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Abstract- The implementation of renewable generators together with a battery storage into an isolated Microgrid (MG) has 

become essential to minimise fuel utilization and contribute to maintain continuous supply of electricity. This paper studies the 

optimal set point of isolated MG units containing renewable generators, diesel generators and battery storage. The optimal 

energy dispatch of MG’s units is determined to supply the required load demand for a 48h horizon time. As the battery device 

has an important contribution in the MG, this paper proposes to implement battery degradation cost in the optimization model 

in addition to the fuel cost function. For this purpose, the Rainflow algorithm is used to count charging-discharging cycles and 

quantify the battery degradation. In addition, a Hybrid Particle Swarm Optimization with Sine Cosine Acceleration 

Coefficients (H-PSO-SCAC) algorithm is used to solve the defined objective function for an optimal energy management 

system of the isolated MG. A Weight Factor (WF) is proposed in the objective function. For the simulation tests, different 

values of WF are considered. The impact of WF is analysed on the algorithm behaviour, on the status of the State Of Charge 

(SOC) of the battery and its influence on the optimized MG cost function. The results demonstrate that the selection of an 

appropriate value of WF allows to the H-PSO-SCAC algorithm to achieve the best solution. In addition, with WF equals to 0.5, 

the charge/discharge cycles are reduced and the battery SOC is more stable. 

Keywords Microgrid; hybrid resources; battery degradation cost; weight factor; Rainflow algorithm; hybrid particle swarm 

optimization with sine cosine acceleration coefficients. 

 

1. Introduction 

A Microgrid (MG) is a distribution electrical network 

that facilitates the penetration of different local generation 

sources, with or without storage devices [1]. For reliability 

and economic purposes, a MG can include Renewable 

Energy Source (RES), conventional generators, storage 

devices and consumption loads.  A MG can operate in both 

Grid-Connected (GC) mode or isolated mode. In GC mode, 

the MG is linked to the main grid through a point of common 

coupling, and an energy trading can be of benefit by 

exchanging energy with the grid as buyer or seller.  

An Energy Management System (EMS) has been widely 

utilized for an optimal dispatch of MG units. The EMS 

strategies can optimize the dispatching of the power output 

of the MG generating units, satisfy the Load Demand (LD) in 

economic manner, and properly regulate the frequency and 
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voltage of the MG systems. Boqtob et al. [2] can be useful as 

a state of the art of MG-EMS frameworks, depicting the 

different generation units and storage devices used in MG 

structure, the integration of combined heat and power 

systems and electric vehicles, and the main Objective 

Functions (OFs) and constraints which are modelled in MG-

EMS as well as the used optimization techniques. 

The most installed RES in MG is Photovoltaic (PV) 

power and wind power. However, due to the intermittent 

behaviour of renewable sources, it is preferable to be 

accompanied by appropriate storage units and optimally 

incorporated into MG system. 

Given the attention to the optimal utilization of Battery 

Storage (BS) in MG, several studies have been investigated 

to find the optimal dispatch of MG generation and storage 

units. For this purpose, various advanced optimization 

techniques have been reported. A Mixed Integer Linear 

Programming (MILP) is used in [3] to solve the optimal 

scheduling of Wind Turbine (WT) in MG with PV, Diesel 

Generator (DG) and BS. The paper discussed the effect of 

WT scheduling on the battery capacity as well as renewable 

generation and cost reduction. A Genetic Algorithm (GA) 

combined with fuzzy inference systems is proposed in [4] to 
solve the EMS for GC-MG with Energy Storage System 

(ESS) and local generation. The proposed EMS decides the 

fraction of the MG energy that must be transferred to the 

ESS and the residual fraction will be exchanged to the main 

grid. The main objective is to maximize the profit generated 

by energy trading with the grid. A day-ahead scheduling is 

investigated in [5] for an EMS optimal solution. A new 

strategy based on Fuzzy logic is used to solve the EMS. A 

dynamic dispatch of BS in MG is investigated in [6]. The 

problem’s objective function is modelled to maximize the 

operational profit of the battery utilisation. A reinforcement 
learning combined with Monte-Carlo tree search is proposed 

to solve the battery management. In [7], the studied MG is 

composed of PV panels with batteries to ensure the LD 

consumption.   The proposed EMS is based on the State Of 

Charge (SOC) levels of BS which is limited by minimum 

and maximum boundaries to avoid the battery over charge 

and over discharge. In addition, the simulation results are 

discussed for islanded and GC operations. In [8], an EMS 

based on model predictive control and quadratic 

programming is discussed to manage GC-MG with WT farm 

and battery devices. The main objective is to feed the 

electricity grid with WT power according to the variations of 
electricity price and peak periods in a day, by handling 

efficiently the battery's SOC and charge/discharge cycles. An 

EMS based on two stage rolling horizon is investigated in [9] 

for an optimal solution of GC-MG with PV system and BS. 

The optimization problem is modelled to minimize the grid 

energy daily cost as well as maximize the consumption of 

renewable sources. The optimal control setting of the BS is 

determined by using MILP. In [10], a Multi-population brain 

storm optimization with differential evolution strategies is 

investigated to solve total optimization of a smart city. The 

problem objective function is defined to minimize the energy 
cost, the actual electric power loads and reduce CO2 

emissions. In [11], an EMS is presented to control the power 

of each energy source. The EMS is tested for a system with 

fuel cell power module, BS and supercapacitor. A flower 

pollination algorithm is investigated in [12] to solve the EMS 

of GC-MG with integration of RES, micro turbine, fuel cell 

and BS. The objective function is the minimization of 

operational cost of BS, cost of generated energy, cost of the 

energy exchanged with the grid, as well as demand response 

cost. In [13], a modified Particle Swarm Optimization (PSO) 

algorithm is proposed to find the optimal operating point of 

BS in a community MG. A penalty function is introduced for 

an efficient charging and discharging battery energy. 

Most of these research works don’t take into 
consideration the minimization of battery life span as 

objective function. As demonstrated, the charging and 

discharging cycles have significant effect on the life span of 

a BS. For this purpose, this paper incorporates the lifecycle 

degradation cost as one of the objective functions to be 

minimized. The Rainflow algorithm is used to count 

charging-discharging cycles and then quantify the Battery 

Degradation Cost (BDC). Boqtob et al. [14] have justified 

the effectiveness of the Hybrid Particle Swarm Optimization 

with Sine Cosine Acceleration Coefficients (H-PSO-SCAC) 

to solve the unit commitment of a grid connected MG, The 

H-PSO-SCAC has better result in terms of convergence 
accuracy, reliability in searching and efficiency than PSO 

and GA. In this paper, the H-PSO-SCAC algorithm is used to 

solve a 48h scheduling of a rural isolated MG units. 

The structure of the paper is presented as follows. 

Section 2 describes MG units modelling, Section 3 presents 

the proposed EMS including the proposed objective function 

and system constraints, Section 4 introduces the 

implementation of H-PSO-SCAC and Rainflow algorithm in 

the EMS, Section 5 describes Simulation results and 

discussion, and Section 6 concludes the paper. 

2. MG Modelling  

The studied MG consists of RES with PV panels, WT 

units, BS and DGs. 

2.1. Photovoltaic Generator  

In a simple model, the energy output of a PV is 

proportional to solar irradiation and can be determined as 

follows by Eq.(1) [15]: 

                         
PV PV PV PVE I A =                                  (1) 

Where IPV is the hourly solar irradiation incident 

(kWh/m2) on the PV panels, APV is the PV panels area (m2) 

and ηPV is the PV panels efficiency. 

The total energy output for a number of PV panels can 

be defined as follows:         

                        *PVT PV PVE E N=                                   (2) 

Where NPV is the number of PV panels.  
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2.2.  Wind Turbine Generator  

The energy output of WT is proportional to Wind Speed 

(WS) at the hub height, and can mathematically expressed by 

Eq.(3) [15]: 

                 30.5WT WT air PE C AV =                               (3) 

Where ηWT is the WT’s efficiency, ρair is the air density 

(Kg/m3), CP is the power coefficient of WT, A is swept area 

of WT rotor (m2), V is the hourly WS (m/s) at hub height. 

The hourly WS at hub height can be modelled by Eq.(4) 

[16]: 

                          ( )hub

ref ref

hV

V h

=                                       (4) 

Where Vref is the hourly WS (m/s) measured at the 

reference height href (m), hhub is the hub height (m) and α is 

the power law exponent ranged in [1/7,1/4], and generally α 

is considered as 1/7 for an open space [17]. 

The total energy output for a given number of WT can 

be expressed as follows:  

                          *WTT WT WTE E N=                                (5) 

Where NWT is the number of WT generators. 

2.3. Battery Energy Storage 

The inclusion of BS is desirable to take full advantage of 

the RES installed in the isolated MG and to provide more 

energy. 

The battery energy is depended to the battery energy at 

previous time interval and battery average power in the 
current time interval. Power is subtracted from battery 

energy at t instant, to increase the amount of available 

energy, in case of charging mode, or to decrease the available 

energy in case of discharging mode. 

The battery power can be defined according to the 

battery operation mode as follows: 

  ( ) ( ) 0Bat BdchP t P t=   if the battery is discharged.          (6) 

  ( ) ( ) 0Bat BchP t P t=   if the battery is charged.                (7)   

  The battery energy can be defined as follows:              

( 1)  ( ) ( * )* ( )Bdch

Bat Bat Bch Bch

Bdch

P
E t E t P Delta t


+ = − +           (8) 

Where PBdch and PBch are the battery discharge power and 

the battery charge power, respectively. ηBch and ηBdch are the 

battery charge efficiency and the battery discharge 

efficiency, respectively and Delta(t) is the time slot. 

The initial value of battery energy is depended on the 

initial SOC value: 

          _( 0)  ( 0)*Bat Bat usableE t SOC t E= = =                  (9) 

The calculation of SOC is deduced from the SOC at 

previous time interval and power variation over each time 

interval, with respect to the usable battery energy, taken into 

consideration charging and discharging modes. 

_

( * )* ( )

( 1)  ( )

Bdch
Bch Bch

Bdch

B usable

P
P Delta t

SOC t SOC t
E




+

+ = −      (10) 

Where EBat_usable is the battery usable energy. 

3. EMS Problem Formulation 

3.1. Objective Function 

3.1.1. Cost of Diesel Energy 

Among the energy sources in the studied MG, the energy 

generated by PV and WT depend on the environment 

conditions and it is with free generation cost contrary to DG 

source that requires fuel for electricity production. Therefore, 

the Fuel Cost (FC) of DGs is defined by F1 as follows: 

              1

1 1

( ( ))
DG

i

NT

i DG

t i

F C P t
= =

=                                   (11) 

Where T is the horizon time, NDG is the number of DGs, 

and Ci(PDGi(t)) is the FC corresponding to DGi. 

The FC of each DG at t time is modelled by a quadratic 
function of DG power output and is expressed by Eq.(12) 

[18]: 

                  
2( ( )) ( ) ( )

i i ii DG i DG i DGC P t a P t b P t= +                     (12) 

Where ai and bi are cost coefficients of DGi and PDGi(t) is 

the DGi’s power output at t time. 

3.1.2. Battery Cost Degradation 

The life of battery cells is very sensitive to the charge 

and discharge cycles of battery operation mode [19], 

resulting in degradation of the battery life, thus BDC must be 

included in the operating cost of a battery system [20]. 

In this paper, an equivalent cycling degradation cost of 

charging/discharging cycles for a given Depth Of Discharge 

(DOD) is proposed as the second objective function to be 

optimized. The degradation cost model of battery system 

defined by F2  is employed in [21] as follows: 

            2 _

1

* ( , )
T

bat cyc

t

F C TLL t DOD
=

=                        (13) 

Where Cbat_cyc is the cycling cost involved for 
charging/discharging cycles from the total investment cost of 

the battery and TLL(t,DOD) is the life loss of the battery over 

the time period T, for counted cycles of DOD. 

We will apply the Rainflow algorithm to count the total 

number of cycles corresponding to cycle DOD. 
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In this paper, the total life lost, TLL, from a SOC profile 

is calculated by summing up the life loss of all I number of 

cycles as follows: 

                   
1

( )
I

cyc i

i

TLL S DOD
=

=                               (14) 

Where Scyc(DOD) is the cycle depth stress function of the 

battery for charging/discharging operations. It can be defined 

as follows [22]: 

          2.03( ) (5.24 4)cycS DOD E DOD= −                     (15) 

Figure 1 illustrates this relationship between cycle life 

loss and DOD, it is observed that the cycle life loss of battery 

increases with the cycle depth. 

The battery life is affected generally by self degradation 

and cycle degradation. Self degradation is related to the 

effect of non-operational factors such as temperature, 

humidity [23]. By contrast, cycle degradation represents the 
effect of operational factors such as cycle depth, charging 

and discharging modes [24]. 

The cycling cost can be determined by taking out the self 

cost of the total investment cost as follows [21]: 

                   
_ _bat cyc Bat inv SDC C C= −                             (16) 

Where CBat_inv represents the total investment cost of the 

battery and CSD indicates the self-degradation cost of the 

battery over the time period. 

 

Fig. 1. Cycle life versus depth of discharge of lithium-ion 

battery. 

 

 

 

 

 

The total investment cost of the battery can be expressed 

as follows: 

        
_ * * *Bat inv Bat M Bat BatC N C N C CRF= +               (17) 

Where NBat is the number of installed batteries, CM is the 

maintenance costs ($/kWh), CBat is the cost of purchasing the 

batteries ($/kWh), and CRF is the capital recovery factor and 

can be expressed as follows: 

                        
(1 )

(1 ) 1

n

n

i i
CRF

i

+
=

+ −
                               (18) 

Where i is the annual real interest rate and n is the 

battery lifetime. 

3.1.3. Combined Diesel Energy Cost with Battery 

Degradation Cost in the EMS 

For the combination of DGs and BS in the EMS of 

isolated MG, there are two objective functions. One objective 

function concerns the minimization of the FC of 

conventional generators. The second objective function 

concerns the minimization of the degradation cost of the 

battery. Therefore, the objective function can be formulated 

as follows: 

  

1 2

_

1 1 1

* (1 )*

* ( ( )) (1 )* * ( , )
DG

i

NT T

i DG bat cyc

t i t

F m F m F

m C P t m C TLL t D
= = =

= + −

= + − 
 (19) 

The objective function is subjected to the system 

constraints presented in the following section. m and 1-m are 

the weight factors (WFs) and the following condition is 

obligatory to be satisfied for choosing weight values: 

                           (1 ) 1m m+ − =                                   (20) 

The minimum value of the objective function represents 

the economical dispatching of the isolated MG power 

sources while considering the degradation of the BS. 

3.2. Problem Constraints  

3.2.1. Power Balance 

The power balance constraint, which indicates that all 

MG power sources including PV and WT, BS unit and DGs 

should necessarily meet the power LD of the MG at every 

hour, can be expressed as follows: 

   
1

( ) ( ) ( ) ( ) ( )
i

n

DG WT PV Bat load

i

P t P t P t P t P t
=

+ + + =          (21) 

Where PDGi(t) is the power output of DGi at t time 

interval, PWT(t) is the power generated by WT at time interval 

t, PPV(t) is the power output of PV panels at time interval t, 
PBat(t) is the power of battery at time interval t, and Pload(t) is 

the power of LD at time interval t. 
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3.2.2. Renewable Generation Limits 

The power generated by RES depends on the 

environment conditions, therefore, the production of PV and 

WT at time interval t should be maintained within minimum 

and maximum power limits as follows [25]: 

               
,min ,max( )PV PV PVP P t P                                (22)                                                                                                                       

               
,min ,max( )WT WT WTP P t P                                (23)                                                                                                      

Where PPV,min and PPV,max are the minimum and 

maximum power limits produced by PV panels, respectively. 

PWT,min and PWT,max are the minimum and maximum power 

limits produced by WT, respectively. 

3.2.3. Diesel Generator Limits  

The power output of DG in time interval t should be 

maintained within minimum and maximum power limits as 

in Eq.(24) [18]: 

                 ,min ,max( )
i i iDG DG DGP P t P                           (24) 

Where PDGi,min and PDGi,max are the minimum and 

maximum power limits produced by DGi, respectively. 

The power produced by DG is also limited by the 

physical constraints of starting up and shutting down, which 

are presented by ramp rate limits, and expressed by Eq.(25) 

[18]: 

        ( 1) ( )
i ii DG DG iDR P t P t UR−  + −                         (25) 

Where DRi and URi are the down-ramp and the up ramp 

limits of DGi, respectively. 

3.2.4. Battery Constraints 

The power of the battery must be within the prescribed 

charging and discharging power limits at any time: 

                  
,max ,max( )Bch Bat BdchP P t P                               (26) 

Where PBch,max  and PBdch,max  are the battery maximum 
charging power and the battery maximum discharging power, 

respectively. 

The energy level of the battery must be maintained 

within the minimum and maximum limits at any time: 

                  
,min ,max( )Bat Bat BatE E t E                                (27) 

Where EBat,min and EBat,max are the minimum and 

maximum battery energy limits, respectively. 

The SOC levels have noticeable effect on battery life; 

therefore, it is desirable to maintain SOC of the battery 

within the minimum and maximum limits: 

                  
min max( )SOC SOC t SOC                             (28) 

Where SOCmin and SOCmax are the minimum and 

maximum battery SOC limits, respectively. 

4. EMS Approaches 

4.1. Rainflow Algorithm 

The Rainflow algorithm can be used in battery stress 

analysis to count charging-discharging cycles and quantify 

their cumulative effect. In this paper, the Rainflow is used to 

count cycles and measure their amplitudes for a given SOC 

profile [26]. Figure 2 depicts a simple example of SOC 

profile to apply Rainflow as described below [22]: 

1. Start counting and measurement from the beginning 

of the battery SOC profile. 

2. Calculate the absolute value of the difference 
between two successive turning points as 

follows: 1 1 0d d d = − , 2 2 1d d d = −  , 3 3 2d d d = − …. 

3. A full cycle of depth Δd2 is determined if 

2 1d d   and
2 3d d   . Then, Remove d1 and d2 from the 

profile, and repeat the process using points
0d ,

3d ,
4d , 

5d … 

4. If a cycle is not determined, shift the identification 

forward and repeat the process using points
1d , 

2d , 
3d , 

4d … 

5. The process of cycle identification is repeated until 

no further full cycles can be determined throughout the 

remaining profile. 

The obtained result by applying Rainflow to the example 

of SOC profile depicted in Fig. 2 is as follows: a discharging 

half cycle of depth 60% and charging half cycle of depth 

60%, one full cycle of depth 50% and two full cycles of 

depth 20%. 

 

Fig. 2. Example of SOC profile limited between 20% and 

80%. 

 

 

 

 

https://www.linguee.fr/anglais-francais/traduction/successive.html
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4.2. Hybrid PSO with Sine Cosine Acceleration Coefficient 

The Particle Swarm Optimization (PSO) is originally 

developed by Kennedy and Eberhart in 1995 [27] as nature 

inspired intelligence algorithm, inspired by social behaviour 

of organisms in groups. A group of particles are initially 

searching food in the search area with a random manner, and 

then look to follow the one that is nearest to the food. In the 

PSO, each particle is characterised by a fitness value that is 

computed by the fitness function to be optimized, and has a 

velocity that defined the move of the particle. The PSO 

changes the particle position Xi according to the update 
velocity Vi in every iteration as described by Eq.(29) and 

Eq.(30)  [28]: 

             

1

1 1

2 2

( )

        ( )

t t t t

i i i i

t t

i

V w V c r pbest X

c r gbest X

+ =  +   −

+   −
             (29) 

                        1 1t t t

i i iX X V+ += +                                  (30) 

Where w=1 is the inertia weight, r1 and r2 are two 

uniform distributed numbers ranged in [0,1] and c1=c2=2 are 

the acceleration parameters, gbest is the global best position 

discovered by the full population, and pbesti is the personal 

best position of particle(i). 

The PSO updates the pbest and gbest as in Eq.(31) and 

Eq.(32) : 

           t t

i ipbest X= if 1( ) ( )t t

i if X f pbest −                 (31) 

       t t

igbest pbest= if 1( ) ( )t t

if pbest f gbest −          (32) 

Where  f is the fitness function to be optimized. 

The use of sine cosine acceleration coefficients into the 

PSO is proposed. The sine map of acceleration coefficients 

can improve the population diversity into the search process 

and enhance the convergence ability to the global optimal. C1 

and C2 are the sine cosine acceleration coefficients, Wsm is 

the sine map  inertia weight. The proposed method is called  

H-PSO-SCAC [29]. In this paper, the H-PSO-SCAC is used 
to resolve the proposed UC problem. The H-PSO-SCAC 

updates the particle velocity in every iteration by the 

following expression: 

       

1

1 1

2 2

( ( )

        ( )

t t t t

i sm i i i

t t

i

V W V C r pbest X

C r gbest X

+ =  +   −

+   −
              (33) 

In H-PSO-SCAC, the range of Wsm is [0,1] , the range of 

C1 varies from 2.5 to 0.5 and the range of C2 varies from 0.5 

to 2.5. 

4.3. Hybrid PSO with Sine Cosine Acceleration Coefficients 

In this paper, the degradation cost of the battery and fuel 

cost of conventional generators are considered in the 
objective function. To solve the EMS problem, a 

combination of two algorithms H-PSO-SCAC and Rainflow 

is applied. H-PSO-SCAC is used to optimise the objective 

function while the Rainflow algorithm is used to determine 

the BDC during the search process.  

 

Fig. 3. Flowchart of H-PSO-SCAC and Rainflow algorithm. 

The flowchart of the overall H-PSO-SCAC and 

Rainflow implementation for the EMS problem is shown in 

Fig.3. 

5. Simulation Results and Discussion 

5.1. Methodology  

To validate the proposed objective function using H-

PSO-SCAC, an isolated MG is used with PV panels, WT, 

battery and two DGs. In this paper, the decision variables are 

PDG1(t), PDG2(t), PBat(t), PPV(t) and PWT(t). A 48h-horizon is 

taken as a scheduling program and the simulation is 
calculated with a time slot of 1 h. Figure 4 shows the hourly 

LD for 48h. The average mean LD throughout the day is 6.5 

kW. The LD required a higher power between 19h and 22h. 

The installed WT has 5kW as rated capacity at 10.5m/s wind 

speed. The WT parameters swept area, air density, and 

coefficient efficiency are considered as 19.6, 1.225, 0.4, 

respectively. Figure 5 depicts the WT output power for 48h 

based on the wind speed data of a site in Taza region at 879  
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meters altitude above sea level. Figure 6 gives the PV solar 

power for 48h based on the solar radiation data for a site in 

Taza region, Morocco ( latitude 34.051°N). The used PV 

solar has 15 kW as rated capacity under the rated 

environment conditions.  The battery parameters used in this 

paper are depicted in Table 1, it is assumed that the initial 

battery SOC is already known and taken as 50%. As shown 

in Table 2, the parameters of the two DGs are presented 

including fuel cost coefficients, power maximum and 

minimum limits and ramp rate limits. 

The Energy Dispatch (ED) problem is solved by the H-
PSO-SCAC. Where, the population size and maximum 

number of iterations are considered as 50 and 100, 

respectively. The algorithm is implemented in Matlab 

environment, using a personal computer with a 2.59 GHz 

processor and 8 GB RAM, running on Windows 10. 

The effectiveness of the proposed objective function 

using different weighting factor is analyzed by using the Best 

Cost (BC), the Worst Cost (WC), and the Mean Cost (MC) 

of the objective function.      

 

Fig. 4. Load demand of an isolated microgrid throughout a 

48-horizon time. 

 

Fig. 5.  Wind turbine output power throughout a 48-horizon 

time. 

 

Fig. 6. PV output power throughout a 48-horizon time. 

Table 1. Battery parameters 

Battery 

Parameter 
Energy capacity 

(kWh) 
Usable capacity 

(kWh) 
Maximum 

charge power 

(kW) 

Maximum 

discharge power 

(kW) 

Initial 

SOC (%) 
SOCmax (%) 

Value 9.8  9.3 7 5 50 80 

Battery 

Parameter 
SOCmin(%) Cost of battery 

($) 
Maintenance cost 

($/year) 
Interest rate (%) Lifetime (years) 

Value 20 550 10 6 15 

 

Table 2. Diesel generators parameters 

DGi ai bi PDGi,min (kW) PDGi,max (kW) DRi(kW) URi(kW) 

1 0.03 0.25 0 6 5 5 

2 0.0001 0.0490 0 10 9 9 
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5.2. Results and discussion 

For the simulation tests, different values of WF are 

considered in the objective function, in order to evaluate the 

impact of giving a specified WF to objectives and view its 

influence on the MG solution. Thus, the impact of WF is 

analyzed on the algorithm behavior, the status of the SOC of 

the battery and on the optimized cost fitness function. 

5.2.1. Impact of Weight Factor on The Algorithm 

Behaviour and Cost Fitness Function 

The ED problem is solved by the H-PSO-SCAC. Figure 

7 illustrates the convergence of the H-PSO-SCAC with 
implementation of different values of WF (0, 0.5 and 1) on 

the objective function. When m=1, the objective function is 

focused on the minimization of fuel cost without giving 

importance to the BDC. However, when m=0, the objective 

function is focused on the maximization of the battery life 

and ignores the fuel cost minimization. 

For m=1, the H-PSO-SCAC process has started 

converging to a local optimum position at 20 trial runs. For 

m=0.5 it is clearly shown that the H-PSO-SCAC is trapped in 

the local optimum position after 33 trial runs. However, for 

m=0 the H-PSO-SCAC can explore more search areas to 

register the best solution. 

The graph proves the impact of WF value on the 

behavior of the H-PSO-SCAC algorithm, the smaller the 

value of WF is considered on the objective function, and the 

smaller the best solution is achieved by the H-PSO-SCAC 

algorithm. 

The optimization criteria of the ED problem using 

different WF values are described in Table 3. The results are 

given for m=0, m=0.3, m=0.5, m=0.7 and m=1. 

 

Fig. 7. The convergence of the H-PSO-SCAC using different 

weight factors on the objective function. 

 

The result demonstrates that the best result with BC and 

MC is achieved with m=0 the case of the objective is given 

to maximize the battery life without giving attention to the 

fuel cost. In addition, in the case of m=1 when the attention 

is given to minimize the fuel cost and neglect the battery 

degradation, the ED problem achieve the lowest BC than 

m=0.3, m=0.5, m=0.7. The results illustrate that to obtain the 

BC function, the selection of an appropriate value of WF is 

required. 

5.2.2. Impact of Weight Factor on The State of Charge 

Behaviour 

 The state of the SOC of the battery is taken as constraint 

on the ED problem to avoid the over-charging and over-

discharging. Figure 8 depicts the impact of WF value on the 

battery SOC behavior. The objective function is tested with 

different WF value (0, 0.5 and 1). When m=1, the battery 

degradation is not important this is clearly shown by several 

charge and discharge cycles which means that the battery 

delivers important amount of energy to the MG. However, 

when m=0, many charge discharge cycles are eliminated and 

the battery life can be increased. When m=0.5, the objective 

function balances the trade off's between the two objectives. 
The graph shows that the state of the SOC is maintained 

more stable and the charge discharge cycles are clearly 

reduced. Thus, the amount of the battery exchanged with the 

MG is reduced, this is why the cost function for m=0.5 is 

higher than those for m=0 and m=1 as shown in Table 3.   

 

Fig. 8. The impact of weight factor value on the battery 

SOC behaviour 
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Table 3. Performance of the objective function using different weight factor values and solved by the H-PSO-SCAC algorithm 

for 100 trial runs 

 m=0 m=0.3 m=0.5 m=0.7 m=1 

Best cost ($/day) 9596009 23133127 23559582 25067694 22988968 

Average cost ($/day) 22243500 50475000 86945000 67030000 53560000 

Worst cost ($/day) 1.0508e+09 1.0980e+09 1.0105e+09 1.0306e+09 9.7360e+08 

 

5.2.3. Energy Dispatch of Microgrid Units with Weight 

Factor equals to 0.5 

The next simulation result of ED problem of MG units is 
performed for m=0.5 to balance the trade off's between the 

two objectives. Table 4 depicts the optimal power produced 

by the two installed DGs solved by the H-PSO-SCAC 

algorithm.  The DGs are taken as the main energy source for 

the isolated MG, it can be shown from Table 4 that the two 

DGs generate the energy all over the simulation time, with 

high production during night, and low one at the morning.  

Table 5 shows the optimal exchanged power between the 

MG and the battery obtaining from the H-PSO-SCAC 

algorithm. It can be seen that the battery is charged when the 

LD is low; however, the battery is discharged when the LD is 

high and the Renewable Energy (RE) production is low. In 
addition, Table 6 details the optimal power generated by RGs 

PPV(t) and PWT(t) resulting from H-PSO-SCAC algorithm. 

The renewable production supports the DGs production 

especially when PV generator and WT generator start 

producing energy.  The most of the RE production charge the 

battery. 

Figure 9 plots the optimal ED solution of MG units 

during the 48 horizon time as in Table 4, Table 5 and Table 

6. It is clearly shown that all the MG units participate to 

satisfy the LD. When the PV panel and WT generator start 

generating energy, due to the lower LD, the battery is 
charged, and DGs reduce their production. As observed from 

Fig.9, PBat(t) can be positive or negative. As explained in the 

paper, PBat(t)  is negative means that the MG charges the 

battery whilst if PBat(t) is positive, the battery delivers energy 

to the MG. When the LD is lower than the energy produced 

by RE and DGs, the excess power can be delivered to the 

battery. 

 Then, when the RE production is reduced and the LD 

requires more energy during the night period, the DGs and 

battery can collaborate to fill the need and satisfy the LD. 

 

 

Fig. 9. The resulted ED solution of MG generation units for 

m=0.5
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Table 4. Optimal power produced by diesel generators PDGi(t) by H-PSO-SCAC for m=0.5 

Time (h) PDG1 (kW) PDG2 (kW) Time (h) PDG1 (kW) PDG2 (kW) Time(h) PDG1 (kW) PDG2 (kW) 

1 0.217857 1.126109 17 4.290849 0.733674 33 1.756027 1.826368 

2 0.41551 3.238563 18 4.933234 1.697407 34 3.111227 0.032484 

3 2.00718 3.866612 19 3.959647 6.8234 35 3.267334 0.646606 

4 1.535267 2.337054 20 4.872569 7.04285 36 1.338725 1.270038 

5 2.317106 6.790868 21 3.349535 8.579052 37 3.546229 2.658267 

6 2.767133 1.919401 22 2.636031 7.97911 38 2.112662 0.625007 

7 1.934837 4.363621 23 4.022178 2.164111 39 1.899601 2.485883 

8 3.285469 1.568873 24 2.812477 1.45311 40 1.03026 0.458643 

9 1.603434 2.256644 25 1.904528 4.709048 41 2.280025 0.838275 

10 3.67349 1.759593 26 1.863599 0.492047 42 0.587025 2.677349 

11 2.280909 0.355728 27 3.849791 1.398528 43 3.172846 6.007136 

12 0 2.44283 28 3.553457 2.230391 44 5.488163 8.526166 

13 3.71085 0.096471 29 3.276081 3.279156 45 4.627881 8.085471 

14 2.555105 2.363928 30 2.995072 0.876219 46 3.049077 9.949099 

15 1.993236 1.241036 31 2.2122 2.950293 47 2.494461 5.018957 

16 3.310866 1.998961 32 2.928534 0.739797 48 1.895278 2.586261 

 

Table 5. Optimal power of the battery by H-PSO-SCAC for m=0.5 

Time(h) PBat(kW) Time(h) PBat(kW) Time(h) PBat(kW) Time(h) PBat(kW) 

1 1.086034 13 -1.52839 25 -4.32458 37 -1.10921 

2 -1.43607 14 -3.77244 26 -0.17065 38 -0.24767 

3 -2.52479 15 -1.72286 27 -1.8544 39 -2.88876 

4 0.228678 16 -3.66012 28 -1.59903 40 -0.93912 

5 -4.23797 17 -3.2583 29 -1.58424 41 -0.1931 

6 2.845105 18 -0.46632 30 2.618075 42 1.15452 

7 -0.88431 19 -0.71294 31 -0.79301 43 0.690862 

8 1.478395 20 3.80558 32 1.177009 44 1.866671 

9 0.945756 21 3.490413 33 0.049985 45 2.934648 

10 -5.59993 22 1.347859 34 1.555535 46 -0.72518 

11 -3.38707 23 -0.12129 35 -0.35182 47 -1.04442 

12 -2.01944 24 -0.25759 36 -2.71099 48 -0.07854 

 

Table 6. Optimal power produced by renewable generators PWT(t) and PPV(t) by H-PSO-SCAC for m=0.5 

Time (h) PPV (kW) PWT (kW) Time (h) PPV (kW) PWT (kW) Time (h) PPV  (kW) PWT (kW) 

1 0 0.005 17 3.995774 0.582 33 5.383937 0.004 

2 0 0.007 18 0.685681 0.544 34 0.500754 0 

3 0 0.006 19 0.107896 0.426 35 0.667876 0 
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4 0 0.004 20 0 0.283 36 4.646229 0.016 

5 0 0.005 21 0 0.285 37 0.078713 0.156 

6 0 0.005018 22 0 0.341 38 2.878142 0.611 

7 1.093852 0.017 23 0 0.41 39 1.723273 1.224 

8 1.509264 0.013 24 0 0.367 40 1.374222 1.47 

9 2.167166 0.004 25 0 0.246 41 2.181803 1.337 

10 5.25085 0.016 26 0 0.14 42 2.074106 1.001 

11 4.79016 0.090272 27 0 0.06108 43 0.309156 0.524 

12 3.745608 0.291 28 0 0.020183 44 0 0.223 

13 2.396065 0.555 29 0 0.004 45 0 0.156 

14 3.343408 0.74 30 0.380989 0.001 46 0 0.131 

15 2.042591 0.79 31 2.251519 0.004 47 0 0.106 

16 0.94129 0.703 32 3.103661 0.006 48 0 0.072 

 

6. Conclusion 

This paper describes a scheduling interval of 48h horizon 

time for energy dispatch of an isolated MG with battery 

storage. Battery degradation cost is proposed in the objective 

function in addition to the fuel cost. The energy dispatch 

problem focused on minimization of the FC of DGs and the 
BDC. A WF is implemented in the proposed objective 

function. The energy dispatch problem is solved by H-PSO-

SCAC for an optimal dispatch of an isolated MG including 

WT generator, PV, two DGs and battery storage. The load 

demand is mainly supplied by the two DGs, and the RGs and 

battery have been used to reduce the fuel consumption. The 

analyse of WF impact on the H-PSO-SCAC behaviour is 

examined by using the BC, the WC, and the MC of the OF, 

as well as the algorithm convergence. The results illustrate 

that to obtain the best cost function, the selection of an 

appropriate value of WF is required. The state of battery 
SOC is also influenced by WF. The result demonstrates that 

the battery SOC is more stable with WF equals to 0.5 and the 

charge discharge cycles are reduced. To balance the trade 

off's between the BDC and the FC, the ED problem of MG 

generation units is performed for m=0.5. The H-PSO-SCAC 

combines all the MG units together to participate in order to 

satisfy the LD. 

References  

[1] P., Asmus, and M. Lawrence, Market Data: Microgrids, 

Navigant Research, Report 1Q 2016. 

[2] O. Boqtob, H. El Moussaoui, H. El Markhi, and T. 

Lamhamdi, “Microgrid energy management system: a 
state-of-the-art review”, Journal of Electrical Systems, 

vol. 15, no 1, pp. 53-67, 2019. 

[3] J. Song, S. J. Song, S. D. Oh, and Y. Yoo, “Optimal 

operational state scheduling of wind turbines for lower 

battery capacity in renewable power systems in islands”, 

IEEE International Conference on Renewable Energy 

Research and Applications, pp. 164-168, November 

2016. 

[4] S. Leonori, M. Paschero, F. M. F. Mascioli, and A.  

Rizzi, “Optimization strategies for Microgrid energy 

management systems by Genetic Algorithms”, Applied 

Soft Computing, vol. 86, pp. 105903, 2020. 

[5] A. Saidi, A. Harrouz, I. Colak, K. Kayisli, and R. 

Bayindir, “Performance Enhancement of Hybrid Solar 

PV-Wind System Based on Fuzzy Power Management 

Strategy: A Case Study”, IEEE 7th International 

Conference on Smart Grid, pp. 126-131, December 2019. 

[6] Y. Shang, W. Wu, J. Guo, Z. Ma, W. Sheng, Z.  Lv, and 

C. Fu, “Stochastic dispatch of energy storage in 

microgrids: An augmented reinforcement learning 

approach”, Applied Energy, vol. 261, pp. 114423, 2020. 

[7]  S. Bayhan, Y. Liu, and S.  Demirbas, “A novel energy 
management algorithm for islanded AC microgrid with 

limited power sources”, IEEE 6th International 

Conference on Renewable Energy Research and 

Applications, pp. 64-69, November 2017. 

[8] A. Aguilera-Gonzalez, I. Vechiu, R. H. L. Rodriguez, and 

S. Bacha, “MPC Energy Management System for A Grid-

Connected Renewable Energy/Battery Hybrid Power 

Plant”, IEEE 7th International Conference on Renewable 

Energy Research and Applications, pp. 738-743, October 

2018. 

[9] M. Elkazaz, M. Sumner, S. Pholboon, and D. Thomas, 

“Microgrid Energy Management Using a Two Stage 
Rolling Horizon Technique for Controlling an Energy 

Storage System”, IEEE 7th International Conference on 

Renewable Energy Research and Applications, pp. 324-

329, October 2018. 

[10] M. Sato, Y. Fukuyama, T. Iizaka, and T. Matsui, “Total 

Optimization of Smart City by Multi-population Brain 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
O.Boqtob et al., Vol.10, No.2, June, 2020 

 715 

Storm Optimization with Differential Evolution 

Strategies”, IEEE International Conference on Smart 

Grid, pp. 228-233, December 2018. 

[11] A. Harrouz, A. Temmam, and M. Abbes, “Renewable 

energy in Algeria and energy management 

systems”, International Journal of Smart Grids, vol. 2, no 

1, pp. 34-39, 2018. 

[12] M. De, G. Das, and K. K. Mandal, “Efficient Energy 

Management in Microgrids Using Flower Pollination 

Algorithm”, In Computational Intelligence in Pattern 

Recognition, Springer, Singapore, pp. 553-562, 2020. 

[13] M. A. Hossain, H. R. Pota, S. Squartini, and A. F. 

Abdou, “Modified PSO algorithm for real-time energy 

management in grid-connected microgrids”, Renewable 

energy, vol. 136, pp. 746-757, 2019. 

[14] O. Boqtob, H. El Moussaoui, H. El Markhi, and T. 

Lamhamdi, “Optimal Robust Unit Commitment of 

Microgrid using Hybrid Particle Swarm Optimization 

with Sine Cosine Acceleration Coefficients”, 

International Journal of Renewable Energy Research, vol. 

9, no 3, pp. 1125-1134, 2019. 

[15] H. Tazvinga, B. Zhu, and X. Xia, “Energy dispatch 

strategy for a photovoltaic–wind–diesel–battery hybrid 
power system”, Solar Energy, vol. 108, pp. 412-420, 

2014. 

[16] E. Koutroulis, D. Kolokotsa, A. Potirakis, and K. 

Kalaitzakis, “Methodology for optimal sizing of stand-

alone photovoltaic/wind-generator systems using genetic 

algorithms”, Solar energy, vol. 80, no 9, pp. 1072-1088, 

2006. 

[17] R. N. Farrugia, “The wind shear exponent in a 

Mediterranean island climate”, Renewable Energy, vol. 

28, no 4, pp. 647-653, 2003. 

[18] N. I. Nwulu, and X. Xia, “Optimal dispatch for a 
microgrid incorporating renewables and demand 

response”, Renewable Energy, vol. 101, pp. 16-28, 2017. 

[19] N. El Ghossein, A. Sari, and P. Venet, “Degradation 

behavior of Lithium-Ion capacitors during calendar 

aging”, IEEE 6th International Conference on Renewable 

Energy Research and Applications, pp. 142-146, 

November 2017. 

[20] B. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D. S. 

Kirschen, “Modeling of lithium-ion battery degradation 

for cell life assessment”, IEEE Transactions on Smart 

Grid, vol. 9, no 2, pp. 1131-1140, 2016. 

[21] M. A. Hossain, H. R. Pota, S. Squartini, F. Zaman, and 

J. M. Guerrero, “Energy scheduling of community 

microgrid with battery cost using particle swarm 

optimisation”, Applied Energy, vol. 254, pp. 113723, 

2019. 

[22] B. Xu, J. Zhao, T. Zheng, E. Litvinov, and D. S. 

Kirschen, “Factoring the cycle aging cost of batteries 
participating in electricity markets”, IEEE Transactions 

on Power Systems, vol. 33, no 2, pp. 2248-2259, 2017. 

[23] M. Kassem, J. Bernard, R. Revel, S. Pelissier, F. 

Duclaud, and C. Delacourt, “Calendar aging of a 

graphite/LiFePO4 cell”, Journal of Power Sources, vol. 

208, pp. 296-305, 2012. 

[24] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. 

Möller, J. O. Besenhard, and Hammouche, A. “ Ageing 

mechanisms in lithium-ion batteries”, Journal of power 

sources,  vol. 147, no 1-2, pp. 269-281, 2005. 

[25] M. Abedini, M. H. Moradi, and S. M. Hosseinian, 

“Optimal management of microgrids including renewable 
energy scources using GPSO-GM algorithm”, Renewable 

Energy, vol. 90, pp. 430-439, 2016. 

[26] C. Amzallag, J. P. Gerey, J. L. Robert, and J. Bahuaud,  

“Standardization of the rainflow counting method for 

fatigue analysis”, International journal of fatigue, vol. 16, 

no 4, pp. 287-293, 1994. 

[27] J. Kennedy, and R.  Eberhart, “Particle swarm 

optimization”, proceedings of IEEE International 

Conference on neural networks, vol. 4, pp. 1942-1948, 

November 1995. 

[28] Y. Shi, and R. Eberhart, “A modified particle swarm 
optimizer”, The IEEE International Conference on 

evolutionary computation proceedings, IEEE World 

Congress on Computational Intelligence., pp. 69-73, May 

1998. 

[29] K. Chen, F. Zhou, L. Yin, S. Wang, Y. Wang, and F. 

Wan, “A hybrid particle swarm optimizer with sine 

cosine acceleration coefficients”, Information Sciences, 

vol. 422, pp. 218-241, 2018. 

 


