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Abstract- Incorrect sensor reading, weather conditions, operation stoppage, and defect, produce noise in the records of wind 
speed and the synchronized wind turbine (WT) power. This noise still remains even after purification so fitted curve of wind 
turbine power model (WTPM) may differ from that in the datasheet. WTPM is vital due to its role in managing and predicting 
wind energy. Identification of WTPM parameters can be addressed as a nonlinear optimization issue. The objective function 
targets minimizing the root of the mean squared errors (RMSE) among the accompanying computed and measured wind power 
points with subjection to group of parameters constraints. In this article, a newly designed interior search optimization 
algorithm (ISA) is applied to identify the WTPM obscure parameters. Three parametric models namely 5- , 6-parameters 
logistic functions, and amended hyperbolic tangent are analyzed neatly. Simulations are accomplished using MATLAB. The 
ISA applicability is evaluated via comparing its results with the observed results of two WTs. To legalize the ISA results, they 
are compared with other methods results. It can be declared here that the ISA performs well and possesses a fine strength to 
generate WTPM parameters with RMSE less than other approaches by 18.11% to 65.93%. 

Keywords Parametric model; power curve; wind turbine; optimization approaches; interior search algorithm. 

 

1. Introduction 

In the last decades, exploitation of renewable energy 
sources (RESs) increases speedily in off-grid and on-grid 
applications due to their environmental friendliness, 
sustainability, and economic. Wind energy is a significant 
RES that is extensive in most sites over the world [1]. The 
blades of wind turbine (WT) rotate while the wind hits them 
and they transmit the rotational motion to the generator 
through gear box [2]. 

WT datasheets commonly declare speed-power 
relationship as limited number of scheduled points. These 
abovementioned points are measured at ordinary atmospheric 
condition, which is often not the case where a WT is erected, 
and therefore not enough for administering and predicting 
wind energy so wind turbine power model (WTPM) needs to 
be identified [3]. 

WTPM requires synchronized measuring wind speed and 
power of WT for a satisfactorily long period to generate a 
considerable database at different atmospheric conditions. 

Afterward, knowing such a series of measurements of both 
the wind speed and the WT power, WTPM estimation, which 
is scrutinized in this research, becomes accurate. 

The techniques utilized to describe WTPM are classified 
into two categories: parametric that includes equation with 
parameters and non-parametric that is trained using measured 
points [4]. The parametric WTPM is preferred due to its low 
computation cost. Accordingly, the current article addresses 
parametric WTPM. 

The techniques included in the parametric WTPM are 
least squares [5-7], genetic algorithm [8], evolutionary 
computation approach [9], differential evolution, particle 
swarm algorithm [10], highest likelihood estimator [11], 
cultural algorithm [12], dynamic power curve [13,14], Jaya 
optimizer [15], Non-linear retraction [16], Monte Carlo 
approach [17], multi-verse optimizer [18], trajectory 
sensitivity [19], and boundary element momentum method 
[20]. 
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The techniques of the non-parametric WTPM are neural 
networks [21-25], neuro-fuzzy structure [26], fuzzy cluster 
[27], support vector machine [28,29], Gaussian procedure 
[30], monotonic retrogression [31]. 

In connection with the survey mentioned above, and 
based on the theory of no-free-launch, there exist still an 
opportunity to ameliorate the extraction of WTPM 
parameters. For this purpose, this research aims at treatment 
of the interior search optimization algorithm (ISA), which 
was created lately, to extract obscure parameters of WTPM. 
The decoration and interior design, inspired Gandomi to 
design ISA as a novel meta-heuristic algorithm [32]. 
Afterwards, ISA has been successfully applied for 
engineering optimization issues such as operation of big 
reservoirs systems [33], digital differentiator design [34], 
optimal power flow [35], and load dispatch [36,37]. 
Application of ISA has been very successful for detection of 
fuel cell model parameters [38,39] and photovoltaic model 
parameters [40]. Therefore, ISA is selected in this current 
research since its reported results are propitious and confirm 
its vantage over other optimizers. 

This research includes analysis of three parametric 
models namely five parameters logistic function (5-PLog), 
six parameters logistic function (6-PLog), and amended 
hyperbolic tangent (AHTan) which has nine parameters since 
they don't produce errors about the rated speed like linear, 
quadratic, and cubic models. 

This research owns the following contributions: 

Ø Novel application of ISA to optimally identify the 
obscure parameters of WTPM.  

Ø Two WTs are analyzed using three parametric 
models.  

Ø Comparison of ISA with other optimizers based on 
the results of modeling two WTs. 

The paper is ordered as follows: Section 2 illustrates 
parametric models of WTPM. Section 3 includes formulation 
of the objective function  as well as the constraints. ISA 
is clarified in Section 4. Section 5 discusses the yielded 
results. Conclusions are abridged in Section 6.  

2. Parametric WTPM 

Fig. 1 reveals power curve of WT which is characterized 
by three wind speeds. In detail, they are cut-in speed 

 at which the power begins to be generated, rated 
speed  at which the rated power   is generated, and 
cut-off speed  at which the brake is operated to 
avoid the rotor damage [41,42]. In this research, WTPM is 
modeled using three parametric models: 5-PLog, 6-PLog, 
and AHTan. On the other hand, linear, quadratic, and cubic 
models are not utilized since they produce errors about the 
rated speed [43]. 

 

 

 
Fig. 1. Power curve of WT 

2.1. 5-PLog 

Logistic formula with five parameters is utilized to 
approximate the wind power curve shape as stated in Eq. (1). 

 
 

where  symbolizes the output electrical power at wind 
speed  and  are five obscure parameters to be 
extracted and their meanings are the greatest asymptote, the 
smallest asymptote, the flexion point, the slope at the flexion 
point, and the asymmetric coefficient, correspondingly [44]. 

2.2. 6-PLog 

Approximation of the power curve shape using logistic 
formula with six parameters is indicated in Eq. (2). 

 
 

where  are six unknown parameters to be 
identified and their meanings are the lower asymptote, the 
higher asymptote, the rate of growth, a value related to , 
the nearest asymptote to the greatest growth portion of the 
curve, and a number randomized around 1, consecutively 
[29]. 

2.3. AHTan 

The power curve shape is approximated by amended 
hyperbolic tangent formula with nine parameters as 
described in Eq. (3). 

 
 

where  are obscure unknown 
parameters to be determined and they don’t have particular 
meaning [45]. 
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3. Formularization of the  and the constraints 

The  targets minimizing the root of the mean squared 
errors (RMSE) among the accompanying computed and 
measured wind power points for WTPM, as stated in Eq. (4). 

 

        

 

where  symbolizes the measurement points quantity, 
 symbolize the measured and computed wind 

power, consecutively. 

The constraints which are identified by the bottom and 
top limits of WTPM parameters, subjugate the . 

4. ISA 

The idea of ISA is taken from architectonics and mirror 
work (MiWo) which was orderly method utilized by the 
Persians to design the decor. To accomplish the aims of 
decor project, the requests and the income of customer have 
to be taken into account [33]. The beginning is to design 
constituents’ combination from boundaries toward inside by 
putting constituents from the walls and shrinking the inside 
space. During this procedure, constituents’ combination is 
changed to form more beautiful vision and environment 
(better ) conditional on customer satisfaction 
(constraints). MiWo is wonderful creation in fine arts for 
decorative design. Different mirrors are utilized in MiWo to 
create more attractive environment. It is important in this 
procedure to put the mirrors at the prettiest constituents to 
emphasize their beautiful. This repeated procedure can be 
utilized in optimization issues by putting some mirrors at the 
universal finest (fittest) constituent to get some other pretty 
views [32]. The constituents other than the fittest are 
separated into two sets. The first set, named the combination 
set, is utilized for combination optimization. The second set, 
named the mirror set, is utilized for mirror search. The key 
steps for defining the beautiful vision and environment using 
ISA are as follows: 

4.1. 1st Step  

The constituents, whose quantity equals population 
, are randomly generated between bottom (BB) and 

top bounds (TB) and their  is computed. 

4.2. 2nd Step  

The universal finest constituent is gotten in iteration i 
and it is symbolized by . 

4.3. 3rd Step  

The constituents other than  are separated randomly 
into two sets (combination set and mirror set), utilizing a 

threshold value  and a random number  among 0 and 
1 for each constituent. If  then constituent is put in the 
mirror set; else, it is put in the combination set. 
Hypothetically,  is also a number among 0 and 1. Anywise, 
to balance diversification and intensification,  has to be 
adjusted cautiously since it is the only parameter in ISA. 

4.4. 4th Step 

It is necessary to change slightly the location of the 
universal finest constituent utilizing the random walk for 
local search around the universal finest, as formulated in Eq. 
(5). 

  

  

where  symbolizes a vector includes normally diffused 
random values and  symbolizes scale factor. 

4.5. 5th Step 

Each constituent in the combination set, is randomly 
changed within its bounds, as stated in Eq. (7). 

)  

where  symbolizes random number among 0 and 1 and 
 symbolize the constituent j in the iteration i and 

its bounds, consecutively. 

4.6. 6th Step 

A mirror is randomly put among each constituent in the 
mirror set and the universal finest constituent. The mirror 
location  for the constituent j in the iteration i, is 
computed using Eq. (8). 

  

where  symbolizes a random number among 0 and 1. The 
image position or constituent virtual position relies on the 
mirror location, as formulated in Eq. (9). 

  

4.7. 7th Step  

The  of new constituents positions and virtual 
constituents are computed and positions are updated based on 

 improvement, as formulated in Eq. (10) in case of 
minimization. 
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4.8. 8th Step 

ISA will be ended if the maximum number of iterations 
 is reached. Figure 2 demonstrates the flowchart of 

ISA [35]. 

Adjusting   

Adjusting parameters represents an obstacle in all 
optimizers which usually include two or more parameters. 
Nevertheless, the ISA distinguishes from other optimizers 
that it has only one parameter , this gives ISA more 
adaptation to a wider group of optimization issues. For 
unconstrained optimization issues,  has a fixed value of 

0.25. For exploration at the beginning of constrained 
optimization issues, combination leads mirror search. For 
exploitation when the iteration number (i) approaches , 
mirror search gradually leads combination. Thus the value of 
 is required to increase as i increases towards  [46]. In 

this paper,  value is determined using Eq. (11) during 
optimization iterations. This means that  is adjusted 
automatically which adds second advantage to ISA. 

 
 

 

 
Fig. 2. Flowchart of ISA

5. Results and discussions 
Two cases are studied for assessment of the efficacy of 

the suggested ISA-based approach in identifying WTPM 

Retain old constituents and positions 

Generate random constituents between their bounds 

Compute the  

 

Generate r1 randomly among 0 and 1 for each constituent 

 

Initialize Npop, Nmax  

 

τ = i / Nmax 

Put constituent in combination set Put constituent in mirror set 
 

 

Update constituents and positions 
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Yes 

No 

No 

Compute the new value of 
each constituent and its  

 

Compute the new position  
of each mirror and its  

 

Record the final finest constituents and their  
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parameters. The studied WTs are Bazán 62/1300 and Nordex 
N117/3600, whose data were measured in Spain throughout 
2019 and Turkey throughout 2018, respectively. 5-PLog, 6-
PLog, and AHTan models are employed in this article. The 
specifications of two WTs are summarized in Table 1. 

Table 1. Specifications of WTs 

Model Bazán 
62/1300 

Nordex 
N117/3600 

 1.3 3.6 

 3 3 

 15 13 

 25 25 

 62 116.8 

 50 76 

 690 660 

 50 50 

The maximum iterations are 150 and the population 
quantity is 20. Since the ISA is one from heuristic-based 
optimizers which are described as high stochastic, it is 
required to run ISA numerous independent times for getting 
minimum  and corresponding WTPM parameters. 

Extracted WTPM parameters using 5-PLog, 6-PLog, and 
AHTan are revealed in Tables 2, 3 and 4, consecutively. The 
diagrams of RMSE convergence are revealed in Figs. 3 and 
4. 

Table 2. Extracted WTPM parameters using 5-PLog 
                Model 

Parameter 
Bazán 

62/1300 
Nordex 

N117/3600 

 −2.9806 −2.0809 

 224.8731 373.5613 

 12.3084 11.0472 

 −5.4556 −10 

 0.4395 0.2961 

Literature doesn’t contain results about Bazán 62/1300 
and Nordex N117/3600 which are studied in this article. To 
legalize the ISA results, two other optimizers are utilized 
namely atom search optimizer (ASO) and mining blast 
optimizer (MBO) with  and  as 
adjusted in ISA for fair comparison. Comparisons among 
ISA, ASO, and MBO in accordance with their results, 
manifest that the yielded RMSE by ISA is smaller than that 
of other optimizers by 18.11% to 65.93%, as displayed in 
Figs. 3, 4, Tables 5, and 6. To visually compare among the 
results of three parametric models namely 5-PLog, 6-PLog, 
and AHTan which are gotten using ISA, their RMSE 
convergences are plotted in the same diagram as displayed in 
Fig. 5. It can be noticed from Tables 5, 6, and Fig. 5, that the 

6-PLog model has the smallest RMSE and the fastest 
convergence. 

Table 3. Extracted WTPM parameters using 6-PLog 
                      Model 

Parameter 
Bazán 

62/1300 
Nordex 

N117/3600 

 −26.5463 -28.9961 

 149.9157 374.4131 

 0.5000 0.9963 

 10.0938 10.7488 

 2.1549 3.1836 

 0.5000 1.0735 
 

Table 4. Extracted WTPM parameters using AHTan 
                  Model 

Parameter 
Bazán 

62/1300 
Nordex 

N117/3600 

 −0.2943 −0.4626 

 0.3849 0.6734 

 −0.1666 0.2214 

 0.6807 −0.1046 

 −0.5375 −0.1696 

 −0.3394 0.1867 

 0.0149 −0.2833 

 0.0049 −0.0017 

 −0.5120 −0.2261 
 

Table 5. RMSE of Bazán 62/1300 compared to other 
optimizers 

Algorithm ASO MBO ISA 

5-PLog 0.177636 0.153891 0.112980 

6-PLog 0.132573 0.127577 0.108789 

AHTan 0.199612 0.183254 0.113243 
 

Table 6. RMSE of Bazán 62/1300 compared to other 
optimizers 

Algorithm ASO MBO ISA 

5-PLog 0.202482 0.127102 0.099776 

6-PLog 0.164542 0.121236 0.099275 

AHTan 0.379188 0.193832 0.129178 
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Figure 3. RMSE convergence of Bazán 62/1300 

 

The estimated  plots of WTs using ISA and the 
realistic data are exposed in Figs. 6 and 7. The existence of 
estimated  curve using ISA in the intermediate of realistic 
points, corroborates exactness of the identified WTPM 
parameters. 

 

 

 
(a) 5-PLog 

 
(b) 6-PLog 

 
(c) AHTan 

Figure 4. RMSE convergence of Nordex N117/3600 

 

Execution measures of the ISA are tested by statistical 
indicators to verify the results forcefulness. The ISA is run 
100 independent times and statistical indicators such as Best, 
Worst, and standard deviation (StD) of RMSE values are 
recorded in Table 7. It can be affirmed that the smaller values 
of StD, prove the results forcefulness. 

 
(a) 5-PLog 

 
(b) 6-PLog 

 
(c) AHTan 
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(a) Bazán 62/1300 

 
(b) Nordex N117/3600 

Fig. 5 RMSE convergence of 5-PLog, 6-PLog, and AHTan 
using ISA 

Table 7. RMSE statistical results 

WT Model RMSE 
(Best) 

RMSE 
(Worst) 

RMSE 
(StD) 

Bazán 
62/1300 

5-PLog 0.112980 0.119392 0.023967 

6-PLog 0.108789 0.117807 0.031852 

AHTan 0.113243 0.120896 0.026556 

Nordex 
N117/3600 

5-PLog 0.099776 0.110237 0.038188 

6-PLog 0.099275 0.104869 0.020673 

AHTan 0.129178 0.138373 0.031222 
 

6. Conclusions 

The ISA has two advantages namely ownership of only 
one parameter and automatic tuning of such parameter. 
Hence the ISA application to identify WTPM parameters has 
been innovatively addressed in this article. The purpose of 
creating an efficient WTPM is to accurately manage and 
forecast wind energy under different wind speeds. The  is 
to minimize the RMSE among the accompanying computed 
and measured wind power points of WT with subjection to 
constraints which are determined by the BB and TB of 

parameters. The suggested WTPM effectiveness has been 
evaluated via comparing its emulated results with the 
realistic results of two WTs. The emulated results are 
congruous with the realistic results in all case studies. 
Moreover, comparisons among the ISA yielded results and 
other optimizers results have been performed. The ISA-based 
results reveal that RMSE has decreased by 18.11% to 
65.93% from other optimizers and this proves the high 
competitiveness of ISA to other optimizers. After employing 
5-PLog, 6-PLog, and AHTan models, it has been found that 
the 6-PLog model owns the smallest RMSE and the fastest 
convergence. Filtering the measured data of WT and utilizing 
the estimated WTPM for managing and predicting wind 
energy are proposed issues in future research. 

 
(a) 5-PLog 

 
(b) 6-PLog 

 
(c) AHTan 

Figure 6.  plots of Bazán 62/1300 
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(a) 5-PLog 

 
(b) 6-PLog 

 
(c) AHTan 

Figure 7.  plots of Nordex N117/3600 

References 

[1] H. Zhu, M. Sueyoshi, C. Hu, S. Yoshida, “Modelling 
and attitude control of a shrouded floating offshore wind 
turbine with hinged structure in extreme conditions”, 
IEEE 6th International Conference on Renewable 
Energy Research and Applications (ICRERA), San 
Diego, California, USA, DOI: 

10.1109/ICRERA.2017.8191162, pp. 762-767, 5-8 
November 2017. 

[2] I. R. Mohammed, A. A. Saleh, A. M. Saleh, 
“Consolidity analysis of wind turbines in wind farms”, 
International Journal of Renewable Energy Research, 
vol.10, no.1, pp. 205-216, March 2020.  

[3] M. Yesilbudak, “Partitional clustering-based outlier 
detection for power curve optimization of wind 
turbines”, IEEE International Conference on Renewable 
Energy Research and Applications (ICRERA), 
Birmingham, UK, DOI: 
10.1109/ICRERA.2016.7884500, pp. 1080-1084, 20-23 
November 2016. 

[4] R. J. A. Vieira, M. A. Sanz-Bobi, “Power curve 
modelling of a wind turbine for monitoring its 
behavior”, International Conference on Renewable 
Energy Research and Applications (ICRERA), Palermo, 
Italy, DOI: 10.1109/ICRERA.2015.7418571, pp. 1052-
1057, 22-25 November 2015. 

[5] Y. Bao, D. Pan, X. Wang, L. Liao, Q. Yang, “Least-
square B-spline approximation based wind turbine 
power curve modeling”, Chinese Automation Congress 
(CAC), Jinan, China, DOI: 10.1109/CAC.2017.8243986, 
pp. 6711-6716, 20-22 October 2017. 

[6] Y. Bao, Q. Yang, Y. Sun, “Iterative modeling of wind 
turbine power curve based on least-square B-spline 
approximation”, Asian Journal of Control, DOI: 
10.1002/asjc.2150, vol. 21, no. 4, pp. 2004-2016, 
July 2019. 

[7] A. M. Howlader, N. Urasaki, K. Uchida, A. Yona, T. 
Senjyu, C. Kim, A. Y. Saber, “Parameter Identification 
of Wind Turbine for Maximum Power-point Tracking 
Control”, Electric Power Components and Systems, 
DOI: 10.1080/15325000903376974, vol. 38, no. 5, pp. 
603-614, March 2010. 

[8] A. Goudarzi, I. E. Davidson, A. Ahmadi, G. K. 
Venayagamoorthy, “Intelligent analysis of wind turbine 
power curve models”, IEEE Symposium on 
Computational Intelligence Applications in Smart Grid 
(CIASG), Orlando, Florida, USA, DOI: 
10.1109/CIASG.2014.7011548, pp. 1-7, 9-12 December 
2014. 

[9] A. Kusiak, H. Zheng, Z. Song, “Models for monitoring 
wind farm power”, Renewable Energy, DOI: 
10.1016/j.renene.2008.05.032, vol. 34, no. 3, pp. 583-
590, March 2009. 

[10] M. Lydia, A. I. Selvakumar, S. S. Kumar, G. E. P. 
Kumar, “Advanced Algorithms for Wind Turbine Power 
Curve Modeling”, IEEE Transactions on Sustainable 
Energy, DOI: 10.1109/TSTE.2013.2247641, vol. 4, no. 
3, pp. 827-835, July 2013. 

[11] S. Seo, S. Oh, H. Kwak, “Wind turbine power curve 
modeling using maximum likelihood estimation 
method”, Renewable Energy, DOI: 
10.1016/j.renene.2018.09.087, vol. 136, pp. 1164-1169, 
June 2019. 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. M. Agwa, Vol.10, No.3, September, 2020 

 1357 

[12] A. Goudarzi, A. G Swanson, M. Kazemi, K. Wang, 
“Intelligent wind turbine power curve modelling using 
the third version of cultural algorithm (CA3)”, 
International Journal of Renewable Energy Research, 
vol. 7, no. 3, pp. 1340- 1351, September 2017.   

[13] J. Ma, C. Wang, M. Yang, Y. Lin, “Ultra-Short-Term 
Probabilistic Wind Turbine Power Forecast Based on 
Empirical Dynamic Modeling”, IEEE Transactions on 
Sustainable Energy, DOI: 10.1109/TSTE.2019.2912270, 
vol. 11, no. 2, pp. 906-915, April 2020. 

[14] J. Zierath, R. Rachholz, S. Rosenow, R. Bockhahn, A. 
Schulze, C. Woernle, “Experimental identification of 
modal parameters of an industrial 2-MW wind turbine”, 
Wind Energy, DOI: 10.1002/we.2165, vol. 21, no. 5, pp. 
338-356, May 2018. 

[15] R. Jin, L. Wang, C. Huang, S. Jiang, “Wind turbine 
generation performance monitoring with Jaya 
algorithm”, International Journal of Energy Research, 
DOI: 10.1002/er.4382, vol. 43, no. 4, pp. 1604-1611, 
March 2019. 

[16] M. Marčiukaitis, I. Žutautaitė, L. Martišauskas, B. 
Jokšas, G. Gecevičius, A. Sfetsos, “Non-linear 
regression model for wind turbine power curve”, 
Renewable Energy, DOI: 10.1016/j.renene.2017.06.039, 
vol. 113, pp. 732-741, December 2017. 

[17] S. Tao, Q. Xu, A. Feijóo, S. Kuenzel, N. Bokde, 
“Integrated Wind Farm Power Curve and Power Curve 
Distribution Function Considering the Wake Effect and 
Terrain Gradient”, Energies, DOI: 10.3390/en12132482, 
vol. 12, no. 13 2482, June 2019. 

[18] M. Yesilbudak, “A novel power curve modeling 
framework for wind turbines”, Advances in Electrical 
and Computer Engineering, DOI: 
10.4316/AECE.2019.03004, vol. 19, no. 3, pp. 29-40, 
August 2019. 

[19] J. Rose, I. A. Hiskens, “Estimating wind turbine 
parameters and quantifying their effects on dynamic 
behavior”, IEEE Power and Energy Society General 
Meeting - Conversion and Delivery of Electrical Energy 
in the 21st Century, Pittsburgh, Pennsylvania, USA, 
DOI: 10.1109/PES.2008.4596862, pp. 1-7, 20-24 July 
2008. 

[20] J. Krishna, V. Bhargava, J. Donepudi, “BEM prediction 
of wind turbine operation and performance”, 
International Journal of Renewable Energy Research, 
vol. 8, no. 4, pp. 1962-1973, December 2018. 

[21] Y. Cao, Q. Hu, H. Shi, Y. Zhang, “Prediction of wind 
power generation base on neural network in 
consideration of the fault time”, IEEJ Transactions on 
Electrical and Electronic Engineering, DOI: 
10.1002/tee.22853, vol. 14, no. 5, pp. 670-679, May 
2019. 

[22] T. Demirdelen, P. Tekin, I. O. Aksu, F. Ekinci, “The 
Prediction Model of Characteristics for Wind Turbines 
Based on Meteorological Properties Using Neural 
Network Swarm Intelligence”, Sustainability, DOI: 

10.3390/su11174803, vol. 11, no. 17, 4803, September 
2019. 

[23] L. Bai, E. Crisostomi, M. Raugi, M. Tucci, “Wind 
turbine power curve estimation based on earth mover 
distance and artificial neural networks”, IET Renewable 
Power Generation, DOI: 10.1049/iet-rpg.2019.0530, vol. 
13, no. 15, pp. 2939-2946, November 2019. 

[24] M. Bartolomé, F. Sehnke, J. A. Lazzús, I. Salfate, M. 
Felder, S. Montecinos, “Wind turbine power curve 
modeling based on Gaussian Processes and Artificial 
Neural Networks”, Renewable Energy, DOI: 
10.1016/j.renene.2018.02.081, vol. 125, pp. 1015-1020, 
September 2018. 

[25] G. Ciulla, A. D’Amico, V. D. Dio, V. L. Brano, 
“Modelling and analysis of real-world wind turbine 
power curves: Assessing deviations from nominal curve 
by neural networks”, Renewable Energy, DOI: 
10.1016/j.renene.2019.03.075, vol. 140, pp. 477-492, 
September 2019. 

[26] E. Taslimi-Renan, M. Modiri-Delshad, M. F. M. Elias, 
N. A. Rahim, “Development of an enhanced parametric 
model for wind turbine power curve”, Applied Energy, 
DOI: 10.1016/j.apenergy.2016.05.124, vol. 177, pp. 
544-552, September 2016. 

[27] F. D. Caro, A. Vaccaro, D. Villacci, “Adaptive Wind 
Generation Modeling by Fuzzy Clustering of 
Experimental Data”, Electronics, DOI: 
10.3390/electronics7040047, vol. 7, no. 4, 47, March 
2018. 

[28] T. Ouyang, A. Kusiak, Y. He, “Modeling wind-turbine 
power curve: A data partitioning and mining approach”, 
Renewable Energy, DOI: 10.1016/j.renene.2016.10.032, 
vol. 102, pp. 1-8, March 2017. 

[29] S. Pei, Y. Li, “Wind Turbine Power Curve Modeling 
with a Hybrid Machine Learning Technique”, Applied 
Sciences, DOI: 10.3390/app9224930, vol. 9, no.22, 
4930, November 2019. 

[30] R. K. Pandit, D. Infield, “Comparative analysis of 
Gaussian Process power curve models based on different 
stationary covariance functions for the purpose of 
improving model accuracy”, Renewable Energy, DOI: 
10.1016/j.renene.2019.03.047, vol. 140, pp. 190-202, 
September 2019. 

[31] M. Mehrjoo, M. J. Jozani, M. Pawlak, “Wind turbine 
power curve modeling for reliable power prediction 
using monotonic regression”, Renewable Energy, DOI: 
10.1016/j.renene.2019.08.060, vol. 147, pp. 214-222, 
March 2020. 

[32] A. H. Gandom, “Interior search algorithm (ISA): A 
novel approach for global optimization”, ISA 
Transactions, DOI: 10.1016/j.isatra.2014.03.018, vol. 
53, no. 4, pp. 1168-1183, July 2014. 

[33] M. Moravej, S. Hosseini-Moghari, “Large Scale 
Reservoirs System Operation Optimization: the Interior 
Search Algorithm (ISA) Approach”, Water Resources 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. M. Agwa, Vol.10, No.3, September, 2020 

 1358 

Management, DOI: 10.1007/s11269-016-1358-y, vol. 
30, no. 10, pp. 3389-3407, August 2016. 

[34] M. Kumar,T. K. Rawat, A. Jain, A. A. Singh, A. Mittal, 
“Design of Digital Differentiators Using Interior Search 
Algorithm”, Procedia Computer Science, DOI: 
10.1016/j.procs.2015.07.351, vol. 57, pp. 368-376, 
August 2015. 

[35] B. Bentouati, S. Chettih, L. Chaib, “Interior search 
algorithm for optimal power flow with non-smooth cost 
functions”, Cogent Engineering, DOI: 
10.1080/23311916.2017.1292598, vol. 4, no. 1, 
1292598, February 2017. 

[36] I. N. Trivedi, P. Jangir, M. Bhoye, N. Jangir, “An 
economic load dispatch and multiple environmental 
dispatch problem solution with microgrids using interior 
search algorithm”, Neural Computing and Applications, 
DOI: 10.1007/s00521-016-2795-5, vol. 30, pp. 2173-
2189, October 2018. 

[37] K. Khan, A. Kamal, A. Basit, T. Ahmad, H. Ali, A. Ali, 
“Economic Load Dispatch of a Grid-Tied DC Microgrid 
Using the Interior Search Algorithm”, Energies, DOI: 
10.3390/en12040634, vol. 12, no. 4, 634, February 2019. 

[38] D. Kler, K. P. S. Rana, V. Kumar, “Parameter extraction 
of fuel cells using hybrid interior search algorithm”, 
International Journal of Energy Research, DOI: 
10.1002/er.4424, vol. 43, no. 7, pp. 2854-2880, June 
2019. 

[39] E. A. El-Hay, M. A. El-Hameed, A. A. El-Fergany, 
“Parameters’ optimization of SOFC for steady state and 
transient simulations”, Energy, DOI: 
10.1016/j.energy.2018.10.038, vol. 166, pp. 451-461, 
January 2019. 

[40] D. Kler, Y. Goswami, K. P. S. Rana, V. Kumar, “A 
novel approach to parameter estimation of photovoltaic 
systems using hybridized optimizer”, Energy 
Conversion and Management, DOI: 

10.1016/j.enconman.2019.01.102, vol. 187, pp. 486-511, 
May 2019. 

[41] R. J. A. Vieira, M. A. Sanz-Bobi, S. Kato, “Wind turbine 
condition assessment based on changes observed in its 
power curve”, International Conference on Renewable 
Energy Research and Applications (ICRERA), Madrid, 
Spain, DOI: 10.1109/ICRERA.2013.6749721, pp. 31-36, 
20-23 October 2013. 

[42] B. Hand, A. Cashman, G. Kelly, “An aerodynamic 
modelling methodology for an offshore floating vertical 
axis wind turbine”, International Conference on 
Renewable Energy Research and Applications 
(ICRERA), Palermo, Italy, DOI: 
10.1109/ICRERA.2015.7418708, pp. 273-277, 22-25 
November 2015. 

[43] D. Villanueva, A. E. Feijóo, “Reformulation of 
parameters of the logistic function applied to power 
curves of wind turbines”, Electric Power Systems 
Research, DOI: 10.1016/j.epsr.2016.03.045, vol. 137, 
pp. 51-58, August 2016. 

[44] D. Villanueva, A. Feijóo, “Comparison of logistic 
functions for modeling wind turbine power curves”, 
Electric Power Systems Research, DOI: 
10.1016/j.epsr.2017.10.028, vol. 155, pp. 281-288, 
February 2018. 

[45] Y. Wang, Q. Hu, L. Li, A. M. Foley, D. Srinivasan, 
“Approaches to wind power curve modeling: A review 
and discussion”, Renewable and Sustainable Energy 
Reviews, DOI: 10.1016/j.rser.2019.109422, vol. 116, 
109422, December 2019. 

[46] A. H. Gandomi, David A. Roke, “Engineering 
optimization using interior search algorithm”, IEEE 
Symposium on Swarm Intelligence, Orlando, Florida, 
USA, DOI: 10.1109/SIS.2014.7011771, pp. 1-7, 9-12 
December 2014. 

 


