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Abstract- Hybrid microgrids can handle fuel scarcity, reduce harmful emissions, increase flexibility, efficiency, and reliability. 
Nevertheless, these benefits are strongly related to the sizing and the energy management strategy (EMS) of the microgrid. In 
this regard, the sizing and the EMS acquire high importance for the planning of stand-alone microgrids. The present paper aims 
to design a sizing methodology that has a nested simulation model for power and energy balances. The sizing uses a heuristic 
approximation of the gradient descent method for discrete functions. The simulation model can evaluate the operation of the 
microgrid, even with EMSs using optimal criteria. A study case evaluation shows the effectiveness of the proposed algorithm 
compared to a traditional heuristic technique as Particle Swarm Optimization and an exhaustive search, which prove the 
feasibility of the algorithm to be used in stand-alone microgrid planning. 

Keywords Hybrid microgrids, sizing, energy management, simulation, optimization. 

 

1. Introduction 

The benefits that the hybridization of different energy 
resources bring to stand-alone microgrids turn hybrid 
microgrids into an adequate solution for isolated geographical 
regions [1], [2]. Among these benefits, it is possible to 
mention that hybrid microgrids can manage better fuel 
scarcity, reduce harmful emissions, increase flexibility, 
efficiency, and reliability compared to microgrids run by 
mono generation facilities [3], [4]. Nonetheless, to obtain 
these benefits, the planning of the microgrid must consider the 
partially unpredictable nature and dependence on weather and 
climatic changes of the renewable energy resources[5], [6]. In 
this regard, the planning of stand-alone hybrid microgrids in 
rural areas requires the definition of the best sources of 
renewable energy according to the location, and the sizing of 
the generators and storage systems [7]–[10]. 

References [11], [12] define the sizing of stand-alone 
hybrid microgrids as the process of determining the size of 
each of the generators and storage systems to feed the demand 

with a predefined desired reliability. The sizing generally 
wants to minimize investment costs, output energy costs, fuel 
consumption, or harmful environmental emissions among 
others [13], [14]. It is the sizing the responsible of unmet loads 
or excess of energy, which can affect directly the satisfaction 
of the customers or the investors. An under-sizing affects the 
comfort of the customers not providing enough energy when 
the customers expect to receive it. Unmet loads lead to 
unsatisfied customers, which can reduce their willingness to 
pay the fees [15], [16]. A reduction in the cash flow can start 
to deteriorate the project [17]. On the other hand, an over-
sizing can cause a waste of energy, an extra investment cost 
and lack of economic return for the investors of the project due 
to the non-sold energy [18]. At the end, not only the reliability 
of the energy supply relies on proper sizing, but also the final 
cost of the energy. In this context, the sizing combination of 
stand-alone microgrids plays a vital role to achieve the success 
of the project [19], [20].  

The sizing of the stand-alone microgrids is a complicated 
task since the accuracy of the results relies on the knowledge  
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𝐶",$%&' Minimum value of capacity 𝑥 kW, kWh 
𝐶",$%)* Medium value of capacity 𝑥 kW, kWh 
𝐶",$%+" Maximum value of capacity 𝑥 kW, kWh 
∆𝐶",$ Capacity step for the search algorithm kW, kWh 
𝑇𝐶",$		 Total operational costs USD 
𝑇𝐹𝐶*,0 Total fixed costs USD 
𝑇𝑉𝐶*,0 Total variable costs USD 
𝐹𝐶23 Fixed costs for the PV system USD 
𝐹𝐶45 Fixed costs for the Diesel generator USD 
𝐹𝐶6 Fixed costs for the Battery Energy 

Storage System 
USD 

𝐹𝐶478 Fixed costs of the Demand 
Management System 

USD 

𝑟 Discount rate Unitless 
𝑇 Period of simulation Days  

𝑇𝐶",$
:∗  Partial minimum found at   𝑘 iteration kW 

𝑇𝐶",$=  Total costs in the surroundings of the 
found minimum 𝑇𝐶",$

:∗ . 
USD 

𝑇𝐶",$∗  Final minimum found USD 
𝑘 Iteration of the simulation                                        Unitless 
𝛾" Weighting factor for the speed of 

convergence  
Unitless 

𝑑 Day of the simulation                                              Days 
ℎ Hour of the simulation                                             Hours 
𝑔 Defined gap to stop the search 

algorithm 
Unitless 

𝐶45 Installed diesel capacity kW 
𝐶6 Installed storage capacity kWh 
𝐶23 Installed photovoltaic system capacity kW 
𝐶478 Installed DLC system capacity kW 
𝐼𝐼23 Unitary initial investment of the PV USD/kW 
𝐼𝐼45 Unitary initial investment of the DG USD/kW 
𝐼𝐼6 Unitary initial investment of the 

storage 
USD/kWh 

𝐼𝐼478 Unitary initial investment of the DLC 
system 

USD/kW 

𝑀23 Unitary maintenance costs of the PV USD/kW-
year 

𝑀45  Unitary maintenance costs of the DG USD/kW-
year 

𝑀6 Unitary maintenance cost of the 
storage 

USD/kW-
year 

𝑀478 Unitary maintenance cost of the DLC 
system 

USD/kW-
year 

𝑇𝑉𝐶𝐷𝐺*,0 Total variable costs of the diesel 
generator 

USD 

𝜋7 Fuel price per liter USD 
𝑄𝐷𝐺*,0 Quantity of energy delivered by the 

diesel generator 
kWh 

𝑆𝑂𝐶*,0 State of charge of the Battery Energy 
Storage System               

kWh 

𝜂&' Efficiency of charge of the Battery Unitless 
𝜂KLM Efficiency of discharge of the Battery Unitless 

𝑄𝐵𝑖𝑛*,0 Quantity of energy entering to the 
battery 

kWh 

𝑄𝐵𝑜𝑢𝑡*,0 Quantity of energy going out from the 
battery 

kWh 

𝑚𝑎𝑥(𝐷W) Maximum peak demand over the 
simulation horizon 𝑇 

kW 

𝑄𝐷𝐿𝐶*,0 Quantity of energy curtailed by the 
DLC system 

kWh 

𝐶𝐿𝐸*,0 Cost of lack of energy USD/kWh 
𝐶𝐸𝐸*,0 Cost of excess of energy USD/kWh 
𝑄𝐿𝐸*,0 Quantity of energy not delivered to 

the demand 
kWh 

𝑄𝐸𝐸*,0 Quantity of excess energy produced 
by the system 

kWh 

𝛽 Factor for the reliability of the 
microgrid 

Unitless 

𝐷*,0 Electrical demand at day 𝑑 and hour ℎ    kW 
𝑄𝐿𝑂𝐴𝐷*,0 Quantity of energy requested by the 

load 
kWh 

𝑄𝑃𝑉*,0 Quantity of energy delivered by the 
PV system 

kWh 

Table 1 Variable declaration 

of the technical specifications of the facilities, weather and 
climate conditions, and the characteristics of the load profiles 
[13], [21], . When there is no availability of weather and load 
forecasts, Neural Networks [22]–[25], Genetic Algorithms 
[26], [27] or hybrid neuro evolutionary methods can be useful 
to predict it [28]. In the cases where weather data is available; 
it is feasible to apply conventional techniques like the ones 
based on energy balances [29], or the ones that guarantee a 
predefined reliability level for the supply [30], [31].  

Hafez et al. propose to use the software HOMER for the 
planning and optimal sizing of a hybrid renewable energy-
based microgrid. The formulation aims to minimize the life-
cycle cost while taking into account environmental emissions 
[7]. The main advantage of HOMER is its capacity of 
simulating different sizes of facilities and compare them 
considering the Levelized Cost of the Energy [32]. Homer 
executes a mixed simulation optimization approach using a 
hierarchical process. The lower level simulates and compute 
the operational costs. An intermediate level proposes the size 
of the energy sources to the lower level and finds the 
capacities with lower costs. Finally, the higher level performs 
sensitivity analysis for the main variables. Figure 1 represents 
the above. 

 
Figure 1 nested cicles of a mixed simulation optimization sizing 
methodologies. 

The use of different Energy Management Strategies 
(EMS) based on rules allows HOMER to perform the dispatch 
of the energy resources in the microgrid. However, HOMER 
does not allow to apply any optimally designed EMS for the 
energy dispatch of the microgrid, which represents a 
considerable drawback [33]. Instead of using a search space as 
HOMER does, Sharafi et al. use a Particle Swarm 
Optimization formulation to find the size of the energy sources 
[34]. Despite that the proposed work allow the use of an 
optimal criterion for the sizing of the microgrid, any optimal 
criteria are applied for the EMS design.  

In this regard, the main contribution of this paper is the 
formulation of a heuristic sizing methodology that mimic the 
behaviour of the gradient descent method for discrete 
functions and allows to apply any optimally designed dispatch 
strategy. In here is proposed a rule-based EMS that consider 
Direct Load Control (DLC) as a resource to curtail the demand 
of the microgrid only for its simplicity, but, any other optimal 
dispatch strategy will work as well. Results of the study case 
show a better speed of convergence and better accuracy for the 
proposed heuristic algorithm compared to Particle Swarm 
Optimization. 
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The description of the rest of the paper proceeds as 
follows: Section 2 presents the formulation of the considered 
problem. Section 3 presents the formulation of the sizing 
methodology. Section 4 presents the formulation of the 
economic dispatch strategy. Section 5 presents the simulations 
of a study case where the sizing methodology was applied. 
Finally, section 6 presents the conclusions of the work. 

2. Problem modelling 

The considered problem is the sizing of an islanded 
microgrid. The proposed solution is the design of a heuristic 
sizing methodology that mimics the behaviour of the gradient 
descent method. Even though the gradient descent method is 
an analytic technique designed to work with continuous and 
derivable functions, in here it is proposed an approach that 
simulates the behaviour of the gradient descent for discrete 
functions using three different steps. The first step is to create 
a search space defining limits for the capacities of the 
generators and storage systems of the facilities of the 
microgrid. A matrix 𝐶𝑀 is designed to store the installation 
and operational costs of the microgrid for the possible 
combinations of capacities of the facilities. Installation costs 
are obtained using the retail prices of the technologies in the 
market, and the operational costs are obtained simulating the 
operation of the microgrid over a predefined period 𝑇.  

The second step is to execute a search methodology that 
proposes an initial point of evaluation inside of the search 
space and seeks in the surroundings for the maximum descent 
direction. After finding this direction, the algorithm actualizes 
the evaluation point; recompute the costs of the surroundings 
and re-evaluates the maximum descent direction. This process 
repeats until the algorithm finds a point where all the 
surroundings are higher than the evaluated point. The third 
step is to redefine the limits of the search space and tighten 
them around the found minimum point. Section 3 presents a 
further explanation of the sizing methodology. 

A rule-based Energy Management Strategy is introduced 
to perform the simulations of the operation of the microgrid. 
Simulations are carried out assuming that it is possible to 
know one hour in advance the load and weather forecasts. The 
simulations are used to evaluate the reliability of the microgrid 
and estimate the operational costs, considering the 
combinations of the capacities used for the sizing algorithm. 
Section 4 further explain the rule-based EMS and the models 
of the generators and storage systems used for the simulations.   

3. Sizing methodology 

The proposed sizing methodology consists of three 
different steps. The creation of the search space is described 
in section 3.1. The search process is described in section 3.2. 
Finally, limits redefinition of the search space, are described 
in section 3.3. 

3.1. Creation of the search space  

To create the search space, it is proposed to build a matrix 𝐶𝑀 
to store the total costs of the simulation results of using 
different combinations of capacities for the generators and 

storage systems. This search space allows the reduction of a 𝑥 
dimension problem into a two-dimension problem, facilitating 
a graphical inspection of the minimum of the objective 
function. To build the matrix 𝐶𝑀 any number of n steps 
between 𝐶",$%&' and 𝐶",$%+" can be used. Increasing the number 
of steps will increase the computational time, but also will 
increase the accuracy of the algorithm. Finding the number of 
n steps that will represent a good compromise between 
simplicity, speed of convergence and accuracy is leave out of 
the scope of this work. In here, for explanation purposes, it is 
proposed to use three different evaluation points for each 
capacity: 𝐶",$%&', 𝐶",$%)* and 𝐶",$%+" to build the matrix 𝐶𝑀. The 
three different points are equally separated by a predefined 
step ∆𝐶",$. The relations between the three points and the step 
are described in Equations (1) to (4). 

𝐶",$%&' ≥ 	0 (1) 

∆𝐶",$ ≥ 	0 (2) 

𝐶",$%)* 	= 	𝐶",$%&' 	+	∆𝐶",$  (3) 

𝐶",$%+" 	= 	𝐶",$%)* 	+	∆𝐶",$ (4) 

𝑥 = (𝑃𝑉,𝐵,𝐷𝐺, 𝐷𝑅) (5) 

Using the proposed method is possible to reduce a x 
dimension space into a two-dimension space to build the 
matrix 𝐶𝑀. Figure 2 illustrates the results of the dimension 
reduction of a four-dimension space into two-dimension 
space. 

 
Figure 2 Matrix CM, designed to store the total costs of installation 
and operation of the islanded microgrid. 

The values inside of matrix 𝐶𝑀 are the sum of the fixed 
and variable costs, and they are computed using Equation 
(6).  
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	𝑇𝐶",$ 	= 	cc𝑇𝐹𝐶*,0 + 𝑇𝑉𝐶*,0
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(6) 

The total fixed costs 𝑇𝐹𝐶*,0 are related to the installation 
costs of the technologies as described by equation (7) and 
further explained in section 4.1. 

𝑇𝐹𝐶*,0 	= 	 (𝐹𝐶23 + 𝐹𝐶45 + 𝐹𝐶6 + 	𝐹𝐶478)(1+ 𝑟)
W
ijk (7) 

The total variable costs 𝑇𝑉𝐶*,0 are obtained from the 
simulations of the operation of the microgrid, using the 
combination of capacities 𝐶",$%&', 𝐶",$%)* and 𝐶",$%+" as described 
in Section 4.  

3.2. Search algorithm  

To find the minimum installation and operational costs 
inside of the search space, it will be enough to compute all the 
possible combinations of the matrix 𝐶𝑀. Doing so, it will be 
possible to guarantee the global minimum inside of the search 
space. However, this will lead to the curse of dimensionality, 
increasing the computational time of the problem. Instead of 
doing so, it is proposed to generate a search particle that will 
start from a random configuration of the capacities 𝐶",$%&', 
𝐶",$%)* and 𝐶",$%+" and compute the costs of this initial point 
𝑇𝐶",$l . Afterward, the algorithm computes the costs of the 
surrounding combinations 𝑇𝐶",$= . Once 𝑇𝐶",$l  and 𝑇𝐶",$=  are 
known, a comparison of the values is used to find the 
maximum descent direction. This process repeats until the 
algorithm finds a minimum point 𝑇𝐶",$∗ , where the costs of all 
the surroundings 𝑇𝐶",$=  are higher. Figure 3 shows a 
representation of the proposed search process. 

 
Figure 3 Graphical description of the search process. 

To avoid the search algorithm being trap in a local minimum 
two actions can be done. The first is to perform a visual 
inspection of the objective function by creating a 3D plot, as 
shown in Figure 4. The second is to increase the number of 
search particles to a defined N number. Afterwards, compare 
the results of all the N particles choosing the best achieved 
minimum to redefine the limits of the search space around it. 
Finding the number of N particles that will represent a good 
compromise between simplicity, speed of convergence and 
accuracy is leave out of the scope of this work.   

3.3. Redefining the search space 

The limits of the matrix 𝐶𝑀 are modified once the 
minimum costs 𝑇𝐶",$∗  are found. The modification of the lower 
limit 𝐶",$%&' and the higher limit 𝐶",$%+" is designed to tighten the 
search space around the minimum point 𝑇𝐶",$∗ . As illustrated 
in Figure 2, two possible scenarios are considered for the 
actualization of the limits: if the found minimum is in the 
borders or if it is inside of the matrix 𝐶𝑀. 

3.3.1. Minimum cost in the borders of the matrix 𝐶𝑀 

If the localization of the minimum is at the borders of the 
matrix CM, the search space moves in the same direction of 
the found limit without modifying the step. Equation (8) and 
(9) describe the process:  

𝐶",$%&' = 𝐶",$mg%&' 	±	∆𝐶",$ (8) 

∆𝐶",$ = ∆𝐶",$mg (9) 

The sign ± will be positive if the minimum is in a superior 
border 𝐶",$%+" or negative if the minimum is in an inferior 
border 𝐶",$%&'. 

3.3.2. Minimum cost inside of the matrix 𝐶𝑀 

If the localization of the minimum is inside of the matrix 
𝐶𝑀, the search space tights around the minimum point. 
Equations (10) to (13) describes the actualization process. 

𝐶",$%&' = 𝐶",$mg%&' 	+	𝛾"∆𝐶",$	 (10) 

∆𝐶",$ = (1 − 𝛾")∆𝐶",$mg (11) 

𝛾" = 𝛾23, 𝛾6, 𝛾54,𝛾478 (12) 

0 < 𝛾" < 1 (13) 

The 𝑥 coordinates of the new medium point 𝐶",$%)* are the 
same coordinates as the 𝐶",$mg%)* . The 𝛾" factor is introduced to 
control the speed of convergence of the proposed search 
algorithm. 𝛾 values closer to one will increase the speed of 
convergence but will reduce the accuracy to find the minimum 
point. 𝛾 values closer to zero will reduce the speed of 
convergence, increasing the number of 𝑘 required iterations to 
find the minimum point 𝑇𝐶",$∗  but it will increase the accuracy 
to find the minimum point. 
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3.3.3. Stops criteria   

The algorithm stops to redefine the limits of search space 
when the difference between the minimum cost 𝑇𝐶",$∗  and the 
cost in the surroundings 𝑇𝐶",$=  is less than a predefined gap. 

𝑇𝐶",$∗ − 𝑇𝐶",$= < 𝑔 (14) 

3.4. Possible combinations of all the capacities 

The combination of the capacities introduced by Equation 
(5) and illustrated in Figure 2 is not the only possible one. A 
cartesian product is used to find all the possible combinations 
that matrix 𝐶𝑀 can have and eliminate the equivalent 
combinations. A mathematical notation is proposed for 𝐶𝑀 to 
facilitate the understanding of the results: 

Parameter	 Mathematical	form	
Exterior	capacity	file	 𝐹	
Interior	capacity	file	 𝑓	
Exterior	capacity	column	 𝐶	
Interior	capacity	column	 𝑐	

Table 2 Proposed mathematical notation 

The cartesian product is performed using the two 
following groups:  

𝑃𝑜𝑠 = (𝐹, 𝑓, 𝐶, 𝑐)	 (15) 

𝑥 = (𝑃𝑉,𝐵,𝐷𝐺, 𝐷𝑅) (16) 

Table \ref(17able:2) presents the results of the cartesian 
product between 𝑃𝑜𝑠 and 𝑥 after eliminating the equivalent 
combinations.  

1.		𝐹23	𝑓*�	𝐶6	𝑐*��	 2.		𝐹54	𝑓:�	𝐶6	𝑐*��	
3.		𝐹23	𝑓*�	𝐶478	𝑐�	 4.		𝐹54	𝑓:�	𝐶478	𝑐�	
5.		𝐹45	𝑓�	𝐶23	𝑐*��	 6.		𝐹6	𝑓*�	𝐶23	𝑐*��	
7.		𝐹45	𝑓�	𝐶478	𝑐:�	 8.		𝐹6	𝑓*�	𝐶478	𝑐:�	
9.		𝐹23	𝑓�	𝐶478	𝑐*�	 10.𝐹6	𝑓:�	𝐶478	𝑐*�	
11.𝐹23	𝑓�	𝐶54	𝑐*��	 12. 𝐹6	𝑓:�	𝐶45	𝑐*��	

Table 3 Possible combinations. 

Due to the reduction of the 𝑥 dimensions into two 
dimensions, it is possible to visualize the objective function. 
Combinations of Table 3 are plotted in Figure 4. 

  

  

  

  

  

  
Figure 4 Possible combinations of the different capacities for the 
sizing. 

4. Energy management strategy design  

An Energy Management Strategy (EMS) is designed to 
evaluate if the installed capacities are enough to fulfil the 
demand during the time. The EMS includes a direct load 
control management strategy that allows the disconnection of 
a percentage of the load if it is needed. The EMS is designed 
using the economic dispatch theory to define the order and the 
quantities in which the generators should be dispatched using 
an hourly step. For each hour of operation, the algorithm 
computes the marginal costs of all the available generation 
resources and selects the less expensive to be dispatched.  

It is worth it to notice that the EMS is designed to consider 
a DG. However, other sources, such as gas, biogas, biodiesel 
generator, or even fuel cells can be considered using the 
proposed sizing methodology.  Section 4.1 presents the cost 
model of the DG which depends on the size and the diesel 
consumption. Cost models are similar in sources such as fuel 
cells where the cost depends on the size and hydrogen 
consumption. Section 4.1 additionally presents the models 
used to compute the costs of all the generation and storage 
technologies considered for the microgrid.   
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4.1. Models of the generators and storage system 

4.1.1. Photovoltaic system 

The photovoltaic system costs are related to the initial 
investment and the maintenance of the system: 

𝐹𝐶23 = 𝐶23𝐼𝐼23 + 𝐶23𝑀23 (17) 

The variable costs of the photovoltaic system are assumed 
to be zero after its installation [35], [36]. 

4.1.2. Diesel Generator 

The diesel generator fixed costs are related to the initial 
investment and the maintenance of the system: 

𝐹𝐶45 = 𝐶45𝐼𝐼45 + 𝐶45𝑀45 (18) 

Equation (19) express diesel consumption as a function of 
the installed capacity and output power. 

𝑇𝑉𝐶𝐷𝐺*,0 	= 	𝜋7𝐶45 �
0.024𝑄𝐷𝐺*,0

𝐶45
	+ 0.031�	 (19) 

Equation (20) describes the generation limits: 

0.3𝐶_(𝐺𝐷) ≤ 	𝑄𝐷𝐺_(𝑑, ℎ) ≤ 	0.9𝐶_(𝐺𝐷) (20) 

4.1.3. Battery Energy Storage System 

Battery fixed costs are related to its installation and 
maintenance: 

𝐹𝐶6 = 𝐶6𝐼𝐼6 + 𝐶6𝑀6 (21) 

The variable costs of the BESS are assumed to be zero. 
Equation (22) describes the state of charge of the battery. 
Equations (23) and (24) describes the dynamics of charging 
and discharging the battery. Equation (25) describes the 
allowed variation of the state of charge of the battery. 

𝑆𝑂𝐶*,0 	= 	𝑆𝑂𝐶*,0mg + 𝜂&'𝑄𝐵𝑖𝑛*,0 −
𝑄𝐵𝑜𝑢𝑡*,0
𝜂KLM

	 (22) 

−0.3𝐶6 ≤ 	𝑄𝐵𝑖𝑛*,0 	≤ 	0 (23) 

0	 ≤ 	𝑄𝐵𝑜𝑢𝑡*,0 	≤ 	0.3𝐶6 (24) 

0.4𝐶6 ≤ 	𝑆𝑂𝐶*,0 	≤ 	0.9𝐶6 (25) 

4.1.4. Direct Load Control System 

The direct load control fixed costs are related to the initial 
investment to acquire the technology and its maintenance. 

𝐹𝐶478 = 𝐶478𝐼𝐼478 + 𝐶478𝑀478 (26) 

Equation (27) define the limits of curtailed energy by the 
DLC strategy. 

−0.1𝑚𝑎𝑥(𝐷W) < 𝑄𝐷𝐿𝐶*,0 < 0 (27) 

 

 

 

4.1.5. Excess and lack of energy modelling 

A cost 𝐶𝐸𝐸 is introduced to weight the energy that the 
generation facilities provide, but it is not possible to consume 
by the demand. A cost 𝐶𝐿𝐸 it is proposed to weight the power 
that the customers require, but the generation facilities are not 
able to produce. Equations (28) an (29) define both costs: 

𝐶𝐸𝐸 = 𝛽	𝑄𝐸𝐸_(𝑑, ℎ) (28) 

𝐶𝐿𝐸 = 𝛽	𝑄𝐿𝐸_(𝑑, ℎ) (29) 

𝛽	 > 	1 (30) 

Where 𝛽 is a weighting factor that can be tuned to 
guarantee a certain degree of reliability for the microgrid. 

4.2. Scenarios for the EMS 

Three possible scenarios are considered to formulate the 
EMS, when the PV generation is zero (𝑃𝑉*,0 = 0), when is 
greater than zero and smaller than the load (0 < 𝑃𝑉*,0 <
𝑄𝐿𝑂𝐴𝐷*,0), and when is greater that the load (𝑃𝑉*,0 >
𝑄𝐿𝑂𝐴𝐷*,0). The three scenarios are explained in Section 
4.2.1, 4.2.2 and 4.2.3, respectively. 

4.2.1. Photovoltaic generation equal to zero 

Variable costs of each technology are obtained to estimate 
the order of the dispatch. The most economical technology 
between the DG and the BESS is dispatched first, considering 
the minimum and maximum power dispatch for the DG and 
the BESS. The second most economical technology is 
dispatched afterward considering the maximum and minimum 
power outputs. The DLC is used only in the case that the DG 
and the BESS are not enough to supply the demand. 

4.2.2. Photovoltaic generation greater than zero and 
smaller than the demand 

If the PV generation is greater than zero and smaller than 
the load, the total demand 𝐷*,0 can be expressed as: 

𝐷_{𝑑, ℎ} = 𝑄𝐿𝑂𝐴𝐷_{𝑑, ℎ} − 𝑄𝑃𝑉_{𝑑, ℎ} (31) 

The DG, BESS, and DLC must serve the demand 𝐷*,0. In 
case that the DG, BESS, and DLC working at its maximum 
capacities are not enough to feed it, the rest will be considered 
as a lack of energy. Variable 𝑄𝐿𝐸 will store all the shortages. 

4.2.3. Photovoltaic generation bigger than the demand 

The BESS stores the excess of energy produced by the 
PV. A rule is designed to avoid overpassing the maximum 
charge rate capacity 𝑄𝑖𝑛%+"  of the battery. If the power 
generated for the PV is higher than 𝑄𝑖𝑛%+" , the BESS will 
take only its maximum capacity rate of charge, and the rest is 
considered a waste of energy. Variable 𝑄𝐸𝐸 will record all the 
excesses of energy. Figure 5 illustrates the three possible 
scenarios for the dispatch. 
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Figure 5 Order to dispatch the energy sources. 

5. Simulations and results  

In this section, numerical examples are provided to 
illustrate the performance of the proposed method. The study 
case is the sizing of a hypothetical microgrid located at 
longitude 77° 16' 8'' West and latitude 5° 41' 36'' North (Nuquí, 
Colombia). The microgrid will be composed of Photovoltaic 
panels (PV), a Battery Energy Storage System (BESS), a 
Diesel Generator (DG) and a Direct Load Control (DLC) 
system. The maximum load of the considered microgrid is 460 
kW. Instituto de Hidrología, Meteorología y Estudios 
Ambientales (IDEAM), a Colombian institute in charge of 
monitoring the weather across the country, provides 
meteorological data for the simulations. The average Global 
Horizontal Irradiance (GHI) in Nuquí is 3,5 kWh/m2. The cost 
of Diesel used for the simulations is 0.79 USD/liter. Table 
\ref{tabla:6} summarizes the unitary costs used for the 
simulations. 
System	 Initial	

investment	
Maintenance	 Operation	

PV	 1300	USD/kW	 0.02	USD/kW		 0	USD	
BESS	 420	USD/kWh	 0.01	USD/kWh	 0	USD	
DG	 550	USD/kWh	 0.75	USD/kWh	 Equation	(16)	
DLC	 50	USD/kW	 0	USD/kW	 0	USD	

Table 4 Unitary system costs for simulations. 

The obtained results of the proposed algorithm are 
compared to the results of a Particle Swarm Optimization 
(PSO) and an Exhaustive Search Algorithm. The application 
of the PSO algorithm is explained in section 5.1. The 
implementation of the exhaustive search algorithm is 
described in section 5.2. Section 5.3 presents the results of the 
proposed algorithm. Finally, a comparison between the three 
algorithms is explained in section 5.4. 

5.1. Particle swarm optimization algorithm 

PSO is a stochastic optimization algorithm that is based in 
the animal migration process [37], and is described in 
equations (32) and (33). 

𝒗&$­g 	= 	𝑤𝒗&$ 	+	𝑐g𝑟𝑎𝑛𝑑g	𝑷𝒃𝒆𝒔𝒕& 		−	𝒙&$ 	
+	𝑐d		𝑟𝑎𝑛𝑑d	𝑮𝒃𝒆𝒔𝒕	 −	𝒙&$ 

(32) 

𝒙&$­g 	= 	𝒙&$ 	+	𝒗&$­g (33) 

Where 𝒙&$ represents the 𝑖M0 particle at 𝑘 iteration. 𝑷𝒃𝒆𝒔𝒕& 
is the personal best position of the 𝑖M0 particle and 𝑮𝒃𝒆𝒔𝒕 is 
the global best position of the group of particles. 𝑐g and 𝑐d are 
positive constants, and 𝑟𝑎𝑛𝑑g and 𝑟𝑎𝑛𝑑d are random numbers 
with uniform distribution between [0,1]. 𝒗&$ is the velocity 
vector of the 𝑖M0 particle and 𝑤 is the inertial factor. The 
implementation of PSO algorithm for the sizing of islanded 
microgrids is shown in figure \ref(fig:algo). 

 
Figure 6 Diagram of the PSO algorithm implementation. 

5.1.1. Initialization of the algorithm 

The PSO algorithm starts setting the values of the 
constants 𝑤, 𝑐g and 𝑐d; the particle position matrix 𝒙$ and 
velocity vector 𝒗$; the load of the islanded microgrid 𝑄𝐿𝑜𝑎𝑑, 
and the number of iterations 𝑁𝑢𝑚𝐼𝑡𝑒. Equation (34) presents 
𝒙$, where the rows are the variables to optimize and the 
columns are the particles. 

𝒙$ =

⎣
⎢
⎢
⎢
⎡ 𝐶𝑃𝑉g

$ 𝐶𝑃𝑉g$ … 𝐶𝑃𝑉&$

𝐶𝐵𝐸𝑆𝑆g$ 𝐶𝐵𝐸𝑆𝑆d$ … 𝐶𝐵𝐸𝑆𝑆&$

𝐶𝐺𝐷g$ 𝐶𝐺𝐷d$ … 𝐶𝐺𝐷&$

𝐶𝐷𝐿𝐶g$ 𝐶𝐷𝐿𝐶d$ … 𝐶𝐷𝐿𝐶&$ ⎦
⎥
⎥
⎥
⎤
 

 
 

(34) 

The accuracy of the PSO depends on the tuning of the 
constants, 𝑐g, 𝑐d and 𝑤. To avoid the tuning of this parameters, 
we use the recommended values of the work presented in [38], 
where 𝑐g and 𝑐d are equal to “2”, and 𝑤 between [0.4,0.9]. 
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5.1.2. Internal computations of the algorithm 

Using the rule-based EMS presented in Section 4 is 
created the function SimulationOfTheGrid(). The inputs of 
this function are the capacities of the energy sources that the 
sizing algorithm defines.  Afterwards, a comparison cost is 
performed with the function ComparisonOfCost(). This 
function finds the 𝑮𝒃𝒆𝒔𝒕 and 𝑷𝒃𝒆𝒔𝒕. A third function PSO() 
is introduced to compute equations (32) and (33). Finally, the 
function Limitation() keep the variation of the particles inside 
of the search space. 

5.1.3. Stops criteria 

An external function is defined to maintain the algorithm 
iterating until it reaches the predefined number of iterations. 
Despite that more sophisticated stopping criterions could be 
computed; the simplicity of this strategy makes it a proper 
candidate.  However, the number of iterations was selected 
after the algorithm reach's global minimum found with the 
exhaustive search. Figure 7 presents the sizing results using 
the PSO algorithm. 

 
Figure 7 PSO sizing results. 

5.2. Exhaustive search 

An exhaustive search was performed to verify if the 
proposed algorithm and the PSO algorithm are converging to 
the global minimum of the evaluation function. The 
exhaustive search makes a thin discretization of the search 
space for each of the generators and storage systems for the 
microgrid [39], [40]. Afterwards, a cartesian product is 
applied to find all the possible combinations of the 𝐶23, 𝐶6Ã==, 
𝐶54, and 𝐶478. SimulationOfTheGrid() computes the 
operational costs of the microgrid for each possible 
combination. Figure 8 presents the results obtained using the 
exhaustive search algorithm. 

 
Figure 8 Exhaustive search sizing results. 

5.3. Proposed algorithm  

As described in section 3, different organizations of the 
capacities can be chosen to build the matrix 𝐶𝑀. Due to the 
heuristic characteristic of the proposed algorithm, it is 
desirable to adopt a combination that avoids the search process 
be trap in a local minimum. In this regard, the combination 11 
was selected to perform the simulations. 

The first step of the proposed algorithm is to define the 
search space, and the second is to execute the search process. 
However, these two processes depend on 𝐶",$%&', ∆𝐶",$, 𝐶",$%+" 
and 𝛾". To avoid subjectivities in the selection of these 
parameters, they were not chosen randomly. Instead, a Genetic 
Algorithm (GA) was used to find the initial points, steps, and 
the 𝛾" factor. Table 5 show the results. 
System	 𝐶",$%&'	 ∆𝐶",$	 𝐶",$%+"	 𝛾"	
PV	 52	kW	 300	kW	 652	kW	 0.2397	
BESS	 244	kWh	 178	kWh	 600	kW	 0.2629	
DG	 304	kW	 131	kW	 566	kW	 0.2585	
DLC	 34	kW	 8	kW	 50	kW	 0.6743	

Table 5 Initial values of the parameters for the proposed algorithm. 

Using the above-mentioned parameters, the proposed 
algorithm converges after ten iterations. Figure 9 illustrates 
how the minimum capacity is modified and how the step 
reduces its size each 𝑘 iteration. 
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Figure 9 Proposed algorithm sizing results. 

5.4. Comparison between the three algorithms  

To make the comparisons of the algorithms, three 
different aspects were analysed: speed of convergence, best-
achieved minimum, and physical computational cost. Section 
5.4.1 present the comparison of the speed of convergence of 
the proposed algorithm and the PSO. Section 5.4.2 shows the 
best minimum achieved for each of the algorithms. Finally, 
Section Error! Reference source not found. presents the p
hysical computational cost required to execute the algorithms. 
The configuration of the software used for the simulations and 
the characteristics of the computer are described in Table 6. 

Parameter	 Data	
Date/hour																
MATLAB	version		
MATLAB	accelerator	
MATLAB	JIT															

28-Jun-2019/09:52:25	
9.5.0.944444	(R2018b)	
Enabled	
Enabled	

MATLAB	assertions	
MATLAB	Desktop		
Java	JVM																													
Java	version													
CPU																																														
Operative	system	
Number	of	cores	
Number	of	threads	

Disabled	
Enabled	
Enabled	
Java	1.8.0_152-b16		
x86	Intel	Core	i5	8250u	
Microsoft	Windows	10	
4	
4	

Table 6 Matlab and test computer configuration information. 

5.4.1. Speed of convergence  

Figure 10 shows how the values of the capacities found 
with the PSO and the proposed algorithm evolves in time, and 
how much far are they from the global minimum found with 
the exhaustive search. 

 
Figure 10 Convergence of the algorithms. 

5.4.2. Best achieved minimum  

The best-achieved minimum for each of the used 
algorithms in the comparisons is presented in Table 7. 
Parameter	 Exhaustive	

search	
PSO	 Proposed	 Units	

PV	 355	 331	 342	 kW	
BESS	 3	 3	 3	 kWh	
DG	 526	 538	 530	 kW	
DLC	 50	 43	 46	 kW	
Time	 16.483	 1.5628	 0.7518	 Seconds	
Total	cost	 49101	 50932	 50232	 USD	

Table 7 Comparison of results 

The proposed algorithm converges around two times 
faster than the PSO and twenty times faster than the exhaustive 
search. However, the found solution is approximately 2.5% 
more expensive than the solution found with the exhaustive 
search. 

6. Conclusion 

This paper presents the formulation of a sizing 
methodology for islanded microgrids using a heuristic 
approximation of the gradient descent method for discrete 
functions. The methodology uses simulations of different 
combinations of capacities of generators and storage systems 
to evaluate the ability of the combinations to feed the electrical 
demand of the islanded microgrid. Three steps are used to 
converge to a minimum point: delimiting the feasible region, 
a search process, and redefining the limits of the search space.  
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The main benefit of the proposed methodology is the 
ability to add the possibility of using an EMS that optimally 
dispatches the resources of the microgrid to a simulation 
model. The method proves to be faster and to provide a better 
minimum value than Particle Swarm Optimization. However, 
further comparisons against other heuristic methodologies are 
required.    

To avoid relying on the designers' previous knowledge, a 
Genetic Algorithm was used to delimit the feasible region of 
the search space for the study case. The study case results 
show the effectiveness of the proposed sizing methodology. 
Despite this, some considerations of the algorithm are worth 
to be noticed. The algorithm does not address the effects of the 
uncertainties introduced by the forecast of the solar radiation 
and the electrical demand. Additionally, the accuracy of the 
algorithm is highly dependent on the definition of the feasible 
region to start the search process, the 𝛾" factors introduced to 
regulate the speed of convergence, and the selection of the 
possible combinations to create the search space. In this 
regard, the genetic algorithm improves the final results, but if 
these factors are left to the criteria of the designer, the 
algorithm loses accuracy and speed of convergence. All these 
aspects must be evaluated and improved in further works. 
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