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Abstract- - Research with renewable energy sources, especially wind and solar energy, has been increasingly gaining the 
attention of researchers, development agencies and companies as a complement to traditional energy sources with finite reserves 
or hydropower. Although renewable sources rely on random climate conditions, their performance has rarely been evaluated 
adequately. Therefore, evaluating the performance of these renewable sources is essential to identify generation potentials and 
establish benchmarks in this sector. In this study, the aim is to evaluate the performance of Brazilian wind farms using a multi-
criteria approach. In order to achieve this objective financial, technical, and operational performance criteria were evaluated, 
divided into nine sub-criteria, based on data survey among twenty plant managers. The modelling combined different renewable 
technology approaches to represent the entire system. Three methods were combined and compared: Analytic Hierarchy Process 
(AHP), Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE), and Data Envelopment Analysis 
(DEA), to evaluate the performance of five Brazilian farms. The two major results of this study are:  (1) the interviewed managers 
had different perceptions when responding to the group of criteria and subcriteria, and (2) PROMETHEE and DEA methods 
achieved similar results. However, DEA is preferred method, as it indicates how and by how much an inefficient unit/farm should 
improve to consider efficient. 

Keywords Performance evaluation, Brazilian wind farms, DEA, AHP, PROMETHEE 

 

1. Introduction 

Population growth and technological developments in all 
sectors of society have increased reliance on energy to 
generate goods and services, with consequences for energy 
consumption worldwide. therefore, Energy is fundamental to 
the world economy. Concurrently, global economy is based on 
an energy matrix dominated by non-renewable sources such 
as natural coal, natural gas and oil. These energy sources are 
finite in nature, indicating that these resources will begin to 
deplete rapidly in a few decades if the current consumption 
pattern continues. 

Seeking solutions to the problem above described, many 
countries and institutions, including the European Union, have 
sought to prioritize strategies targeting renewable energy 
sources through programs, guidelines, regulations and 
recommendations. Addressed to different economic sectors, 
these media aim at alternatives to reduce excessive 
expenditures and increase the efficiency of these alternative 
sources [1]. Another motivating factor for the development of 

renewable energy is the long-term decarbonisation of the 
environment. 

The European Energy Commission predicted a minimum 
target of 27% for the installed renewable capacity by 2030, 
without excluding hydroelectric power [2]. The Spanish 
power system had a total installed capacity of 104.056 GW at 
the end of 2018, of which 23.4% and 6.8% were from 
renewable wind power and solar power, respectively. Algeria 
has established the ambitious goal of deriving 40% of the 
electricity production from renewable energy sources (RES) 
by 2030, [1]. Pursuing the same objective, Brazil has proposed 
energy policies that incorporate renewable energies and 
energy efficiency [5].The gradual increase in the domestic 
demand for renewable energy led to a consumption of 64,281 
MWh in 2018, which raised Brazil's world ranking, surpassing 
Canada as the eighth largest energy consumer [3]. The 
Brazilian electricity matrix, which features a renewable-
thermal configuration, was launched in December 2018 with 
8% wind energy and an installed capacity of 14.72 GW. This 
demonstrated a virtuous growth of the source over the years; 
therefore, Brazil reached the list of the ten countries with the 
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highest installed wind power capacity. Moreover, the use of 
the conventional sources does not meet consumer demand. In 
this case, the use of renewable power will be very economical 
and beneficial to provide the required energy of consumers 
[4]. 

Wind energy involves the transformation of wind into 
electricity using wind turbines, a renewable and inexhaustible 
energy source, offering an alternative to fossil fuels. However, 
electricity generation through wind turbines requires specific 
time and place for implementation. Wind supply is abundant 
in the southern and northeaster regions of Brazil, allowing the 
installation of numerous wind farms [5-8]. 

Wind farms, also known as wind complexes, are sets of 
hundreds of individual wind turbines connected to an electric 
power transmission network. Small wind farms are used to 
produce energy in isolated areas. As wind turbines undergo a 
wide range of dynamic phenomena associated with the 
random nature of wind speed, accurate wind forecasting 
schemes can aid the operator in maximizing the power 
generation. The singularities of wind generation, related to the 
uncertainty of climatic conditions, can stimulate the 
establishment of performance indicators for the evaluation of 
individual systems and, in parallel, promote comparative 
analyses among various wind farms [7-9]. 

The renewable energy industry faces the challenge of 
developing a method to evaluate relative performance of 
different farms, or to compare each wind farm with the 
environment in which it is immersed. As the performance 
evaluation of wind farms must consider several criteria, 
represented by economic, environmental, social and technical 
indicators [8] , it is necessary to apply multi-criteria decision 
methods that allow the ranking, selection, and/or comparison 
of different alternatives, [9]. Multi-criteria decision-making 
(MCDM) methods constitute a family of mathematical 
decision approaches with the purpose of selecting the best 
alternative from a given set of units. It translates the 
performance of each alternative into a single aggregate value 
to ease the ranking process, which has a hierarchical structure 
of goals, criteria, sub criteria, and alternatives [11]. 

An extensive review of multi criteria decision-making 
(MCDM) to evaluate the performance renewable energy 
development is presented in [16]. The authors classified the 
method AHP (Analytic Hierarchy Process) as value 
measurement model and Promethee (Preference ranking 
organization method for enrichment evaluation) as outranking 
models. 

Rakshit and Mandal [11] approached the efficiency of 
environmental energy projects estimation by traditional input-
oriented Data Envelopment Analysis model, (DEA) while 
Nadimi and Tokimatsu [12] considered that heterogeneous 
decision-making units lead to unreasonable results, so they 
applied K-Mean clustering method to select homogenous sets 
of units and then analysed each homogenous sub-set by DEA.  

The aim of this paper is to apply three alternative MCDM 
methods for the performance evaluation of five Brazilian wind 
farms based on three main criteria: financial, energy, and 
technical; and nine sub-criteria, using the analytic hierarchy 
process (AHP), preference ranking organization method for 

enrichment evaluation (PROMETHEE), and data 
envelopment analysis (DEA) methods. The major 
contributions of this paper were to identify that: 

Experts had different perception of the macro criteria 
(Financial, Energy, and Technical) when considering the sub-
criteria evaluation. 

Ø AHP methodology contributed significantly to the 
establishment of the PROMETHEE criteria weight. 

Ø  DEA performance evaluation of wind farms is 
important for it determines those farms classified as inefficient 
and the effort that they must make to become efficient. 

Ø Although the methods consider different levels of 
manager judgement from total to none, the results are not 
significantly different. 

This paper is organized as follows: Section 2 discusses the 
concepts of a performance measurement system and the 
associated methods. Section 3 presents the methodology used 
to establish the set of indicators and details the AHP, 
PROMETHEE, and DEA methods. Five Brazilian wind farms 
are evaluated in Section 4, with final comments presented in 
Section 5. 

2. Performance Measurement (PM) 

PM is characterized by performance indicators combined 
with MCDM methods that translate the performance into a 
single aggregate value to support an organization’s 
operational and strategic decision [13]. 

2.1. Performance Indicators 

A measurement is a mapping from the real world onto a 
numerical system [13], each dimension or aspect of the 
process may be observed when represented by a measure. A 
performance measurement system represents a brief and 
precise set of measures (financial or non-financial) that 
supports the decision-making process of an organization by 
collecting, processing, and analysing the quantified data of 
performance information [14]. Performance measurement 
systems for management and decision support should consider 
the quantitative and qualitative analysis of organizations 
through indicators. Dizdaroglu [15] mentioned indicators as 
elements to measure efficiency and effectiveness within 
organizations, highlighting the performance of all existing 
production processes that require evaluations, whether by the 
employees, executives, and customers. According to Gimbert 
et al. [14], the indicators involve the internal and external 
environments of organizations. 

An indicator is a variable that describes a characteristic or 
state through the observed or estimated data of the system. 
Performance indicators are the elements that allow control, 
improvement and acts as fundamental support in important 
decisions that involving the management of production 
processes, people, and organizations.  It is important to 
observe that indicators are crucial elements for measuring the 
levels of efficiency and effectiveness within organizations, 
revealing the performance of all existing production processes 
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that require evaluations, whether by employees, executives or 
clients [17]. 

An index is the result of aggregating multiple indicators 
that provides a simplified but coherent multidimensional view 
of the set of indicators it represents. Its function is to present 
the results of organizations and sectors in relation to the 
environment that they are inserted. 

2.2. Multiple Criteria Decision-Making methods 

Decision problems related to renewable energy are highly 
complex due to the uncertainty of the source. They involve 
multi-dimensional and multi-stakeholder processes, 
consequently with multi-criteria. The MCDM approach may 
be used to identify the best alternatives from a given set of 
criteria. It has a hierarchical structure of goal, criteria, sub-
criteria, and alternatives [1, 8]. This may be formulated as an 
m x n matrix, where the matrix elements, for example Hij 
describes a semantic relationship between the alternative i 
criteria j. The MCDM decision matrix H can expressed as 
follows: 

																						𝐶# ⋯ 𝐶% 

𝐻 =
𝐴#
⋮
𝐴*

  +
ℎ#,# ⋯ ℎ#,.
⋮ ⋱ ⋮
ℎ0,# ⋯ ℎ0,.

1                                        (1) 

Where ℎ0.  represents the performance score for 
alternative i with respect to criterion j. The criteria should 
reflect the economic, environmental, technical, social and 
political concerns [1]. Based on the number of alternatives 
under consideration, the MCDM problems related to 
renewable energy management are highly complex due to the 
uncertainty associated to the power source, involving 
multidimensional processes and multi-stakeholder, 
consequently with multi-criteria [16].  

MODM methods are suitable for evaluating continuous 
alternatives for which parameters are predefined in the form 
of decision variable vectors.   

MADM methods compare the relative importance of each 
criteria indicator of an alternative with the same criteria 
indicator of another alternative.  

In this paper, both the MADM and MODM approaches 
were used to evaluate and measure the relative energy 
efficiency of five farms using renewable energy systems. The 
following three methods were evaluated: 

Ø AHP [1, 9, 16, 17, 20]. 

Ø PROMETHEE [18, 22]. 

Ø DEA [19]. 

The two first methods are MADM. They assign a higher 
value to the alternative with best indicator.  

The difference between the above methods is in the 
process of establishing how relevant the indicator of an 
alternative is in comparison with that same indicator in 
another alternative. AHP is a subjective method where the 

assignment of weights to criteria and sub-criteria is 
determined by the experts’ choice, therefore, sometimes this 
method may be biased and have an effect on the decision 
making process, [8]. The PROMETHEE method combines the 
experts’ choice of criteria weights with mathematical 
equations for assigning sub-criteria weights. 

The third method is the DEAM MODM, an entropy 
method that calculates weights by solving mathematical 
equations without any influence of experts. Thus, this method 
may be considered as a non-biased approach.  Either the 
classificatory or the prescriptive method allows the 
identification of efficient and non-efficient alternatives.  

DEA prescribes how far inefficient alternatives are from 
the efficiency frontier. This method also prescribes the criteria 
which these alternatives should improve and to what extent, to 
achieve efficiency [19]. Due to its prescriptive characteristics, 
DEA was used in this study to compare results with the 
classificatory methods. 

2.3. Analytic Hierarchy Process 

The AHP comprehends a hierarchical structure of 
objectives, criteria, sub-criteria and alternative [17] (value 
tree). Subsequently, pairwise comparisons evaluate the 
performance of the alternatives for each criteria and sub-
criteria. This seeks to portray the natural processing of the 
human mind, which by facing numerous elements, 
controllable or uncontrollable, integrates the properties into 
levels or groups.  

The AHP approach may consider the qualitative and 
quantitative aspects of decision problems involving the 
structuring of multi-criteria for choice in the hierarchy. This 
method evaluates the relative importance of these criteria, 
compares and ranks the alternatives. The AHP methodology 
involves the following steps [17]: 

Ø Step 1: identify the problem and determine the 
knowledge required for its resolution; 

Ø Step 2: establish a hierarchy, based on the purpose of 
the decision to be taken, followed by the criteria to be 
evaluated and, finally, the alternatives available 

Ø Step 3: the construction of a comparative matrix. 
Each element at the top is used to compare the elements 
immediately below (alternatives);  

Ø Step 4: the weights established by the comparisons 
are used to weigh the priorities at the next lower level; 

Ø Step 5: apply the priorities obtained through the 
comparative matrix among all criteria in the final analysis, 
after obtaining all the standardized matrices of each criteria.  

The AHP is based on the priority that differentiates the 
importance of the criteria, as presented in Table 1, in the range 
of 1 to 9, where 1 indicates the indifference of importance of 
a criteria toward the others, and 9 signifies the extreme 
importance of one criterion over another, along with the 
intensity of importance [20]. 
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Table 1. Scale of AHP values for paired comparison [20]  

Saaty Scale Numerical Evaluation Reciprocal 

i is extremely more important than j 9 1/9, 

i is very strongly more important than j 7 1/7 

i is much more important than j 5 1/5 

i is moderately more important than j 3 1/3 

i is equally important to j 1 1 

Intermediate 2,4,6,8 1/2, 1/4 ,1/6 , 1/8  

 

A judgment is the numerical representation of peer 
comparisons between the elements of two criteria. The group 
of all these judgments may be represented by a square matrix. 
Each judgment represents whether or not the element on the 
left column is dominant over an element of another column. It 
reflects on the answers of two questions: which of the two 
elements is most important regarding higher-level criteria and 
to what intensity, within the 1-9 scale, of Table 1. The 
diagonal positions   will be 1, as an element is equally 
important to itself. To fill the other elements of the matrix 
outside the diagonal, the judgments are made and the intensity 
of importance (weight) is determined in Eq. (2), which 
presents the scale of comparisons employed in the method. For 
the inverse comparisons, the reciprocal values of the upper 
right part of the matrix are placed in the lower left part of the 
matrix. 

𝐴 =

⎣
⎢
⎢
⎢
⎡
1 𝑎#9 … 𝑎#%

1 𝑎9#; ⋯ ⋯ 𝑎9%
⋮ ⋮ ⋮ ⋮

1 𝑎%#; ⋯ ⋯ 𝑎%%⎦
⎥
⎥
⎥
⎤
                                       (2) 

where:   

𝑎0. > 	+;																					
𝑎0. = 1	;	𝑎.0 = 1;					
𝑎0. = 	1 𝑎.0; ;														
𝑎0B = 	𝑎0. ∗ 	𝑎.B = 1

 

Therefore, the decision maker must perform n (n-1) = 2 
comparisons, where n is the number of elements of the 
analysed level. In the square matrix, we obtain 𝑎0.  for i = 
1;2...;n  and j = 1;2; …;n. These matrices are always mutually 
positive. Peer-to-peer comparisons are performed at all 
hierarchical levels. Each element 𝑎0.  of the line vector of the 
dominant matrix represents the domination of the alternative 
𝑎0 over the alternative	𝑎. .  

The resolution of matrix A results in the auto vector of 
priorities, which expresses the relative importance of each 
criterion by a weight. The nature of multi-criteria problems 
lies in the prioritization processes, as they involve significant 
trade-offs, requiring the assignment of weights for each 
criterion [21].  

The method selected by the author can be justified 
considering that many research decisions are strongly based 
on subjective judgments.  

2.4. Preference Ranking Organization Method for 
Enrichment Evaluations. 

The PROMETHEE method originates from the French 
school of decision-making developed by professors J.P.Brans, 
B. Mareschal, and P. Vincke [23]. It belongs to a family of 
multi-criteria methods of analyzis, classified as overcoming 
methods, which help decision makers to find the best among 
a set of possible decision alternatives. The success of the 
PROMETHEE method may be attributed to its mathematical 
properties and, particularly, to its ease in application [23].  

The implementation of the PROMETHEE method 
requires two types of information, namely: 

Ø Information on the relative importance (i.e., weights) 
of the considered criteria. 

Ø Information on the decision maker's preference 
function, employed when comparing the contribution of the 
alternatives in terms of each criterion. 

PROMETHEE does not provide specific guidelines for 
determining weights; it assumes that the decision maker is 
able to weigh the criteria appropriately, particularly in cases 
where the number of criteria is not too large or AHP may be 
used to implement this phase [23]. The second type of 
information involves the preference function that translates 
the difference between the evaluations of two alternatives (a 
and b) in terms of a criterion, into a preference degree ranging 
from 0 to 1. One alternative is efficient when it dominates 
another alternative for all criteria considered. Each criterion is 
associated with a value ”q” for indifference, a value ”p” for 
explicit preference, and an intermediate value ”d” between ”p” 
and ”q” that represents the difference between two actions for 
a given criterion. 

The main steps for implementing the PROMETHEE II 
method [22] are: 

Ø Step 1. Determine deviation based on pair-wise 
comparisons: 

𝑑.	(𝑎, 𝑏) = 	𝑔.(𝑎) −	𝑔.(𝑏)                                                 (3) 
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where 𝑑.	(𝑎, 𝑏) represents the difference between the 
performance 𝑔.(𝑎) of alternative a and performance	𝑔.(𝑏)	of 
alternative b for each criterion. 

Ø Step 2. Apply the preference function, as Eq. (4). 

𝑃.	(𝑎, 𝑏) = 	𝐹.	[𝑑𝑗	(𝑎, 𝑏)]	𝑗 = 1…𝑘	                            (4) 

where 𝑃.	(𝑎, 𝑏) indicates the preference of alternative a 
over alternative b in each criterion as a function of	𝑑.(𝑎, 𝑏). 

Ø Step 3. Calculate the preference index of the 
alternative compared to all other alternatives, as Eq. (5). 

𝜋	(𝑎𝑏) = 		∑ 𝑤.B
.S# ∗ 	𝑃.(𝑎, 𝑏)	∀	𝑎, 𝑏 ∈ 𝐴                  (5) 

where 𝜋	(𝑎𝑏) of a over b from 0 to 1 is defined as the 
weighted sum p(𝑎, 𝑏) for each criterion, associated with the 
jth criterion of alternative b for each criterion. 

Ø Step 4. Calculate the outranking flows based on the 
PROMETHEE I partial ranking according to Eqs. (6-7). 

∅X(𝑎) = 	
#

%Y#
	∑ 	Z	([,\)

\	∈]                                                       (6) 

∅Y(𝑎) = 	
#

%Y#
	∑ 	Z	([,\)

\	∈]                                                             (7) 

where ∅X(𝑎) and ∅Y(𝑎)represent the positive and 
negative overrun flows for each alternative. 

Ø Step 5. Calculate PROMETHEE's complete ranking, 
according to Eq. (8). 

∅	(𝑎) =	∅X(𝑎) − ∅Y(𝑎)	                                                     (8) 

where ∅	(𝑎) indicates the outranking for each alternative. 

 

2.5. Data Envelopment Analysis 

DEA is a nonparametric technique based on linear 
programming (MODM method) to determine the relative 
efficiency of production units. This technique relies on the 
measurement of relative efficiency between alternative units 
considering various inputs and outputs and identifying 
efficient units according to pre-established criteria.  DEA 
outputs serve as an evaluation element of inefficient units, or 
as a focus for setting efficient targets for each inefficient 
production unit [19]. 

The use of the DEA method to measure the relative 
efficiency of companies and production units has been highly 
attractive in several application sectors. This method assists 
decisions of public officials and private companies by 
identifying sources of inefficiency and the units that may serve 
as a reference for best practices [26]. 

The DEA approach uses linear programming to estimate 
the efficiency frontier, a hypothetical efficiency limit of the 
units studied, as illustrated in Fig.1. This methodology is 
capable of incorporating several inputs (resources, inputs, or 
production factors) and outputs (products) to calculate the 
efficiency of decision-making units, known as DMUs or 
Decision Making Units [26].  

DEA calculates the distance of each unit from the 
efficiency boundary by solving linear programming problems 

(PPL). All units or DMUs that meet this efficiency limit are 
considered efficient. However, the efficiency of the unit 
decreases as it moves further from the efficiency frontier. Fig. 
1 illustrates the relative efficiencies of various DMUs 
analysed using the DEA method. Units A, B, C, and D, which 
lie at the limit of relative efficiency, are considered efficient 
by the DEA method. Units E, F, and G, which are further from 
the relative efficiency limit, are therefore considered 
inefficient. 

 

Fig. 1. DEA efficiency frontier. Adapted from [1] 

The distance between points E (inefficient) and E' 
(efficient) is a measure of the amount by which unit E should 
increase to be considered efficient. Further 0E, is the 
efficiency measure of the unit E. Consider a set of n decision 
units ( j = 1;…;n) each having 𝑋0.  inputs (i = 1;…;m) and 
generating outputs 𝑌 .  (r = 1;…:; s), with 𝑈` and 𝑉0 the 
multipliers associated with the outputs and inputs, 
respectively. The weights w that maximize the weighted sum 
of the outputs for unit j, should be estimated. The sum 
calculated with these weights for remaining units should be 
less than or equal to 1. The efficiency 𝐸.  of unit j can be written 
as shown (9): 

𝐸d = max
∑ 𝑢`	𝑦`dj
`S#
∑ 𝑣0	𝑥0d*
0S#

																																																						(9)		

subject to:  
∑ 𝑢`	𝑦`. −	j
`S# ∑ 𝑣0	𝑥0. 	≤ 0𝑗 = 1,2…𝑛	*

0S#                (10) 

𝑣0𝑢0 	≥ 	𝜀	𝑟 = 1… . , 𝑠	𝑖 = 1… ,𝑚															  

where 𝑦`. and 𝑥0. are known outputs and inputs. Unit j is 
efficient if 𝐸. = 1. However, if 𝐸.  is less than 1, unit j is 
deemed inefficient. Equation (10) shows that a priori 
information on the weights, which represent the importance of 
different aspects (variables) in the analysis, is not required in 
DEA method.  

The solution of (10) indicates that each unit has the 
freedom to choose the weights through an optimization 
process, resulting in the best evaluation for the adopted 
criterion.  
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3. Methodology 

To evaluate the Renewable Wind Energy sources, five 
wind farms were selected. The criteria and sub-criteria were 
then selected after the literature survey [7]. The research was 
based on secondary data and primary data. The secondary data 
were obtained from reports available on corporate websites 
and primary data were collected, representing the expert 
judgement, through the application of an  internet 
questionnaire with twenty managers considering nine 
indicators distributed in three criteria: financial, technical and 
operational. After defining the decision matrix, the evaluation 
of the farm set was performed using multi-criteria methods 
(AHP, PROMETHEE and DEA) as detailed in Fig. 2 and 
discussed in the following subsections:  

 

Fig 2. Working methodology. 

3.1. Data Collection 

Data collection was based on primary and secondary data. 
The primary data were obtained through a questionnaire 
developed using a free and secure platform offered by Google 
Docs. The questionnaire with multiple-choice questions was 
submitted to 20 expert evaluators (industry professionals). It 
was divided into two parts, the first section specifically 
covering the evaluation of the three guiding criteria: Financial, 
Technical, and Energy. The questionnaires developed through 
worksheets as in [27] were completed by the expert evaluators, 
exported to Excel, and inserted in the AHP method. The 
second part considered the nine sub-criteria, as shown in Table 
2. Secondary data were obtained from Brazilian Electricity 
Regulatory Agency (ANEEL). 

3.2. Criteria and Sub-Criteria Selection 

The literature reveals that assessment studies in the 
renewable energy sector use multiple perspectives covering 
technical, economic, social, environmental, and political 
factors [13]. This study considered the first three performance 
criteria associated with sub-criteria to support the strategic 
decisions of the decision maker, as shown in Table 2. The aim 
was to evaluate the relative efficiency of each farm during 

their operation to evaluate the companies’ returns regarding 
expenditures in the same period. 

3.2.1. Economic Criteria 

The objective was to evaluate the results of each farm 
during its operation in order to evaluate the return of a 
company in relation to the expenses in the same period.  The 
economic criteria covers the following: 

Park Gross Operating Revenue (PGOR). The total 
revenue generated from the activities of the organization, i.e. 
the activities for which the company was incorporated, 
according to their statutes and social contract. 

Average Cost of Operation and Maintenance 
(ACOM). The average cost of Operation and Maintenance for 
the BOP (Balance of Plant) refers to all the auxiliary 
components and systems of a power plant in the process of 
energy supply (transformers, disconnectors, circuit breakers, 
inverters, support structure, labour, and inputs), covering the 
work scope between the service provider and customer. 

Average Cost of Operation and Maintenance of Wind 
Turbines (ACOMT). The ACOMT is weighted amongst all 
the activities and responsibilities defined in the work scope 
between service provider and customer. Regarding the 
operation, a set of actions are performed 24 hours a day, 365 
days per year. The ACOMT considers the activities of 
preventive maintenance, predictive maintenance, small and 
large corrections and regulation of different/various 
equipment or systems intended for operation. As this involves 
the highest risk and expense, maintenance activities are 
detailed to obtain the best understanding among the parties 
involved in the contracts. 

3.2.2. Energy indicators 

Energy Indicators reflect what is produced in a specific 
time interval. These identify how much a farm is capable of 
producing relative to the following: 

Installed Active Power (IAP). The IAP of a system is the 
sum of installed, granted, or authorized power of the energy 
farm in operation in the system, defined in accordance with 
the specific Brazilian Electricity Regulatory Agency 
(ANEEL), and authorized power import capacities located in 
the system.  

Average Capacity Factor (ACF). The ACF is a metric 
that determines the percentage of energy effectively captured 
in relation to the energy that may be captured if the wind 
turbines operate continuously at full capacity, which is not 
feasible when there is insufficient wind to generate the 
nominal capacity. Based on this measure, one may evaluate 
the wind potential or the actual or estimated use of the total 
installed power of a region.  

Complex Availability (CA). The CA installed capacity is 
defined by the sum of the nominal active electrical powers of 
the plant generation. The power unit currently used by 
ANEEL is kWh (kilowatt-hour) or MWh (megawatt hour). 
These indexes indicate the power per unit of time that a power 
generation plant can produce at a specified time. 
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3.2.3. Technical indicators 

Technical indicators estimate the quality of services 
provided by measuring power outages and average life of the 
large components of the wind farm: 

Mean Time Between Failures (MTBF). The MTBF is 
an important indicator that calculates the average time 
between the end of one failure and the beginning of another 
(the next fault) in a repairable equipment. 

Mean Time To Repair (MTTR). The MTTR indicator is 
the average time required to perform a repair after the failure 
occurred. MTTR refers to the time taken by maintenance 
personnel to restart the machine, restart the operation of the 
fault conditions until the repair is complete and the machine is 
in an acceptable condition to operate. 

Average Life Time of Equipment (ALTE). ALTE 
considers the average life expectancy of a set of large 
components that constitute a wind farm or complex.  

Table 2. Selected Criteria 

Criteria Sub-Criteria Acronyms 

Economic 

Park Gross Operating 
Revenue 

PGOR 

Average Cost of OM of 
Wind Turbines 

ACOMT 

Average Cost of Operation 
and Maintenance 

ACOM 

Energetic 

Installed Active Power IAP 

Average Capacity Factor 
[19] 

ACF 

Complex Availability 
(Wind turbines and BOP) 

CA 

Technical 

MTBF (Mean Time 
Between Failures) of the 
Complex 

MTBF 

Mean Time to Repair of the 
Complex (Average) 

MTTR 

Life Time of Equipment ALTE 

 

4. Farms evaluation 

The evaluation of the farms was performed using the steps 
shown bellow, Fig. 3. 

 

4.1. Analytic Hierarchy Process 

The AHP criteria weight was determined through a 
questionnaire provided to twenty experts. It was decomposed 
into two parts. In the first part economic, technical, and 
energetic criteria were considered, the respondents had to 
compare one in relation to the other based on Table 1.  

The ranking position of each criterion was determined as 
the mean of the weights attributed by the respondents, as in 
Table 3.  

 

 
Fig. 3. Steps used to evaluate the farms.  

Table 3. Consolidated results of the 20 evaluators for the 
criteria 

Criteria Weight Ranking (Rkg) 

Economic 54.10% 1 

Energetic 28.20% 2 

Technical 17.70% 3 

 

These results indicate that the economic criterion is twice 
more relevant than the technical criterion and three times more 
important than the energy criterion.  

The second part of the questionnaire was focused on 
analysing the individual performance of the nine sub-criteria 
according to Saatys scale [20]. As in the previous case, the 
average of the answers provided by the twenty experts was 
calculated. Table 4 shows the results, wherein the ranking of 
each sub-criterion provides its weight and position.  

The Complex Availability (CA) had a weight of 24.8%, 
followed by Park Gross Operating Revenue (PGOR) with 
15.5%. The Installed Active Power (IAP) was identified as the 
less important criterion, as shown in Table 4. 
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Table 4. Sub−Criteria Ranking 

Criteria Sub-Criteria Weight Rank Criterion Weight 

Economic 

Park Gross Operating Revenue 15.50% 2 

39.94% Average Cost of OM of Wind Turbines 11.20% 4 

Average Cost of Operation and Maintenance 6.30% 8 

Energetic 

Installed Active Power 3.80% 9 

43.30% Average Capacity Factor 14.90% 3 

Complex Availability 24.80% 1 

Technical 

Mean Time Between Failures 8.40% 6 

23.10% Mean Time to Repair of the Complex 6.70% 7 

Life Time of Equipment 8.90% 5 

 

4.2. PROMETHEE 

The secondary data indicators for the nine criteria in the 
five farms or complexes, identified here, as farms from A to 
E, were secondary data obtained from reports available on 
corporate websites and shown in Table 5. The first three are 
classified as financial criteria, the next three as technical 
criteria and the last three represent the energetic criteria. The 
first column of the Table 5 represents the farms; the next nine 
are the performance indicators for each farm. The second line 
represents the maximizing or minimizing objective for each 
criterion. For instance, the highest the gross operating revenue 
and the lowest cost of the average wind turbine, the better. 
Therefore, the PGOR criterion should be maximized and the 
ACOMT should be minimized when applying PROMETHEE.  

This paper takes the PROMETHEE II, which provides 
complete ranking for analysing the performance of the five 
wind farms, from the best to the worst considering the 
objective of maximizing or minimizing the criteria, as 
specified in Table 5. 

The PROMETHEE II implementation requires the 
operation data and two additional information: the weight that 
express the relative importance of each sub-criterion and the 
preference function. The weights are those obtained from 
AHP evaluation, Table 4. The preference function translates 
the difference between the evaluations of two alternatives into 
a preference degree ranging from zero to one, as expressed in 
Eq. 3 to 8. The indifference was taken as 5% from the 
maximum and minimum range of each normalized criterion, 
as shown in Table 6. From the joint application of AHP and 
PROMETHEE methods, Farm E was identified as the 
benchmarking farm, as it has the best performance when 
compared to each other, Table 6. The influence of the criterion 
weight on the farm ranking was simulated through three 
scenarios. The first applied the “AHP weight” (line eight, 
Table 6), while the second assigned equal/uniform weights 
(1=9=0:111) to the nine “Uniform Weight” criteria (line nine, 

Table 6).  The tenth  line of Table 6, “Proportional Weight” 
shows weight distribution similar to the one shown in Table 3 
((54:1=3) = 18:03 ; (28:2=3) = 9:4 ; (17:7=3) = 5:9). The 
results presented in Table 7 indicate that the weights do not 
have a significant influence on the farm ranking 

4.3. DEA 

Two scenarios were considered to evaluate the set of five 
wind farms using DEA. 

4.3.1. Scenario 1: 

The DEA inputs were ACOM, IAP, ACOMT, and ALTE 
and the outputs were PGOR, ACF, CA, and MTBF, as 
variables to be maximized, while MTTR was the variable to 
be minimized. The results of this scenario indicate that all 
farms are efficient on some axis (each variable corresponds to 
one axis), as shown in Table 8. An analysis of the second part 
of Table 8 indicates that the variables PGOR and DISP 
contribute to the efficiency of complete A in the ratio 0:3 to 
0:7. The efficiency of farm B is determined by MTBF based 
on the data presented in Table 8, which indicates the unit B 
with the longest time among failures. The efficiencies of farms 
C, D, and E are determined by PROB, CA, and ACF, 
respectively. The maximum efficiency was obtained when a 
large number of variables (input + output) were compared 
with the number of units under study. This fact diminished the 
discriminatory power of DEA.  

A situation may arise where each analysed unit (FARM) 
has the best performance for a given criterion, classifying the 
unit as efficient in this criterion. A unit can be classified as 
efficient in DEA when it has the highest value for an indicator 
in a given criterion compared with all other units, as verified 
in the results presented in Table 7. In this scenario, no 
difference in efficiency was found among the analysed units. 
This result motivated the proposal of a new scenario presented 
below. 
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Table 5. Operation data for five farms units. 
 

FARM 
Financial Technical Energetic 

Max. Min. Min. Max. Min. Max. Max. Max. Max. 
PGOR ACOMT ACOM MTBF MTTR ALTE CA ACF IAP 

A 70 390 73 1 10 2014 0.85 0.55 60 
B 210 170 125 4 3 2017 0.9 0.35 220 
C 180 600 54 1 8 2013 0.88 0.5 180 
D 66 305 52 5 2,5 2014 0.95 0.55 70 
E 205 203 65 4 2 2016 0.96 0.6 182 

 
Table 6. Normalized Operation Data. 

FARM PGOR ACOMT ACOM MTBF MTTR ALTE CA ACF IAP 
A 0.02 0.48 0.71 0 0 0.25 0 0.8 0 
B 1 1 0 0.75 0.87 1 0.45 0 1 
C 0.79 0 0.97 0 0.25 0 0.27 0.6 0.75 
D 0 0.68 1 1 0.93 0.25 0.9 0.8 0.06 
E 0.96 0.92 0.82 0.75 1 0.75 1 1 0.76 

Indifference 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
% AHP Weight 15.55 11.04 6.35 8.24 6.7 8.89 24.8 14.89 3.55 

% Uniform Weight  11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 
% Proportional Weight  18.03 18.03 18.03 9.4 9.4 9.4 5.9 5.9 5.9 

 
Table 7. PROMETHEE Weight Ranking. 

FARM AHP Uniform Proportional 
E 0.731704 0.672000 0.64600 
D 0.576590 0.568040 0.55547 
B 0.417662 0.460000 0.49300 
C 0.343940 0.373300 0.38026 
A 0.187247 0.199000 0.19800 

 
Table 8. DEA Scenario 1, Four Inputs - Five Outputs Farm Efficiency Analysis. 

Sub-Criteria A B C  D E 
ACONT 0 0 0  0 0 

IAP 0 0 0  0 2.1 
ALTE 1 1.8 0.6  1.6 0 
ACOM 0.5 0 1.2  0.3 0.7 
PGOR 0.3 0 1  0 0 

MTBF (H) 0 1 0  0 0 
CA 0.7 0 0  1.1 0 

ACF 0 0 0  0 1.1 
MTTR (H) 0 0 0  0 0 
Efficiency 1 1 1  1 1 

 
Table 9. DEA Scenario 2, Annual Performance Efficiency Evaluation 

Sub-Criteria A B C D E 
PGOR 1 0.830 1 1 1 

ACOMT 1 0.751 1 0.578 1 
ACOM 1 1 0.623 1 0.958 

IAP 1 1 1.0 1 0.832 
CA 1 1 1.0 1 1 

ACF 1 1 0.697 1 1 
MTBF 1 1 1.0 0.267 0.233 
MTTR 1 1 1.0 0.628 0.409 
ALTE 1 1 1.0 0.959 1 

Efficiency 1 0.94 0.91 0.76 0.75 
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2.1.1. Scenario 2: 

This scenario follows a similar procedure to the AHP and 
PROMETHEE methods, involving a pair-to-pair comparison 
of the criteria. One criterion was fixed as the output, while the 
other eight were considered as input. Nine models were 
developed: Model 1 had the output variable PGOR with all 
other variables as inputs. The goal was to maximize PGOR 
with the other variables remaining constant. In Model 2, the 
aim was to minimize the output variable ACOM, while all 
other variables were considered constant. This procedure was 
applied to all seven remaining simulations. Table 9 presents 
the results for each of the evaluations. The last row of this table 
represents the average performance of each farm obtained 
considering all nine criteria; this has been used to establish the 
efficiency ranking for each farm. Wind farm A achieved the 
maximum performance for all criteria followed by farm B, 
while farm E having the worst performance. In addition to the 
ranking of the farm units, the DEA method is prescriptive and 
indicated that farm B should improve the PGOR and ACOMT 
criteria by 17% and 24.9%, respectively, to achieve the 
maximum efficiency. The same analysis may be applied to the 
other farms. The performance of wind farm C should improve 
by 37.7% and 30.3% corresponding to the ACOM and ACF 
criteria, respectively, to achieve maximum efficiency, while 
farms D and E should improve the performance of all four 12 
indicators. 

5. Comparison of Methods 

When comparing the evaluated plants, the PROMETHEE 
and DEA methods presented similar results and parity in the 
plant efficiency ranking, shown in Table 10. This result, 
reinforces that both multi-criteria methods, with or without 
attributed weights, may be applied to assist the decision-
making process. It should be emphasized that the number of 
variables and possible correlations between the indicators may 
contribute negatively to the application of the DEA method. 
However, these aspects are not relevant to the PROMETHEE 
method 

Table 10. Comparison of results from three PROMETHEE 
scenarios and one DEA 

 
PROMETHEE WEIGHT DEA 

AHP Uniform Proportional 
E 0.731704 0.672000 0.64600 0.86400 
D 0.576590 0.568040 0.55547 0.63200 
B 0.417662 0.460000 0.49300 0.62780 
C 0.343940 0.373300 0.38026 0.35500 
A 0.187247 0.199000 0.19800 0.29910 

 

6. Conclusion 

This work evaluated the efficiency of five Brazilian wind 
farms considering three criteria and nine sub-criteria by three 
methods; AHP, PROMETHEE and DEA multi-criteria 
methods. The first two consider the effective participation of 
the decision maker. The proposed approach is useful to 
support the development of renewable energy policies and 

provides important information for planning and investment 
in this sector. 

A significant item to note is that the experts had a different 
perception of the macro criteria (Financial, Energy, and 
Technical) from when considering the sub-criteria evaluation. 
When considering the macro criteria, the economic weight 
was 54.1%, while it was 32.94% when evaluating the 
individual sub-criteria. The economic criterion occupied the 
first position in scenario one, while it was at the second 
position in scenario two. The energetic criterion, which was at 
the second position in scenario one, moved to the first position 
in scenario two, as shown in Fig. 4. However, a better 
energetic ranking was expected, as it is the main objective of 
wind farms. The AHP methodology contributed significantly 
to establish the weights for each PROMETHEE performance 

The overall results of the study corroborated the 
importance of AHP, PROMETHEE and DEA methods to 
assist decision-making. Through these methods, it was 
possible to model the performance indicators and compare the 
efficiency of the wind power plants. The DEA performance 
evaluation of the wind farms is important, as it identifies the 
inefficient farms and the effort needed to become efficient. 
The application of DEA, similar to the AHP and 
PROMETHEE methods, with pairwise criteria increases the 
discrimination of the method. In general, the assessment of the 
performance of renewable energy farms requires complex 
analysis, which may be defined as a multidimensional space 
of different indicators and objectives. 

 

Fig. 4. Weights of the individual criteria and the nine sub-
criteria 

Multi-criteria decision analysis techniques provide a 
reliable methodology for classifying renewable energy farms, 
considering criteria and sub-criteria with multiple inputs and 
outputs. Although only five farms were evaluated in this 
study, the promising results indicate that performance analysis 
may be employed to compare the farm efficiency and suggest 
actions for the low-performance farms. Research with these 
performance indicators can help in the decision analysis in 
future energy contracts, which in turn could be in free 
contracting (ACL) and regulated (ACR) environments. These 
indicators should be considered in the business model, as they 
influence the plant's gross operating revenues. 
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