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Abstract- In many signal processing applications, the detection of peaks is a substantial stage. However, the high false positive 
peak identification rate is a crucial problem because of the complexity of the signals and multiple noise sources. For this reason, 
a modified Automatic Multiscale Peak Detection (AMPD) algorithm of any time serial data based on Field-Programmable Gate 
Array (FPGA) has been implemented by these authors. In addition, a kind of approximation with an asymmetric stencil is 
proposed to reduce the pipeline latency. In this paper, it is focused on evaluating the trade-off relationship between latency 
reduction effects and accuracy of peak point detection on a real-time peak detection method developed in the previous study 
using the AMPD algorithm and FPGA technology. 
Keywords automatic multiscale-based peak detection, latency reduction, FPGA. 

1. Introduction 

Detection of peaks in time-varying measured signals is 
a fundamental step for various signal processing and control 
algorithms utilized in most power electronics and renewable 
energy systems. Although the peak detection looks to be a 
rather straightforward task at the first glance, it requires 
many sophisticated calculation techniques since measured 
signals often suffer from noise and distortion. Therefore, a 
number of methodologies based on manual / automatic and 
supervised / unsupervised techniques have been proposed 
for the peak detection task in the literature.  

Li et al. replaced the Gaussian smoothing in the 
continuous wavelet transform with the peak-preserving 
diffusion filtering and the false discovery rate of the 
proposed algorithm was improved for four simulated 
proteomics datasets [1]. Zheng et al. combined the crazy 
climber algorithm and continuous wavelet transform for the 
peak detection in mass spectrometry and the combined 
approach was found good at identifying the low-amplitude 
and overlapping peaks [2]. Sachin Kumar et al. applied a 
total variation denoising approach to detect the R-peaks in 
electrocardiogram signals and low false-negative beats and 
high false-positive beats were obtained [3]. Rahul et al. used 
the template waveform and adaptive thresholding to detect 
P, QRS, and T peaks in electrocardiogram signals and it 
showed the low computational complexity in comparison to 
heuristic approaches [4]. Vadrevu at al. integrated center of 
gravity and variational mode decomposition methods for 
identifying systolic peaks in the photoplethysmography 

signal and the designed strategy achieved good sensing 
performance under noisy conditions [5]. 

Scholkmann et al. presented an automatic peak detector 
algorithm based on the local maxima scalogram and the 
efficiency in peak detection was increased for quasi-
periodic and noisy periodic signals [6]. Schmidt et al. 
employed a convolutional neural network for the peak 
detection and localization in a noisy signal and it 
outperformed the continuous wavelet transform in terms of 
the signal processing performance [7]. Liu et al. introduced 
a Hilbert transform-based multi-peak detection algorithm 
for sensing the optical fiber Bragg gratings and the 
demodulation accuracy and speed were enhanced [8]. 
Bodendorfer et al. compared interpolated maximum search, 
linear phase operator, parabolic fit and Gaussian fit subpixel 
algorithms for fiber Bragg grating interrogators and the 
absolute values of peak wavelengths were evaluated [9]. 
Tolt et al. proposed a least squares minimization-based 
impulse response function in order to detect the peaks in 
time-correlated single-photon counting lidar data and it 
provided the low false alarm rate [10].  

Guo et al. designed a sinusoidal voltage peak detector 
including ADC converter, second-order RC filter and full 
wave rectifier circuit and Fourier analysis exhibited good 
performance from 20 Hz to 500 kHz [11]. Wu et al. utilized 
from the differential structure in designing an mV-level 
real-time peak voltage detector and the detection error was 
decreased for the amplitude of 10 mV and the signal 
frequency of 20 kHz [12]. Manitha et al. developed a 
fundamental voltage peak detection controller for series 
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active filters and it performed well than instantaneous 
reactive power theory and synchronous reference frame-
based controllers [13]. Ahmad et al. utilized from a golden 
band search algorithm in order to select the global peak in 
photovoltaic characteristics curve and the efficiency of the 
photovoltaic system was improved under partial shading 
conditions [14]. Lee et al. sensed the voltage sags in the grid 
voltage by a single-phase digital phase lock loop based on a 
d-q transformation and the latency in the peak detection 
process was decreased [15]. 

In addition to these works, Weibull Pareto sine-cosine 
optimization method [16], Gaussian fitting-based 
Levenberg-Marquardt method [17], multilayer perceptron 
[18], lifting wavelet transform [19], delta square operation 
[20], Kalman filtering [21], etc. were also employed for 
different peak detection tasks in the literature. 

Most of these algorithms introduce an idea of frequency 
domain processing to separate signals of interest from 
noises and are significantly effective for off-line data 
analysis. However, since information in the time domain is 
not directly handled, this approach is not suitable for real-
time applications such as control of power electronics 
systems, where low latency processing is essentially 
important. In order to achieve a successful peak detection 
method in terms of both robustness for noises and real-time 
performance, a Field-Programmable Gate Array (FPGA) 
based algorithm was proposed by these authors [22], [23]. 
This algorithm is based on the Automatic Multiscale-based 
Peak Detection (AMPD) algorithm [6], which can robustly 
detect peak points from noisy periodic signals. However, it 
is an off-line algorithm, which must store all the data to the 
memory before starting analysis and is not directly 
applicable for real-time peak application domains. To cope 
with this problem, the algorithm was modified to be a non-
storing processing and was implemented on an FPGA as 
pipelined hardware. 

Although this pipelined architecture is effective for 
increasing the throughput, an essential latency due to data 
comparison has still remained. This paper proposes a 
latency reduction approach using an asymmetric stencil of 
data comparison, aiming at achieving a better balance 
between latency and accuracy. Use of an asymmetric stencil 
enables reduction of data comparison at the cost of 
introducing a kind of approximation to some extent. 
Through the evaluation experiments, trade-offs between the 
latency improvement and detection accuracy are revealed. 

 

2. AMPD Algorithm Design 

The main idea of the AMPD peak detection algorithm 
is the use of local maxima scalogram (LMS), which is a 
matrix consisting of local maxima information for given 
input signals. Let 𝑦"	where	𝑖 ∈ {0, 1,2,3,… , 𝑛}  be time 
series input signal values. The LMS for 𝑦"  is defined as: 

𝑋 =
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where W is given by: 

𝑊 = I=
:
J − 1                                                                          (2) 

and each element is calculated as: 

 

𝑥E,F = L			0,				𝑟
		if	(𝑦FP9 > 𝑦FPEP9) ∧ (𝑦FP9 > 𝑦FSEP9)

otherwise
 (3) 

 

where 𝑟 is a random number such that 1 < 𝑟 < 2. As 
Equation (3) shows, in the LMS matrix, the element whose 
value is 0 depicts the local maxima of the input signal. The 
larger the row number (𝑏), the lower the frequency to which 
the local maxima corresponds. The number of rows of the 
LMS matrix (𝑊) is called a scale and corresponds to the 
longest distance of data pairs that are compared. While the 
value of the scale is automatically tuned in the original 
AMPD algorithm, a fixed scale approach was taken for 
FPGA implementation of these authors to enable efficient 
pipeline structure [22]. As the final step of the algorithm, 
the variance of the elements of the LMS matrix is calculated 
for each column as: 

𝜎F =
9

@P9
∑ [\𝑥E,F −

9
@
∑ 𝑥E,F@
]^9 _

:
`
a
b@

E^9                     (4) 

where b ∈ {1, 2, 3, …, n}. If the value of σb is close enough 
to 0, the corressponding input data yb can be considered as 
the local maxima in terms of most frequencies and is 
detected as a peak point. 

In the FPGA implementation of these authors, row-wised 
parallelism is spatially extracted in the LMS calculation 
[22]. Concretely, the comparison operations in Equation (3) 
are simultaneously perfomed for each a ∈ {1, 2, 3, …, W}. 
In addition, the pipeline structure is thoroughly introduced 
to exploit temporal parallelism. Since the time-series input 
data are given in a one-by-one manner synchronized with a 
clock signal, a total of 𝑊 comparison operations are 
executed for each clock cycle. This means, after an initial 
pipeline latency, the pipelined hardware outputs a peak 
detection result for a single input data item (𝑦") at every 
clock cycle. Thanks to the pipelined architecture, this FPGA 
implementation can achieve a high degree of throughput 
while the essential pipeline latency imposed of the scale still 
remains to be a problem for real-time applications such as 
feed-back control systems. 

3. Proposed Method 

In the previous work of these authors [22], it was shown 
that the best detection results were obtained when the value 
of the scale is 33 and 65. This means that the pipeline 
latency cannot be smaller than 65 clock cycles, which 
corresponds to 650 ns when the system is clocked at 100 
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MHz. The source of this essential latency is comparison 
operations in Equation (3). According to Equation (3), 
among the data newer than 𝑦FP9, 𝑦FS@P9 has the largest 
distance to 𝑦FP9 as a comparison target. Since  𝑦FS@P9 is 
newer than 𝑦FP9, when the system gets  𝑦FP9, 𝑦FS@P9 is not 
available yet and the comparison cannot be performed. 
Thus, the system must wait for 𝑊 clock cycle until  𝑦FS@P9 
gets available and this wait period imposes the essential 
pipeline latency. 

As long as the calculation structure, which is called 
operation stencil in computer science, expressed in 
Equation (3) is hold, it is impossible to reduce the pipeline 
latency to less than W. Therefore, in this study, the pipeline 
structure designed earlier is modified. Concretely, the 
operation stencil in Equation (3) is modified so that the 
operation can be performed without waiting W clock cycles. 
The key idea is the introduction of an asymmetric stencil of 
data comparison parameterized by a window approach 
(WA).  Instead of Equation (3), the proposed approach uses 
the following comparison stencil:   

𝑥E,F =

L0,𝑟
if	(𝑦FP9 > 𝑦FPEP9) ∧ c𝑦FP9 > 𝑦d"=(FSEP9,			FS@P9P@e),f

otherwise
                                                                          

(5)   

where 𝑟 is a random number such that 1 < 𝑟 < 2. Since the 
newest data required to perform the comparisons in 
Equation (5) is changed to 𝑦FS@P9P@e, the clock cycles to 
be waited before execution is reduced from W to 𝑊 −𝑊𝐴, 
reducing the pipeline latency by 𝑊𝐴 clock cycles. Note that 
the number of comparison operations is the same as that of 
Equation (3).  

       However, when 𝑎 > 	𝑊𝐴, 𝑦FPEP9	𝑎𝑛𝑑	𝑦FS@P9P@e are 
compared with 𝑦FP9, and thus the two comparison targets 
have different distances t 𝑦FP9, which is called an 
asymmetric stencil. This asymmetricity introduces 
approximation as the cost of latency reduction, since the 
comparison target is changed. However, by tuning the value 
of 𝑊𝐴, the balance between the pipeline latency and peak 
detection accuracy. This trade-off relationship is later 
discussed in Section 4, with evaluation results. 

 

 
 

Fig. 1. Pipeline Structure. 

     Figure 1 depicts the concept of the proposed pipeline 
structure corresponding to Equation (5), where D represents 
each data. When WA = 0, the pipeline of comparison is the 
same to the original structure. For WA = 1, the comparison 
stencil becomes asymmetric. The distance between the 
newest input and the peak candidate is shorten by 1, 
compared to the longest distance between the peak 
candidate and the oldest comparison target, so that the 
pipeline latency is reduced by 1 clock cycle. 

4. Evaluation 

4.1. Assessment with an FPGA Implementation  

Since the number of comparisons of the proposed 
method is reduced and then compared to the original 
Equation (3), the proposed method introduces an 
approximation in the peak detection process. To reveal 
trade-offs between latency reduction and detection 
accuracy, the out-FPGA implementation experiments are 
carried out. Figure 2 depicts the experiment setup. The 12-
bit DC919AF with 100 MHz maximum system frequency 
has been utilized as an analog-to-digital converter (ADC) 
and implemented with the Xilinx Kintex-7 XC7K325T 
FPGA board. 

The accuracy of detection was evaluated with 
simulations in terms of the precision and recall as follows. 

Precision = jk
lkSjk

 where, TP = true positive / FP = false 
positive 

Recall = jk
lmSjk

 where, TP = true positive / FN = false 
negative 

As a benchmark, the signal data of phase-to-phase 
voltage data was used [23]. The corresponding dataset 
contains 4470 data points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. FPGA design and experimental setup 
 

In Table 1, evaluation results for the design with a scale 
of 33 are shown. The latency is reduced from 230 ns to 110 
ns with increasing WA to 12. On the other hand, the recall 
was degraded from 56% to 11%. The precision was not 
affected by the asymmetric comparison stencil. It is also 
managed to maintain the 100 MHz clock frequency 
regardless of the WA value. In terms of a trade-off balance, 
the best WA value seems to be around 6. However, the 
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recalls were rather small even for the original algorithm, 
suggesting the selection of the scale value was not 
appropriate for the input data. 

Table 1. Evaluation results for scale 33. 
 

WA Latency 
(ns) 

System 
Frequency 

(MHz) 

Precision Recall 

WA=0 230  100 82% 56% 
WA=2 210  100 82% 50% 
WA=4 190  100 82% 42% 
WA=6 170  100 82% 37% 
WA=8 150  100 82% 34% 
WA=10 130  100 82% 31% 
WA=12 110  100 82% 11% 

 

 
Fig. 3. Study of accuracy and recall for scale 33. 

Table 2. Evaluation results for scale 65. 
 

WA Latency 
(ns) 

System Frequency 
(MHz) 

Precision Recall 

WA=0 400  100 88% 81% 
WA=2 380  100 88% 79% 
WA=4 360  100 88% 78% 
WA=8 320  100 88% 77% 

WA=16 240  100 88% 60% 
WA=31 90  100 88% 36% 

 
 

 
Fig. 4. Study of accuracy and recall for scale 65. 
 
 
 
 

 

 

Fig. 5. Peak detected by the AMPD module for L1-L3 line voltage.  
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Fig. 6. Peak detected by the AMPD module for L1-L3 line voltage. 

 

 

Fig. 7. Latency with scale 33 and scale 65 

 In Figure 3, the WA is analyzed by using the scale 33 
module. In other words, 33 data in each clock is analyzed 
and successfully determined the peak points. A precision 
success rate of 82% for the scale 33 is found. 
 In Table 2, the evaluation results for the design with a 
scale of 65 is analyzed. Compared to the results in Table 1, 
this scale value achieves better detection recalls. The 
latency is reduced from 400 ns to 90 ns at the cost of recall 
degradation from 81% to 36%. Again, the precision of 88% 
was maintained regardless of WA. In this case, the design 
with WA value of 8 reduced the latency by 20% with a 
reasonable recall compromise. 

In Figure 4, WA is analyzed using the scale 65 module. 
Thus, in this design, 65 data on each clock and found a 
precision rate of 88% is designed. 

Figure 5 and Figure 6 illustrate detection results of 
designs in different scales. The right peak points have been 
calculated and latency time has been reduced by the pipeline 
structure developed.  

4.2. Latency Comparison 

In this study, the computational time obtained by 
creating the WA module is reduced. For this reason, WA 
pipeline structure is built, so it is requested to show the 
FPGA’s high speed by lowering the latency. In doing so, it 
is examined two types of design, scale 33 and scale 65. 
When the AMPD method with CPU (Intel Xeon E3-1225 at 
3.3GHz) under normal conditions is applied, it takes 
approximately 5.8 us. But, with the designed pipeline 
structure, this time was reduced to a value like 320 ns. It is 
believed that this is a good result to show FPGA’s high 
speed in real time.  

5. Conclusion 

In this study, a latency reduction technique for an 
FPGA-based real-time peak detection method for time 
series data was proposed, by introducing a pipelined 
asymmetric stencil for comparison operations in the AMPD 
algorithm. The evaluation results revealed that, the latency 
times can be reduced from 230 ns to 110 ns for the scale of 
33 and then from 400 ns to 90 ns for the scale of 65. One 
drawback of this approach is that the modified pipeline 
structure introduces a kind of approximation in the original 
AMPD algorithm, causing some false detection of peak 
points around the real peak points. Although the 
experimental results showed that the balance between the 
latency and accuracy can be tuned by adjusting a parameter 
of the asymmetric stencil structure, one of the interesting 
future work is to address how to mitigate the detection of 
unwanted peak points while reducing the latency time. 
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