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Abstract- Photovoltaic (PV) performance predictions are important to accurately assess the efficiency of any PV technology. 
In this study, we confront outdoor data with no less than 48 couples obtained by combining eight models of the thermal 
behavior with six electrical formulas. Calculations are confronted to the power produced by a 2 kWp grid-connected 
monocrystalline Si photovoltaic plant (GCPV) installed on the rooftop in the Faculty of Science Semlalia Marrakech, Morocco 
(latitude 31.6497 °N, longitude 8.0169 °W). The measured meteorological parameters (irradiance and air temperature), 
electrical data (DC power), and modules temperature data from one year have been used. The approach to evaluate the quality 
of each couple of models is new since this work uses the combination of (i) the best mix of correlation coefficient (R²) and root 
mean square error (RMSE), and (ii) the number of points validated by the model within a 99% confidence interval. Among the 
eight thermal behavior models, we propose ourselves a dynamic one which takes into consideration inertia which is usually 
ignored in stationary models. 

Keywords Grid-connected PV, PV DC-power measurements, Module temperature measurements, PV DC-power models, 
Module temperature models, Combinations of DC-power and module temperature models. 

1. Introduction 

The number of photovoltaic systems plants has been 
significantly increased over the last decade, for this 
purpose, extensive studies on the performance of 
installations PV plants have been carried out by various 
researchers [1]–[7]. Thus, with the dissemination of 
photovoltaic applications, the interest in correctly 
predicting the production of grid-connected photovoltaic 
(GCPV) systems has increased. But before even doing 
actual forecast, which itself introduces its own underlying 
errors induced by meteorological prevision, it is essential 
to have the best models to predict the performance of 
GCPV systems. There are several formulas giving the 
electrical power generated by modules [8] according to the 
solar irradiation and the cell temperature but the physical 
behavior of this last is itself described by several models 
depending themselves on solar irradiation, ambient 
temperature, and wind (as a minor contribution) [9]. 

There are many models expressing PV array power as 
a function of temperature such as Hendrie [10], Kroposki 
[11], King [12], Patel [13], Jie [14] and many others [15], 
[16]. A lot of other correlations can be found in the 
literature. Considering the importance of PV cell 
temperature in PV power analysis, this paper used thermal 
models for PV systems as a function of weather data (the 
ambient temperature, solar radiation, and wind speed), 
such as, Faiman  et al [17], Mattei et al [18] and Sandia 
[19]. 

For each of the 48 couples of models, the PV module 
temperature and array output power are calculated from 
the five minutes-step meteorological parameters set (solar 
radiation, ambient temperature, and wind speed) and 
compared with the related 5 minutes-step field measured 
data. For this work, we used data from a PV power plant 
located in the Faculty of Sciences Semlalia Marrakech, 
Morocco. This PV field includes three silicon PV 
technologies and is equipped with an acquisition system 
for solar radiation, ambient, and cell temperature as well as 
wind speed [20]. In this paper, we chose to focus on 
monocrystalline silicon modules simply because the 
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technology is the oldest and the models are a little more 
consensual than for thin films or other recent technologies. 

The paper is organized as follows: Section 2 deals 
with the description of the grid-connected photovoltaic 
system (GCPVS) and its database. Section 3 presents the 
PV cell temperature models while Section 4 is devoted to 
those predicting the DC power of the GCPV plant. The 
results are presented and discussed in Section 5. 

2. Description of a grid-connected photovoltaic 
system (GCPVS) and its database 

Fig. 1 shows the GCPV system that is installed at the 
Faculty of Science Semlalia Marrakech (latitude 
31.6497 °N and longitude 8.0169 °W) in Marrakech. The 
PV modules shown in the front of the photograph are 
composed of monocrystalline silicon cells totaling a 
nominal power of 2040 W. The field is composed of a 
single string of 8 modules in series, with 255 Wp peak 
power for each Solar World AG “Sun-module Plus” (SW-
255-mono).  

The PV power of monocrystalline silicon technology 
was evaluated for one entire year, from May 2016 to April 
2017. The 8 photovoltaic modules composing this system 
are south oriented and 30 tilt angled. A Sunny Boy SB 
2000 inverter converts DC to AC with a maximum AC 
power of 2100 W. The nominal specifications of the 
modules are listed in Table 1. 

 
Fig. 1. The GCPV system installed at the Faculty of 

Science Semlalia Marrakech 

Table 1.  Nominal specifications of the photovoltaic 
plant 

Technology Monocrystalline Si 
Number of strings per plant 1 
Number of modules per string 8 
Nominal / Actual total power 
(Wp) 2040 / 2077 

Nominal open-circuit voltage (V) 302.4 
Nominal voltage at maximum 
power (V) 251.2 

Nominal short circuit current (A) 8.66 
Nominal current at maximum 
power (A) 8,15 

Modules orientation (°) 0 (facing South) 
Modules tilt angle (°) 30 

The left photograph of Fig. 2 shows the weather 
station installed to measure and record the meteorological 

parameters : radiation intensity E, ambient temperature Ta, 
wind speed V, and its direction. While, the right 
photograph of the same figure shows the box collecting the 
electrical data from both DC and AC sides of the inverter 
(voltages V, currents I, and powers P) as well as the cell 
temperature Tc, based on EEC standards the errors of 
measuring devices are considered in [21]. 

 
Fig. 2. Weather station (left) and electrical data 

acquisition system nearby the inverter (right). 

3.  Selected PV cell temperature models 

According to the work done by Skoplaki and 
Palyvos [8], the PV cell temperature module varies 
depending on solar irradiance, wind speed, ambient 
temperature and material properties of the modules. 

Many papers have used PV cell temperature 
models, for this reason we will refer only to those which 
are themselves devoted to the development of a model. 
With data collected from the GCPVS, we calculated the 
module operating temperature using solar irradiance (Gg), 
ambient temperature (Ta) and wind speed (VW). But 
beyond what was done in a previous work [22], we will 
use these here to estimate the PV DC power. The list of 
models is not exhaustive. 

Here, we focus on eight models, four models are 
presented by Lasnier [23], Akhsassi 1[24], Sandia [19] and 
NOCT [9]. Without takingin to account the wind speed. 
While, the four other models presented by Mattie [18], 
Faiman [17], Akhsassi 2 [22] and PVSyst [25] are 
influenced strongly by the wind speed. These models 
include also, as parameters, optical properties of the 
modules’ components such as solar absorptance of PV 
layer (α), transmittance of glazing (τ), etc. 

A selected group of PV temperature models to be used 
is presented in Table 2. 
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Table 2. Selected PV module temperature models 

 
Back-surface module and cell temperatures 

become significantly different for high solar radiation 
intensities. The Sandia cell temperature model estimates 
cell temperature from module temperature T", plane of 
array irradiance G$, and a temperature difference 
parameter ΔT&. They can be related by a simple 
relationship given in the equation bellow, this temperature 
difference was evaluated by King et al. [12] to be about 
ΔT& = 3°C at an irradiance level of G& = 1000W/m². The 
module temperature is then given by: 

T" = T* −
,-
,.
ΔT&                              (9)  

4. Selected PV DC power models and 
implementation method 

The PV cell temperature described in Section 3 is 
employed for predicting the DC power produced by the 2 
kWp grid-connected PV plant. Six models are proposed for 
this work to predict the PV DC power (see Table 3). The 
input parameters are the cell temperature and the solar 
irradiance, while the output is the power produced by the 
PV plant. The list of models is not exhaustive.

Table 3. Selected PV DC power models 

Groups Correlations Comments Ref. 

Without 
Wind 
speed 

𝑇0 = 𝑇1 +
34
5&&

(𝑇789: − 20)                                                                   (1) NOCT,  
 𝑇789: =46°C 

[9] 
[26] 

𝑇0 = 30 + 0.0175A𝐺C − 300D + 1.14(𝑇1 − 25)									                          (2) Lasnier , [23] 

𝑇G = 𝑇HIJ + 𝐶LA𝐺C − 𝐺M&&D + 𝐶MA𝑇1 − 𝑇1,789:D																																				  (3) 

Akhsassi 1,  
𝑇HIJ = 25°C, 
𝐶L = 0.0123K/W/m² 
𝐶M = 1.0396,							 
	𝑇1,789: = 20°𝐶 

[24] 

𝑇G = 𝑇1 + 𝐺C𝑒(1STU)                                                                             (4) 
Sandia, 
a=-3.56,         
b=-0.075 s/m 

[19] 
[27] 

Using 
Wind 
speed 

𝑇0 = 𝑇1 +
VLWXYZ[\]^_(`a)34

bc.SbcdU
                                                                     (5) 

PVSyst, 
𝜂fghijk = 0.1, 
UL0=29W/m²/°C 
UL1=0W.s/m3/°C 

[25] 
[28] 

𝑇G =
𝑈m𝑇1 + n(𝜏𝛼) − 𝜂h:9A1 − 𝛽rst𝑇HIJD u1 + 𝛾fwx𝐿𝑛 {

𝐺C
𝐺&
|}~𝐺C

𝑈m + 𝜂h:9𝛽rst u1 + 𝛾fwx𝐿𝑛 {
𝐺C
𝐺&
|}𝐺C

		(6) 

Akhsassi 2,   
𝛾fwx = 0.04  
UL=24.68+6.13	𝑣  
𝜂h:9 =0,15  
𝛽rst= 0,0045  

[22] 

𝑇0 =
bc:�SV(`a)WX[��ALW����:���D_34

bcSX[������34
                                                       (7) 

Mattei,  
UL=26.6+2.3	𝑣 
Others, same as used 
for Akhsassi2 

[18] 

𝑇G = 𝑇1 +
h

bc.SbcdU
                                                                               (8) 

Faiman,  
𝑆 = (𝜏𝛼)𝐺C, 
UL0=30.02W/m²/°C  
UL1=6. 28W.s/m3/°C 

[17] 
[29] 

Correlations Comments Ref. 

	P = ηs���AGs(τα)[1-β���(Tt-T���)]	 																																																							(10)														

Hendrie (1979),  
Tref=25°C, 	 
𝜂:���=0,15, τα=0,81,  
βref= 0,0045°C-1 

[10] 

	P = ηs���AGs[1-β���(Tt-T���)																																																																																(11)	
Jie (2007),	 
𝜂:���=0,14 [14] 

	P = ηs���AGs[1-β���(Tt-T���) + γlogL&Gs]																																																							(12)	
Cristofari (2006),  
βref= 0,0045°C-1, γ=0,12 [15] 
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5. Results and discussion 

5.1. Stationary regime 
For one year, 6714 sets of data were recorded from 

which we will first focus on identifying and removing 
inappropriate records (inaccurate "normal" or mistaken 
records). For a normal distribution of measured values 
around mean, there are less than 1% of inaccurate data 
lying outside the band around the mean [mean -3×RMSE, 
mean + 3×RMSE].  Considering that working with 99% of 
acceptable "normal" data is sufficient, all the data sets 
outside this interval are removed, which, in addition to the 
1% of "normal" inaccurate data, also removes other types 
of abnormally mismatching data. The new RMSE is 

calculated and the removal step is repeated until no data is 
outside the interval [22]. 

Figure3 shows the effect of our cleaning which has 
removed a cloud of several points above the average. 
Apart from spurious points which might be in the 
peripheral area, this cloud of points can be considered as 
overestimation of the PV temperature using the models of, 
NOCT and Sandia among the models with no wind 
velocity, also for all the fourth models using wind velocity 
in their equations. Fig. 3 shows one of the visual aspects of 
the cleaning of the eight thermal models, where 31 points 
are removed using the Lasnier model while 5462 points 
are removed using the Mattei model.

	P = P"��,���
,�
,����

[1 + α(T*-T���)][1 + β���(T*-T���)][1 + δ(T)ln	(
,�
,����

)]	(13)		
Kroposki (2000), 
Coefficient δ evaluated at 
actual conditions 

[11] 

	P = P&	
,�
,���

[1 + (α-β���)∆T]	 																																																																							(14)	
Patel (1999),  
α= 0.0005 °C-1, β= 0.005 °C-

1 
[13] 

	
P = P"��,���[1-D�(T*-25)]																																																																																							(15)	

Al-Sabounchi (1998),  
D� = deficiency factor = 
0.005°C-1   

[16] 
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Fig. 3. Predicted versus measured PV cell temperature for 6714 experimental data. The red circles are the eliminated data after 
the cleaning while the black circles are kept. The continuous line represents the first bisector. 

It is noticed that the models considering wind velocity 
variation had been the least accurate compared to the 
models not taking the wind velocity effect into 
account which we had expected since the wind speed 
has never exceeded 19.20 km/h during the entire year, 
hence it reached the peak only once during the 6714 
recorded times and it was on the 30/8/2016 at 18h25 
with 5.336m/s only, which does not contradict with 
climatic conditions as known in the area of Marrakech 
since it is considered internationally as a non-windy 
zone. 

On the 1st of January 2017, 1 hour after the sunrise, 
we have recorded a 𝑇1=9.149°C, G=334,442W/m² and 
Wv=0,400m/s while the measured Temperature was 
11,53°C; the predicted temperature for each thermal 
model is: 

• NOCT Temperature: 19,02°C. 
• Lasnier Temperature: 11,53°C. 
• Akhsassi1 Temperature: 15,38°C. 
• Sandia Temperature: 18,38°C. 
• PVSyst Temperature: 17,49°C. 
• Akhsassi2 Temperature: 16,88°C. 
• Mattei Temperature: 20,22°C. 
• Faiman Temperature: 17,48°C. 

The 6th Mai 2017, when the sun passes to the zenith, 
we have recorded 𝑇1=28,329°C 𝐺C=955,619W/m² 
𝑊U=0.133m/s, while the measured Temperature was 
44,633°C; the predicted temperature for each thermal 
model is: 

• NOCT Temperature: 56,52°C. 
• Lasnier Temperature: 42,40°C. 
• Akhsassi1 Temperature: 42,99°C. 
• Sandia Temperature: 55,24°C. 
• PVSyst Temperature: 52,15°C. 
• Akhsassi2 Temperature: 52,64°C. 
• Mattei Temperature: 61,81°C. 
• Faiman Temperature: 53,42°C. 

The experience shows that most of the thermal models 
had overestimated the PV module temperature, this 
phenomenon can be explained by the dynamic effects 
when increasing abruptly the incident solar radiation 
intensity with thermal inertia involved, the PV 
temperature makes a delay to gain this new excited 
temperature and vice versa, the dynamic effect is 
studied in section5.2.  

Table 4 shows the statistical results of the correlation 
coefficients R² and RMSE before and after each 
cleaning.  Lasnier and Akhsassi1 models removed less 
than 0.5% of the dataset and nevertheless, their R² 
were improved by 20%. NOCT, PVsyst, Mattei, and 
Sandia models removed more than 45% from the 
dataset essentially caused by an overestimation of the 
temperatures. In the other hand the best R² and RMSE 
values belongs to Mattei model with 98.67% and 
1.43 °C, still it cannot be taken as the best thermal 
model since 81.35% of the total points were removed 
after cleaning. In the meantime, Lasnier R² has 
reached 97.16% with an RMSE of 2.53 °C and with 
the minimum data removal. 

 

Table 4. Descriptive statistics of original and processed data sets for the eight PV cell temperature models 

 Statistical correlations Cleansing statistics 

 R² RMSE (°C) NRMSE % 
removed 

REM 

Saved 
Data 

Deleted 
Data  Before After Before After Before After 

NOCT 82,77% 98,48% 6,00 1,58 0,102 0,028 75,60% 1638 5076 

Lasnier 77,44% 97,16% 6,76 2,53 0,115 0,043 0,46% 6683 31 
Akhsassi 1 76,85% 96,87% 6,84 2,65 0,117 0,050 0,39% 6688 26 
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To better understand the influence of the data cleaning 
on the final result we have studied a quality index based on 
the following facts, if the best model is the one that best 
describes the minimum variance (maximum R²) and more 
experimental points (minimum rejection) with a minimum 
of fluctuations (minimum RMSE), if we attribute to the 
experimental data a double importance knowing that the 
more the points are deleted the more the fluctuations are 
smaller and the more the R² is improved, the models can 
be classified using the following QAi quality-Accuracy 
index: QAi = [(1-2*REM)*R²/RMSE] for which the results 
are shown in Fig. 4. Accuracy-Quality index for the eight 
stationary models of PV modules thermal behavior. 

Fig. 4. Accuracy-Quality index for the eight stationary 
models of PV modules thermal behavior 

Mattei, NOCT and Sandia models have all a negative 
quality index which means that they have deleted at least 
50% of the experimental data, as well as PVSyst that 
eliminates more than 47% of the total points, therefor they 
are not reliable and cannot be considered as good models 
for our PV system. In the other hand Faiman and 
Akhsassi2 have a medium quality index meanwhile 
Akhsassi1 and Lasnier have reached 36,30% and 38,05% 

respectively which makes Lasnier model with the highest 
quality index the best thermal model among them all. 

As mentioned in section 4, to predict the array power 
of PV system the back-surface, cell temperature is 
mandatory as one of the inputs used in all the PV DC 
models, the scope of this part is to calculate PV DC power 
using the calculated temperature by the different thermal 
models represented in section 3 instead of the measured 
module temperature. Thus, 48 models of PV array output 
were established.  

The statistical results of RMSE and R² applied to the 
relative difference between the calculated and the 
experimental data are shown in Table 5 and Table 6. 
Statistical results of correlation coefficient R² between 
measured and predicted power for the six DC power 
models using different PV cell temperature models. The 
lowest RMSE values of 14,82W belongs to Cristofari 
model and this is coming from the big quantity of deleted 
points that is varying between 91.08% and 93.34% of 
removed data. Likewise, the proposed methodology of 
cleaning excluded many points for Hendrie model with a 
value ranged between 62.88% and 73.70%. For the results 
representing Jie, Kroposki, Patel, and Al-Sabounchi 
models, the cleaning method produced an optimal 
combination between the values of RMSE and the 
removed data, except for Kroposki model which excluded 
3389 points about 50,48% when used PV cell temperature 
of Mattei. Generally, the number of eliminated points 
ranged between 3.10% and 3.75% for Jie model, 3.16% 
and 50.48% for Kroposki model, 3.26% and 4.87% for 
Patel model, 2.98% and 4.72% for Al-Sabounchi model. 
Comparison between Jie, Kroposki, Patel, and Al-
Sabounchi models suggests that the best RMSE values 
after cleaning belongs to the Patel model. Thus, the Patel 
model configured the best results with the lowest RMSE 
values and a smaller quantity of data that removed.

Table 5. the root mean squared error (RMSE) before and after cleaning for the six DC power models using different PV 
cell temperature models 

 RMSE  Before cleaning (W) RMSE After cleaning (W) 
 

Jie Kro-
poski Patel AlSa-

bounchi Hendrie Cris-
tofari Jie Kro-

poski Patel AlSa-
bounchi Hendrie Cris-

tofari 
TFaiman 95,63 97,87 94,32 97,39 95,63 94,32 50,69 51,52 48,33 53,54 41,74 15,50 
TAkhsassi1 91,46 95,09 90,36 92,91 91,46 90,87 52,34 57,82 50,24 54,87 39,98 15,57 
TAkhsassi2 95,87 98,16 94,51 97,67 95,87 94,48 51,1 52,71 48,63 54,02 42,39 15,44 
TLasnier 97,87 100,50 96,26 99,88 97,87 96,00 54,15 58,62 51,47 57,51 38,74 14,82 
TMattei 96,29 96,73 94,45 98,75 96,29 93,65 51,27 19,78 48,19 54,82 40,74 16,36 
TNOCT 96,13 97,32 94,54 98,26 96,13 94,09 51,32 30,34 48,49 54,82 39,78 17,83 
TPVSyst 95,94 97,89 94,56 97,78 95,94 94,42 50,97 49,43 48,65 54,24 41,38 17,87 

PVSyst 82,28% 98,19% 6,08 1,96 0,104 0,032 47,74% 3509 3205 
Sandia 82,33% 98,29% 6,07 1,83 0,103 0,032 64,06% 2413 4301 

Akhsassi 2 81,07% 97,57% 6,26 2,38 0,107 0,040 18,68% 5460 1254 
Mattei 82,60% 98,67% 6,02 1,43 0,103 0,029 81,35% 1252 5462 
Faiman 81,36% 97,93% 6,21 2,22 0,106 0,037 31,87% 4574 2140 
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TSandia 95,68 97,40 94,26 97,59 95,68 94,07 50,52 38,05 48,12 53,81 40,78 15,86 
The correlation between measured and predicted PV 

power depicted in Table 5. the root mean squared error 
(RMSE) before and after cleaning for the six DC power 
models using different PV cell temperature models Table 6 

and Table 7. Removed data percentage for the six DC 
power models using different PV cell temperature models 
indicates a close agreement between the measured and 
predicted results. The R² values are found to be 0.99.

Table 6. Statistical results of correlation coefficient R² between measured and predicted power for the six DC power 
models using different PV cell temperature models 

 Jie Kroposki Patel Al-Sabounchi Hendrie Cristofari 
TFaiman 99,59% 99,54% 99,61% 99,53% 99,40% 97,76% 
TAkhsassi1 99,54% 99,44% 99,58% 99,50% 99,11% 99,69% 
TAkhsassi2 99,56% 99,54% 99,60% 99,51% 98,86% 98,39% 
TLasnier 99,51% 99,42% 99,56% 99,45% 99,20% 99,72% 
TMattei 99,56% 99,95% 99,61% 99,49% 98,64% 99,70% 
TNOCT 99,56% 99,87% 99,61% 99,50% 98,77% 99,62% 
TPVSyst 99,56% 99,61% 99,60% 99,51% 98,81% 99,54% 
TSandia 99,57% 99,78% 99,61% 99,51% 98,75% 99,65% 

 

Table 7. Removed data percentage for the six DC power models using different PV cell temperature models 

 Jie Kroposki Patel Al-Sabounchi Hendrie Cristofari 
TFaiman 3,10% 6,00% 3,35% 3,05% 71,79% 92,76% 
TAkhsassi1 3,44% 3,47% 4,05% 3,22% 71,40% 92,45% 
TAkhsassi2 3,13% 5,24% 3,40% 3,05% 71,09% 92,79% 
TLasnier 3,75% 3,16%3 4,87% 3,20% 70,64% 93,34% 
TMattei 3,75% 50,48% 3,52% 4,72% 73,70% 91,96% 
TNOCT 3,23% 28,85% 3,31% 3,29% 62,88% 91,08% 
TPVSyst 3,14% 8,10% 3,28% 2,98% 72,36% 91,18% 
TSandia 3,19% 19,48% 3,26% 3,11% 72,98% 92,46% 

We can deduce that when Kroposki model is using the 
temperature of Mattei shows a higher correlation 
coefficient of 99.95% although it removed 50,48% of the 
dataset. The best result of the correlation coefficient of the 
Patel model of 99.61% is achieved when Patel is merged 
with Faiman, Mattei, NOCT or Sandia temperatures. 
Likewise, the higher correlation coefficient for Jie is 
recorded with 99.59% when Jie is merged with the PV cell 

temperature of Faiman and having only 3.10% of rejected 
points. Al-Sabounchi model gives the best results when 
used with the Faiman's PV cell temperature with a value of 
99.53%.   

Error! Reference source not found. shows the 
correlation between predicted PV DC power for each 
electrical model combined with the eight thermal model 
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and measured PV DC power. 

Based on the graphs, it is shown that Hendrie (black 
line) is under all the other models. The reason why 
Hendrie model underestimates the PV DC power is 
because it calculates the PV power using the effective 
product of transmissivity of glass cover and absorptivity of 
solar cell τα with a value of 0.81. On the other hand 
Cristofati model (green line) lies below all of the others 
which implies the overestimation of the PV DC power that 
can be explained by the positive aggregated value of 
ηs���AGs(γlogL&Gs). 

In addition, the Accuracy-Quality index for the 48 
electrical models represented in Fig. 6. Quality index for 
the PV DC power of the 48 electrical studied models, 
shows that the accuracy of the electrical models does not 
change no matter which temperature model is used, the 
order of classification remains the same as following: 
Patel, Jie, Al-Sabounchi, Kroposki, Hendrie and Cristofari 
in the last place.  

Hendrie and Cristofari models have always a negative 
Quality-Accuracy regardless the calculated temperature of 
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Fig. 6. Quality index for the PV DC power of the 48 electrical studied models 

the PV system, thus they are the most unreliable models as 
they deleted at least half of the total dataset. We can 
conclude that also the temperature models have an effect 
on the quantity of removed data for each electrical model 
knowing that Kroposki electrical model has promptly 
deleted 50,48% of the total set using Mattei temperature 
instead of 3.16% using the temperature of Lasnier model. 

Patel electrical model gives the highest Accuracy-
Quality index and keeps the same place for all the different 

temperatures, at the same time Patel model has kept 
always the best QAi and reached the maximum index 
using the temperature of Sandia with 1.94% and the 
minimum index of 1.75% using the temperature of Lasnier 
Model. Therefor Patel electrical model is concluded as the 
best accurate model in the present work. 

 

 

5.2. Dynamic regime 

Heat transfer within a PV system only occurs if there are gradients of temperature between the different parts of the 
system, which implies that the PV system is not at thermodynamic equilibrium (the temperature is not uniform throughout the 
system). During the transformation of the system to a final state of equilibrium, the temperature will change at the same time 
with time and space. The purpose of heat transfer analysis is to identify which modes are involved during processing and 
quantitatively determine how varies the temperature of the system over time. Our dynamic equation of temperature calculation 
is based on Erraissi findings [21]:   

q¥i¦(t¦SL) = q¥i¦(t¦) + [	(qjk1(t¦SL) − q¥i¦(t¦))] ∗ (1 − 𝑒
©W(ª«¬d­ª«)® ¯)		        (16) 

• q¥i¦(t¦SL) is the PV temperature at the time t¦SL  calculated using the equation (16), 

• qjk1(t¦SL) is the PV temperature at the time t¦SL  calculated using a stationary model as described in Table 2. 
• 𝜏 = 8𝑚𝑖𝑛𝑠 

To better concretize the time effect on our study, we compare Lasnier model with the dynamic model for two days 
separately, the hottest (31 July 2016) and coldest (8 February 2017) days of the studied year. Error! Reference source not 
found. and 

 show the predicted temperatures (Stationary. Left, 
Dynamic. Right) as function of measured temperature 

during the 31st of July 2016 and the 8th of February 2017, 
respectively.
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Fig. 7. The predicted (Stationary. Left, Dynamic. Right) versus the measured module temperatures on 31 July 2016

 

 
The illustrations below show that the graph of 

dynamic temperature is slightly closing comparing to 
stationary temperature graph in both days which means 
that the PV temperature is better estimated using dynamic 
model, also the stationary model has many hysteresis 
variations unlike the dynamic model that seems more 
stable and attenuated, this can be simply explained by the 
fact that in stationary mode, once the radiation is received 
on the PV module the temperature changes values 
promptly, while in dynamic mode the temperature takes 
time to increase or decrease according to the ambient 
temperature.  

To better compare the two models, we have calculated 
the correlation coefficients projected this time on 1 year of 
data: 

• For dynamic temperature model: R² = 97.19% 
RMSE= 2.53 °C. 

• For stationary temperature model: R² = 97.00% 
RMSE= 2.61 °C. 

Based on all these findings, we can conclude that the 
dynamic model with higher R² and lower RMSE is more 
reliable than Lasnier model which represents the best 
stationary model in our study. 

Besides, in order adapt Patel electrical model 
coefficients to our PV cell system we formulate a 
multilinear equation for the PV power model using solar 
irradiance and cell temperature. Therefore, the multilinear 
regression method has been used by defining one function 
(17) that depends on the total data of solar irradiance, the 
cell temperature, and that represents the independent 
variable.  

The equation is linear for the unknown parameter (α-β) 
and is of the form given in Equation (17): 

´
´���

G���-Gs = Gs(α-β���)(T*-T���)      (17) 
Thus, the dependent function Y can be defined as follows: 

Y=A.X+Cte 
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Where, Y =	 ´
´���

G��� − Gs , X= Gs(T* − T���) and, A= 

(α − β���). The calculated data of stationary temperature 
and dynamic temperature allowed us to determine the 
parameter (α-βref) as shown in Table 8. 

Table 8. Identified parameter 

 Calculated with Tstationary 
Calculated with 

Tdynamic 

(α-βref) -0.00463  °C-1 -0.00444  °C-1 

Error! Reference source not found. shows the 
predicted versus the measured PV DC power of the two 
models projected on the 31st of July 2016. Visually no 

difference between the graphs can be deduced. 
Nevertheless, the model using the parameter (α-βref) 
calculated with dynamic temperature gives the best pair of 
the correlation coefficient and the Root Mean Square Error 
{R²; RMSE} that is {99.55%; 48.51 W} against the model 
using a parameter (α-βref) calculated with a stationary 
temperature that gives {99.54%; 49.25 W} during one day 
of study. To compare the two models, we have calculated 
the correlation coefficients projected this time on 1 year of 
data using measured PV temperature: 

• For dynamic Patel model: R² = 99.53% and 
RMSE= 52.89 W. 

• For stationary Patel model: R² = 99.52% and 
RMSE=53.49 W. 

 

Fig. 9. Predicted (Stationary at left, Dynamic at right) versus the measured PV DC power for 31 July 2016 

The same thing is done for both models using different 
temperatures, measured PV temperature, dynamic 
temperature, and the best stationary temperature. Fig. 10.  
The Scatter plots of R² and RMSE (W) obtained for the 
electrical models with (α-βref) stationary and (α-βref) 
dynamic for different temperatures (Tstationary, 
Tdynamic, Tmeasured) during one studied year. shows the 

correlation coefficients during one studied year, for both 
dynamic and stationary electrical models using different 
temperatures, the graph shows for all the different 
temperatures, the dynamic electrical model is always 
showing the best pair of R² and RMSE which means that 
based on dynamic temperature we can define the best 
electrical model of a crystalline PV system. 

 

 
Fig. 10.  The Scatter plots of R² and RMSE (W) obtained for the electrical models with (α-βref) stationary and (α-βref) dynamic for 

different temperatures (Tstationary, Tdynamic, Tmeasured) during one studied year. 
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6. Conclusion 
In this study, six PV array output models have 

been used to predict the power produced by a 2 kWp 
GCPV system installed on the rooftop in the Faculty of 
Science Semlalia Marrakech. Eight PV module 
temperature models and one year of measured data were 
introduced for the PV-module power calculations. 

The accuracy of the PV power models was 
demonstrated by comparing the predictions with the field 
measured data. Concluding, the results can be summarized 
as: 
1- Comparing temperature models with and without 

wind velocity effect in stationary regime, Lasnier was 
deduced as the best thermal model among the others 
as it improved the R² and RMSE, by removing less 
than 0.5% of 6714 data, from 77,44% to 97,16% and 
from 6,76 °C to 2,53 °C respectively.  

2- After the amalgamation of the eight thermal models 
with the six studied electrical models to predict the 
PV cell power, it was observed that each electrical 
model reacts differently with each thermal model, 
best correlation coefficient R² for the electrical model 
of: 

- Kroposki is 99.89% married with Mattei 
thermal model. 

- Patel is 99.23% calculated with Sandia 
thermal model. 

- Jie is 99.15% using Sandia thermal model. 
- Al-Sabounchi is 99.04% having Faiman 

thermal model. 
- Hendrie is 98.4% using Lasnier thermal 

model. 
- Cristofari 98.36% with Mattei thermal model. 

Based on these findings it was found that the Patel 
model merged with Sandia was the best thermal 
model even better than Cristofari as Patel's 
removed only 219 points while Cristofari's 
removed 3389 from the total of 6714 points. 

3- Confronting dynamic model with stationary models 
of the PV cell temperature, the correlation 
coefficients of R² and RMSE were 97.19% 97.00% 
and 2.53 °C 2.61 °C for the studied dynamic model 
and Lasnier model respectively. Based on this, it was 
noted that the dynamic model gives better results than 
the best of the stationary models. 

4- The coefficient (α-β���) used in Patel model was 
calculated using the dynamic and stationary thermal 
model to better adapt the electrical model to our PV 
cell system, after multiple regression it was found 
that (α-β���) is equal to: 

- -0.00444 °C-1 using the dynamic thermal 
model. 

- -0.00463 °C-1 using the stationary thermal 
model Lasnier. 

5- After screening the different equations of Patel, it 
appears that Patel's model with a dynamic coefficient 
estimates the PV cell power with R² and RMSE of 

(99.53% and 52.89 W) better than the one with a 
stationary coefficient (99,52% and 53,49 W). 

6- In this study, we focused on the effect of solar 
radiation and cell temperature on the performance of 
monocrystalline PV system. While it also depends on 
the incident angle, air mass, dust, inverter efficiency, 
system technology “Monocrystalline, Polycrystalline 
or Amorphous” and other system losses. Although it 
is recommended to focus on the impact of these 
quantities on the PV performance.  
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