works [10-12] deal with the integration of conventional 
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Fig. 1. Generic P -V curves. 

and advanced MPPT techniques, since conventional 
techniques are very complex to implement [13]. In [5], 
research lacunae and noteworthy remarks are discussed on 
recently published MPPT algorithms. Most research work 
focuses on simulation for the purposes of cost and versatility 
analysis [14, 6], which leads to a lack of information regarding 
other characteristics. Furthermore, the MPPT based on the 
Kalman filter has not been sufficiently investigated since only 
a few simulation studies are known [15-17]. 

This paper presents an experimental evaluation between 
different MPPT techniques such as Perturb and Observe 
(P&O), Incremental Conductance (IC), Fuzzy Logic 
Controller (FLC), Kalman Filter (KF) and Particle Swarm 
Optimization (PSO). It compares the performance of these 
algorithms in terms of oscillation at the MPP, precision of the 
MPP voltage and shadow effect. The paper brings an 
experimental perspective, which complement many studies 
reporting analytical or simulation studies. Furthermore, this 
paper presents further developments to the previous work [18] 
with the analysis of the KF algorithm about which there is still 
lack of information regarding the MPPT capabilities. 

The practical implementation of the MPPT algorithms was 
carried out using a conventional power topology based on a 
step-up converter followed by a single-phase voltage source 
inverter under Voltage Oriented Control (VOC) [18]. Both, 
MPPT and VOC algorithms were implemented in Simulink 
and tested using the dSPACE 1103 real-time controller board 
and ControlDesk interface. 

2. MPPT Control Algorithms 

References [2, 19] present a wide comprehensive review of 
published algorithms for MPPT, but it does not include the 
Kalman filter strategy. This section summarizes the MPPT 
algorithms evaluated in this paper by extending the previous 
description made in [18] to the Kalman filter technique. 

2.1. Perturb and Observe  

Perturb and Observe (P&O) technique is the most used and 
cited in literature due to its simplicity of implementation [19]. 
The algorithm measures the PV voltage and current to 
calculate the PV output power. Then, it introduces a 
perturbation on the voltage reference and observes the effect 
on the output power. If it increases, the perturbation of the next 
iteration will continue in the same direction. Otherwise, the 
direction of the perturbation will be reversed [20-22]. Fig. 2 
shows the flowchart of the P&O algorithm.  

 
Fig. 2. Flowchart of Perturb and Observe algorithm. 

2.2. Incremental Conductance 

Considering the convex aspect of the P-V characteristic, the 
incremental conductance (IC) algorithm is based on the fact 
that the slope of the P-V curve is equal to zero !	∆$

∆%
= 0( at the 

MPP [19]. Eq. (1) presents the operating principle of the IC 
technique: 
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The MPP is achieved by comparing the incremental 
conductance !∆$

∆%
( with the instantaneous conductance !6

%
(. 

Fig. 3 presents the IC technique flowchart, where the 
algorithm increases or decreases the reference voltage until the 
condition ∆6

∆%
= − 6

%
 is atained [15]. 

 
Fig. 3. Flowchart of Incrimental Inductance algorithm. 
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2.3. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) algorithm begins 
with an initial swarm of random particles throughout the 
research space, where the generation update is completed until 
the optimal solution is found. Each individual has his own 
fitness value, which is measured frequently in order to select 
the optimal individual to continue with the next generation. 
Each individual has only two values where the first is the 
personal best 7𝑃89:;,=> and the second is the global best 
(𝐺89:;). The personal best is for each particle while the global 
best is a unique one for all the particles of the swarm [19, 23]. 
In short, each particle tries to improve its current location and 
velocity based on two criteria: the path between its present 
location and its personal best location, and the distance 
between its present location and the global best, relative to all 
the particles. For the MPPT purpose, the operation starts by 
searching the nearest point to the MPP using the PSO 
optimization, where the duty cycle of the DC-DC converter 
represents the position (Particle location) and the output power 
refers to the fitness function (maximum character function). 
The PSO flowchart is shown in Fig. 4. The following 
equations are used to adjust the new position at each iteration, 
Eq. (3), via the speed equation given by Eq. (2) [24]. 

 𝑣=(𝑘 + 1) = 𝑤	𝑣=(𝑘) + 𝐶H𝑅H7𝑃89:;,= − 𝐷=(𝑘)>
+ 𝐶K𝑅K(𝐺89:; − 𝐷=(𝑘)) 

(2) 

 

 𝐷=(𝑘 + 1) = 𝐷=(𝑘) + 𝑣=(𝑘 + 1) (3) 
𝐷= and 𝑣= are the duty cycle and the velocity of the particle 

𝑖, respectively, and 𝐶H and 𝐶K are the acceleration constants. 𝑤 
refers to the weight of inertia and 𝑅H and 𝑅K are random values 
between 0 and 1. 𝑃89:;,=  is the location with the best fitness of 
all the visited locations of the particle 𝑖, and 𝐺89:;  is the best 
position found over all the particles. In this work, the number 
of initial particles is chosen to be 4, 𝐶H and 𝐶K are 1.2 and 2 
respectively, and 𝑤 equal to 0.4. 

 
Fig. 4. Flowchart of Particle Swarm Optimization algorithm. 

2.4. Kalman Filter 

The Kalman filter (KF) technique was applied in [16] for 
MPPT purposes and compared with the P&O algorithm. 
Recently, other works [15, 17] have done similar studies. 
Reference [15] presents a comparison between KF and the IC 
method and in [17] the comparison is with the PSO algorithm. 
These works present their analysis using simulation results. 
This work extends the previous experimental research [18] 
(with P&O, IC and PSO) to the KF and makes the analyses 
based on experimental results. 

The KF is a recursive identification method used for 
systems described by a state-space representation. However, 
in this case, it takes into consideration the system (𝑟:) and 
measurement (𝑟M) noises. The first represents the 
imperfections of the modeling process and controllers. The 
second represents the imperfections of measurements. This 
stochastic state-space representation is described by the 
following equations [25]: 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑟:(𝑘) (4.a) 
 

 𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑟M(𝑘) (4.b) 
 

The first is the state equation and the second is the output 
equation, where 𝑢 and 𝑦 represent, respectively, the input and 
output of the system. The state vector is composed by only one 
state variable: the PV string output voltage reference. This is 
the reference for the input voltage of the step-up converter as 
shown in Fig. 5. In a general case, if the matrices 𝐴, 𝐵 and 𝐶 
are constant, each state variable of the state vector 𝑥 do not 
depend on other state variables of the same state vector. In that 
case, the state-space representation (4) is linear and the 
Kalman filter can be applied. The state-space equations (4) can 
be applied to the MPPT as demonstrated in [15-17]. Both, 𝑟: 
and 𝑟M, are considered Gaussian and independent sequences. 
The system output, 𝑦(𝑘), is the PV string output voltage and 
the system input, 𝑢(𝑘), is the slope of the P-V curve, ∆$

∆%
(𝑘). 

In this case 𝐴 = 𝐵 = 1 and 𝐵 is a scaling factor 𝑀 as described 
in [15-17]. 

 
The KF is a recursive state estimator method and, in each 

iteration, it has two steps: prediction and estimation. In the 
first, it predicts the state variable 𝑉(𝑘 + 1|𝑘) and the process 
covariance value 𝑃(𝑘 + 1|𝑘), considering the information 
available at instant 𝑘 [17]. The Kalman gain 𝐾(𝑘 + 1) is then 
calculated using these predictions. This step requires the 
process noise covariance value, Q, and the measurement error 
value (sensor noise covariance), 𝑅. These values represent the 
lack of confidence, respectively, in the predicted state and in 
the measures. Usually these values are obtained by a trial and 
error process and require some experience. 

In the second step, the algorithm estimates the state variable 
and the process covariance considering the previous 
information already available at the instant 𝑘 + 1, 
respectively, 𝑉(𝑘 + 1|𝑘 + 1) and P (𝑘 + 1|𝑘 + 1). The KF 
algorithm is described in Fig. 6. The two first equations 
(prediction step) represent the voltage and the process 
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Fig. 5. Step-up converter control using KF for MPPT and a 

PI controller. 

covariance predicted by the algorithm, respectively, 𝑉V(𝑘) and 
𝑃V(𝑘). The last three equations represent the estimation step. 
The computation of the Kalman gain 𝐾(𝑘) requires the 
measurement error covariance value 𝑅 and the predicted 
process covariance value,	𝑃V(𝑘), which in turn requires the 
process noise covariance value 𝑄. After that, the state variable 
(step-up input voltage reference) is updated by the Kalman 
gain times the error between the measured voltage, 𝑉(𝑘), 
given by voltage sensor in Eq. (4b), and the predicted voltage 
𝑉V(𝑘). Finally, the process covariance value is updated at the 
same iteration, which tends to become closer and closer to zero 
[16, 17]. The required parametrization used in this work is 
summarized in Table 2. In this work, the scale factor is chosen 
to be 1, Q is equal to 0.25, and R equal to 0.31. 

2.5. Fuzzy Logic Control 

A fuzzy logic controller has three stages, fuzzification, 
inference mechanism and defuzzification as shown in Fig. 7 
[26]. The fuzzification passes the real variables to fuzzy 
variables. The proposed fuzzy controller has two input 
variables: the voltage variation (∆𝑉) and the power variation 
(∆𝑃) [26]. In an instant of sampling, these variables are 
expressed as: 

 ∆𝑉(𝑘) = 𝑉(𝑘) − 𝑉(𝑘 − 1) (5) 

 ∆𝑃(𝑘) = ∆𝑉(𝑘) × ∆𝐼(𝑘) (6) 
 

The input signals ∆𝑉 and ∆𝑃 are converted to linguistic 
variables such as PB (big positive), PM (positive medium), PS 
(positive small), Z0 (zero), NS (small negative), NM (negative 
medium), NB (large negative) using the association functions. 
Fig. 8 shows the association functions used to input and output 
variables [27]. 

Fuzzy inference uses Mamdani's method and 
defuzzification is based on the centroid method to calculate 
the ∆𝑉Y9Z  output. Fig. 8 shows the rule base used to find the 
output and Eq. (7) gives the reference voltage for the PI 
controller 7𝑉Y9Z> [18].  

 𝑉Y9Z = 𝑉 × ∆𝑉Y9Z (7) 
 

On the other hand, in the defuzzification, the fuzzy logic 
controller output is converted to a controller variable, which is 
used by the PI controller as the voltage reference 7𝑉Y9Z>. 
Fuzzy logic controllers are able to work with inaccurate inputs 
and, therefore, they do not need a precise linear mathematical 
model, with a higher implementation cost [27]. 

 
Fig. 6. Flowchart of Kalman Filter algorithm. 

 
Fig. 7. Flowchart of Fuzzy Logic Controller algorithm. 

 
Fig. 8. Membership functions [18]. 

3. Power Topology, Control Strategy and Experimental 
Set-Up 

Fig. 9(a) presents the power topology used in this work. It 
was implemented using the intelligent power module (IPM) 
PM75RLA120 from Powerex. This IPM is a three-phase 
IGBT inverter plus a brake IGBT. The latter is always kept 
OFF and the three-phase inverter is then configured in order 
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to obtain the desired power topology [28, 29]. Thus, the first 
leg (U) implements a boost converter by keeping the upper 
IGBT always OFF. The other two legs (V, W) implement a 
single-phase voltage source inverter (VSI). Fig. 9(b) shows the 
experimental set-up. It consists of the power structure, 
described in the previous paragraph, with an LC output filter 
and an isolation transformer used for a protection purpose. The 
measurement module is a signal conditioning interface for 
data acquisition and signal filtering. The dSPACE 1103 real-
time controller board controls the boost converter and the 
single-phase VSI. The control and user interface are 
implemented using Simulink with Real-Time Interface and 
ControlDesk. 

 
The control strategy implements independent control of the 

boost converter and the VSI. The first controls power 
extracted from the PV string by setting its operating voltage. 
The MPPT algorithms described in the previous section 
generate the reference voltage. Then, the PI controller is 
responsible for maintaining the output voltage of the PV string 
equal to the reference voltage given by the MPPT algorithm. 
Thus, it generates the control voltage for the PWM, as shown 
in Fig. 5. The second controls the power flow from the PV 
string to the grid by keeping the DC-link voltage constant at 
400 V. For this purpose, the single-phase VSI is controlled 
using the voltage oriented control (VOC) strategy as in 
[28, 29]. The implemented VOC of the VSI is shown in Fig. 
9(c). The grid current is converted to the fixed orthogonal 
reference frame αβ. For this purpose, a quadrature component 
is obtained by applying a 90º phase shift. This is carried out 
by a delay of a quarter of the grid period (0.25T) which 
generates the virtual orthogonal component, iβ. The resulting 
αβ components are orthogonal sinusoidal currents. PI 
controllers can be used to control sinusoidal currents but there 
are two well-known drawbacks: they present steady-state 
errors with sinusoidal reference and are not able to reject 
disturbances. This is due to the poor performance of the 
integrative action when the reference is a periodic signal. To 
overcome this difficulty, the grid current αβ components are 
converted to a dq reference frame synchronous with the grid 
voltage. In this new reference frame, the orthogonal 
components of the grid current are DC quantities and 
consequently, PI controllers can be used. Therefore, they are 
able to cancel the steady-state error, at the fundamental 
frequency of the grid, and improve its dynamic response [28, 
29]. 

The dq reference frame rotates with the same angular speed 
of the grid voltage and current, and the d axis is permanently 
aligned with the grid voltage space-phasor. In this way, the 
grid voltage quadrature component, Vgq, is zero and, therefore, 
the active and reactive powers are controlled independently by 
controlling, respectively, the d and q current components. The 
first is controlled by keeping the DC-link voltage constant, as 
described above, and the second is directly defined, making 
reactive power compensation possible. In order to obtain the 
grid voltage angle, θ, for reference frame transformation and 
synchronization, a Phase Locked Loop (PLL) block was 
implemented as in [28]. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 9. Power structure (a), experimental set-up (b) and VSI 

control using VOC (c). 

Fig. 10 shows the two PV strings used in this work. String 
A consists of 5 Fluitecnik FTS220P PV modules and string B 
consists of 3 REC 275PE PV modules. The technical 
characteristics of the PV modules are shown in Table 1. 

Table 1. Characteristics of the PV modules. 

String Pmax(W) ISC (A) VOC  (V) IMPP (A) VMPP (V) 

A 220  8.30  36.76  7.51  29.38  

B 275  9.25  38.70  8.74  31.50  
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Fig. 10. PV string models [18]. 

4. Experimental Results 

For the experimental tests, the two PV strings described 
above were used. Under normal operating conditions, all the 
algorithms were evaluated using PV string A, which has 
higher power available. The tests were carried on clean days 
where the irradiation and temperature are almost constant 
during the time of the test. This PV string is installed on the 
roof of the laboratory and there is wiring which allows making 
various configurations (series and parallel) of these modules 
inside the laboratory. However, for now, it is not very easy nor 
safe to access the roof. Therefore, due to the difficulty of 
access for shadow emulation, a second string (B) was placed 
in front of the laboratory for the tests with shading. Thus, the 
tests under shading conditions were carried out using PV 
string B for all algorithms. Immediately before each test, the 
P-V curve was traced to obtain the MPP. 

The PV modules of string B are made up of strings of 20 
cells in series with bypass diodes. Thus, to cause a local 
maximum in the P-V curve, it is enough to shade at least one 
cell of each string. For this, a semitransparent film was used, 
as illustrated in Fig. 10. 

Each algorithm was tested separately. The MPP voltage, 
given by each one, was used as a reference voltage for the step-
up converter input. The power available on the DC-link was 
injected into the grid by controlling the single-phase VSI as 
described in the previous section. 

4.1. Tests under normal operating conditions 

Fig. 11 shows the experimental results obtained with the 
MPPT algorithms and string A. At the beginning of the tests, 
65 % of the P-V curve is traced in order to identify the MPP. 
Thus, the control algorithm linearly increases string’s output 
voltage from 40 V to 150 V, tracing the P-V curve and, 
therefore, passing through the MPP. Then, the algorithms start 
with an initial reference voltage of 40 V as shown in Fig. 11(a) 
to (d). The exception is the PSO algorithm. In this case, the 
duty cycle increases from 0.4 to 0.9 leading to a linear 
reduction in the output voltage of the PV string, making it pass 
through the MPP, as shown in Fig. 11(e). 

 
(a) Using P&O [18] 

 

 
(b) Using IC [18] 

   
(c) Using FLC [18] 

 
(d) Using KF 

 

 
(e) Using PSO [18] 

Fig. 11. MPPT algorithms evaluation tests under normal 
operating conditions. 
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4.2. Tests under Partial Shading 

Fig. 12 shows the experimental results obtained with string 
B and the shading procedure described previously. The tests 
were performed as described in the previous section. First, the 
MPP is identified by tracing the P-V curve and then the 
algorithms are launched to track the MPP by starting at 40 V. 

 
(a) Using P&O [18] 

 
(b) Using IC [18] 

 
(c) Using FLC [18] 

 
(d) Using KF 

 
(e) Using PSO [18] 

Fig. 12. MPPT algorithms evaluation tests under shading 
conditions. 

5. Discussion 

This section discusses the results presented in the previous 
section. According to the tests carried out, it is possible to 
compare the performance of each MPPT algorithm in terms of 
precision in reaching the MPP, oscillation around the MPP, 
and ability to find the global MPP in shadow situation. 

5.1 Oscillation at the MPP 

The oscillation around the MPP refers to the difference 
between the output power maximum and minimum values 
divided by the power at the MPP previously known, which 
affects the system efficiency. 

Fig. 13 presents a more detailed graphical analysis of the 
operation of the algorithms after they have already reached the 
MPP. It shows, graphically, the oscillation in the operating 
values of power and voltage. The results of this analysis are 
summarized in Table 2, which presents the power and voltage 
oscillations of the evaluated MPPT algorithms. The results 
show that the oscillation is less than 2% with the best results 
obtained with the PSO and KF algorithms, respectively 0.95% 
and 1.12%. 

It should be noted that MPPT algorithms such as P&O and 
IC were tested with fixed step increments or decrements in the 
reference voltage. The size of these steps is a tradeoff between 
the oscillation magnitude around the MPP and the response 
time to achieve the MPP. For the purpose of this study, and for 
the comparison of only conceptual versions, modified 
implementations as in [12] were not considered. 

Table 2. Power and voltage oscillation around the MPP. 

 

5.2 Ability to achieve the MPP 

The efficiency of each algorithm can be evaluated through 
the difference between the operating voltage imposed by the 
MPPT algorithm and the MPP voltage previously known 
(precision). Table 3 presents the ability to achieve the MPP for 
the evaluated algorithms using Eq. (8), where 𝑉[$$ is the MPP 
voltage given by the P-V curve, and 𝑉[$$\ is the voltage 
where each MPPT technique operates. The 𝑉[$$\ value used 
in Eq. (8) corresponds to the average value of the operating 
voltage after steady-state has been reached. 
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According to the results obtained, efficiency is around 99%, 
where the best results are obtained with KF and IC algorithms 
with 99.4% and 99.3% efficiency, respectively. 

Table 3. Precision of the MPPT techniques. 

P&O IC PSO FLC KF 
98.2% 99.3% 99.0% 98.6% 99.4% 

 

5.3 Ability to deal with shadow 

From the analysis of Fig. 12(a) to 12(e), it is clear that only 
the PSO algorithm is able to reach the global MPP in partial 
shadow situation, since it is based on the exploratin and 
exploitation of the research space (starting from 40 V). 
Following the same protocol, the other MPPT algorithms end 
operating around a local MPP. Table 4 summarizes these 
results. 

Table 4. Ability to deal with partial shadow. 

P&O IC PSO FLC KF 

No No Yes No No 
 

 
(a) Using P&O 

 
(b) Using IC 

 
(c) Using FLC 

 
(d)  Using KF 

 
(e) Using PSO 

Fig. 13. Oscillation of the MPPT algorithms at the MPP. 

6. Conclusion 

This work presented an experimental evaluation of five 
MPPT algorithms: P&O, IC, PSO, FLC and KF. This 
comparative study evaluated the performance of the 
algorithms in relation to 3 parameters: the accuracy of the 
MPP found in relation to the previously known value; the 
maximum oscillation of the power extracted from the PV 
string; and the ability to find the global MPP under the shadow 
effect. The experimental results show that the KF and IC 
algorithms operate closer to the MPP than the others. In this 
case, their efficiency is 99.4% and 99.3%, respectively. 
However, the PSO algorithm has less oscillation (0.95%) 
around the MPP compared to the others. 

Despite using different methods of different complexity to 
find the MPP, the difference in efficiency obtained with the 
techniques was less than 2% under normal operating 
conditions. However, under partial shadow situations, the 
efficiency may increase with the PSO since it was the only one 
that demonstrated to be able to find the global maximum. 
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